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Abstract— The problem of equivalence is considered for
nonlinear single-input single-output systems defined on homo-
geneous time scales and described by n-th order input-output
delta-differential equations. First the concepts of reduction and
of irreducibility of an input/output equation are explained.
Subsequently, based on these notions, a definition of equiva-
lence is introduced, which generalizes the notion of transfer
equivalence. A practical criterion for evaluating irreducibility
is given in terms of subspaces of one-forms, classified according
to their relative degrees.

Index Terms— Time-scale, realization, irreducibility, equiva-
lence.

I. INTRODUCTION

A time scale is a model of time. Both continuous- and

discrete-time cases are merged in time scale formalism into a

general framework which represents not only a unification of

continuous- and discrete-time systems but also an extension.

For instance, the notion of the so-called delta-derivative, as

well as the related definition of a delta-differential equation,

is not only a generalization of both the standard time-

derivative and of the difference operator but accommodates

also much more possibilities. For this reason, the time scale

approach has become recently very popular in the study of

dynamic systems (see, for instance, [1] and [2]) but there

are still only a few papers concerning control systems (see,

among others, [3], [4], [5]).

The topics studied in this paper are the equivalence and

the reduction of nonlinear systems on time scales, i.e. the

problem considered is the following: given an arbitrary i/o

delta-differential equation, is it possible to find an accessible

(irreducible) lower order representation, which is equivalent

to the original system? In particular, the definitions of

transfer equivalence given in [6] and [7] for continuous- and

discrete-time nonlinear systems, respectively, are extended to

the case of nonlinear control systems described on homoge-

neous time scale. As in the previous results, the definition

is based upon the notions of the autonomous variable and

of the irreducible i/o equation of the system. Note that the

extended equivalence notion is referred to as the transfer

equivalence, as in the linear case the definition coincides with

the classical definition of transfer equivalence and system

reduction corresponds to pole/zero cancellation.
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The notion of transfer equivalence for nonlinear i/o delta-

differential equations plays a crucial role in the realization

problem [3]. The main result is that an accessible state space

realization can be obtained if and only if starting from an ir-

reducible i/o equation. Obviously, an arbitrary i/o equation is

not necessarily in the irreducible form and herein a procedure

for the reduction of an i/o equation into an irreducible form

is proposed. Such a procedure, however, assumes that it is

known how to find the integrating factors and to integrate the

one-forms. The reduction problem of nonlinear i/o equation

on homogeneous time scale was studied earlier in [4] where

the necessary and sufficient condition for irreducibility was

formulated in terms of the common left factor of two poly-

nomials, describing the behaviour of the tangent linearized

system. The purpose of this paper is to provide an alternative

criterion for irreducibility and a reduction procedure in terms

of certain subspaces of differential one-forms, defined by the

system equation. The final condition is formulated in terms of

the same sequence of subspaces appearing in the realizability

condition pointed out in [3], the only difference being that

now one has to compute more elements in this sequence.

However, combining the results presented herein with the

results in [3], a unified solution to the minimal realization

problem is found.

The paper is organized as follows. In Section II the time

scale calculus is presented and the concepts necessary for

the following analysis are recalled. Section III describes the

algebraic machinery of differential one-forms that is used

to obtain the main results of the paper. Sections IV and V

describe the problem of reducibility and equivalence of an i/o

delta-differential equation. Finally, in Section VI conclusions

are drawn.

II. TIME-SCALE CALCULUS

The calculus on time scales was initiated by Aulbach

and Hilger [1] in order to create a theory that can unify

and extend discrete and continuous analysis. For a general

introduction, see [2]. The contents presented in the following

two sections are not new and have been previously published

(see [3]); nevertheless, as the subject is not commonly

known, the first part of the paper has been dedicated to

give the reader the necessary theoretical basis needed to

understand what follows.

In general, a time scale T is a non-empty closed subset

of the set of real numbers R. This definition includes both

the discrete time case, T=N and the continuous time case,

T = R. The forward jump operator σ : T→T is defined as
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σ(t) = inf {s ∈ T : s > t} , while the backward jump opera-

tor ρ(t) : T→T is defined as ρ(t) = sup {s ∈ T : s < t}. In

addition, if there exists a finite max T, σ(max T) , max T

and if there exists a finite min T, ρ(min T) , min T. As

T is a closed subset of R, both σ(t) ∈ T and ρ(t) ∈ T

when t ∈ T. Finally, for t ∈ T, the graininess function

µ : T → [0,∞) is defined by µ(t) = σ(t) − t. A time

scale T is homogeneous if µ is constant. In the paper only

homogeneous time scales are considered, leaving for future

research the extension of the results to a more general T.

Definition 1: Let f :T→R be a function and1t∈T
κ. The

delta-derivative of f at t is defined as the number f∆(t)
(provided it exists) such that for each ǫ > 0 there exists a

neighborhood U(ǫ) of t, U(ǫ) ⊂ T such that for all s∈U(ǫ)

|f [σ(t)]−f(s)−f∆(t)[σ(t)−s]|6ǫ|σ(t)−s| . (1)

Remark 2: In Definition 1, a maximal left-scattered point

is omitted, since for t ∈ T\T
κ f∆(t) is not uniquely defined.

For such a point t, small neighborhoods U of t consist only

of t and besides we have σ(t) = t. Therefore (1) holds for

an arbitrary number f∆(t).

Proposition 3: For two delta-differentiable functions f :
T → R and g : T → R one has2

(i) fσ = f + µf∆

(ii) (αf + βg)∆ = αf∆ + βg∆, ∀ α , β ∈ R

(iii) (fg)∆ = fσg∆ + f∆g

(iv) if ggσ 6= 0, then

(

f

g

)∆

=
f∆g − fg∆

ggσ
.

Theorem 4: (Chain Rule). Let f : R → R be continuously

differentiable and suppose that g : T → R is delta-

differentiable. Then f ◦ g : T → R is delta-differentiable

and

(f ◦g)∆(t)=

{∫ 1

0

f ′[g(t)+hµ(t)g∆(t)]dh

}

g∆(t) .

For a function f : T → R the delta-derivative of its delta-

derivative, namely the second-order delta-derivative
(

f∆
)∆

,

can be defined provided that f∆ is delta-differentiable on

T
κ2

, (Tκ)
κ

. For the sake of simplicity, in the following

the notation f [2] is used instead of
(

f∆
)∆

and, in gen-

eral, the delta-derivative of i-th order is denoted by f [i].

Moreover, for n > 1 we define f
[n]

as the vector f [n] ,
(f, f∆, f [2], . . . , f [n]).

III. ALGEBRAIC FRAMEWORK

We recall now the algebraic formalism for nonlinear

control systems defined on homogeneous time scales, see [3],

[4], [5].

Let y :T→R and u :T→R be two functions such that y

is delta-differentiable up to the order n and there exists the

delta-derivative of any order of u. Consider a single-input

single-output dynamic system Σ described by a higher order

1The notation T
κ is used for the set consisting of T except for a possible

left-scattered (i.e. a point t such that ρ(t) < t) maximal point.
2fσ is a shortened notation for f ◦ σ.

input-output delta-differential equation on a homogeneous

time scale T

y[n] = Φ
(

y, . . . , y[n−1], u, . . . , u[s]
)

. (2)

where u∈R is the input and y∈Y⊂R is the output. Assume

s and n to be nonnegative integers, s<n and Φ to be a real

analytic function defined on Y×R
n+s.

Define the real analytic function ϕ : Y×R
n+s+1 → R as

ϕ
(

y, y[1], . . . , y[n], u, u[1], . . . , u[s]
)

,

, y[n] − Φ
(

y, . . . , y[n−1], u, . . . , u[s]
)

.

Then Equation (2) can be rewritten as

ϕ
(

y, y[1], . . . , y[n], u, u[1], . . . , u[s]
)

= 0. (3)

Associate to system Σ the extended state-space model Σe

with input v=u[s+1] and state z= (z1, z2, . . . , zn+s+1)
⊤ =

(

y[n−1],u[s]
)⊤

, whose dynamics is defined by

z∆ = [z2, . . . , zn,Φ(z), zn+2, . . . , zn+s+1, v]
⊤

, fe(z, v). (4)

Note that (4) is not claimed to be a realization of (2).

Now, consider the infinite set of independent real indeter-

minates

C =
{

zi, i = 1, . . . , n+ s+ 1, v[k], k > 0
}

and denote by K the (commutative) field of meromorphic

functions in the system variables z, v and a finite number of

the delta-derivatives of v.

Assume that the map z 7→ f̃ (z, v) = z + µfe(z, v)
generically defines a submersion, namely (see [8]) assume

that the following condition holds:

rankK
∂ f̃(z, v)

∂ (z1, . . . , zn+s+1, v)
= n+ s+ 1 . (5)

Remark 5: One can show that for (5) to hold either

1 +

n
∑

i=1

(−1)i+1µi ∂Φ

∂y[n−i]
6≡ 0

or
s
∑

j=0

(−1)jµj+2 ∂Φ

∂u[s−j]
6≡ 0

has to be satisfied.

The operators ∆ : K → K and σ : K → K are defined as3

∆
[

F
(

z, v, . . . , v[k]
)]

,

,

∫ 1

0

{

grad F
(

z + hµfe(z, v), v + hµv∆, . . .

. . . , v[k] + hµv[k+1]
)

·











fe(z, v)
v∆

...

v[k+1]











}

dh

3The notations ∆(F ) and F∆ equivalently denote the delta-derivative
of a meromorphic function. Analogously both σ(F ) and F σ denote the
operator σ acting on F .
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and

σ
[

F (z, v, . . . , v[k])
]

, F
[

zσ, vσ, . . . , (v[k])σ
]

,

respectively, where zσ = z + µfe(z, v) and
(

v[i]
)σ

= v[i] +
µv[i+1], i = 0, . . . , k.

The map σ is an endomorphism. If the extended state-

space system (4) satisfies (5), the kernel of σ is {0} and

the endomorphism σ is well-defined on the field K. For

homogeneous time scales, if F ∈ K then both F σ ∈ K
and F∆ ∈ K.

The operator ∆ satisfies:

(i) (F1 + F2)
∆ = F∆

1 + F∆
2 , for all F1, F2 ∈ K

(ii) (F1F2)
∆ = F∆

1 F2 + F σ
1 F

∆
2 , for all F1, F2 ∈ K.

According to (ii), operator ∆ satisfies a suitable general-

ization of the Leibniz rule. An operator satisfying the rule

(ii) is called a σ-derivation (see, for instance, [9]) while a

commutative field endowed with the σ-derivation is called a

σ-differential field.

The field K associated to the control system (4) and

endowed with the σ-derivation ∆ is a σ-differential field.

For µ = 0, σ = σ−1 = id and K is inversive, i.e. every

element of K has a pre-image. However, K is not inversive

in general. Nevertheless, it is always possible to embed K
into an inversive differential overfield K∗, called the inversive

closure (see [9]) of K. This inversive closure is unique up

to an isomorphism. Since σ is an injective endomorphism, it

can be extended to K∗ in such a way that σ : K∗ → K∗ is

an automorphism.

Hereinafter the inversive closure of differential field K is

assumed to be given and the symbol K is used to denote

both the differential field and its inversive closure.

A. The subspaces of one-forms

Consider the infinite set of symbols

dC =
{

dzi, i = 1, . . . , n+ s+ 1, dv[k], k > 0
}

and denote by E the vector space spanned over K by the

elements of dC, namely E = spanKdC. Any element of E is

a vector of the form

ω =
n+s+1
∑

i=1

αidzi +
∑

k>0

βkdv[k],

where only a finite number of coefficients βk are nonzero

elements of K. A differential operator d :K→E is defined

in the standard manner:

dF
(

z,v[k]
)

,

n+s+1
∑

i=1

∂F

∂zi

dzi +

k
∑

j=0

∂F

∂v[j]
dv[j] .

The elements of E will be called one-forms; ω ∈ E is an

exact one-form if ω = dF for some F ∈ K. Finally, dF is

referred to as the total differential (or simply the differential)

of F .

The operators ∆ : K → K and σ : K → K induce the

operators ∆ : E→E and σ : E→E by4

∆





n+s+1
∑

i=1

αidzi +
∑

k>0

βkdv[k]



 ,

,
n+s+1
∑

i=1

[

α∆
i dzi + ασ

i d(z∆
i )
]

+

+
∑

k>0

[

β∆
k dv[k] + βσ

k dv[k+1]
]

, (6)

σ





n+s+1
∑

i=1

αidzi +
∑

k>0

βkdv[k]



 ,

,

n+s+1
∑

i=1

[

ασ
i dzσ

i + βσ
k d
(

v[k]
)σ]

(7)

for αi, βk ∈ K. For homogeneous time scales the total

differential commutes with operators ∆ and σ defined by (6)

and (7), i.e. (dF )
∆

= d
(

F∆
)

and (dF )
σ

= d (F σ).
Definition 6: The relative degree r of a one-form ω ∈ E

(with respect to v) is defined to be the least integer such

that ∆r(ω) 6∈ spanK{dz}. If such an integer does not exist,

define r=∞. The relative degree of a meromorphic function

ϕ(z, v) is defined as the relative degree of dϕ(z, v).
Denote dg[k] ,

(

dg, . . . ,dg[k]
)

. Introduce the sequence

of subspaces {Hk} of E defined by

H0 = spanK {dz, dv} = spanK

{

dy[n−1], du[s+1]
}

Hk = spanK

{

ω ∈ Hk−1 | ω∆ ∈ Hk−1

}

, k > 1. (8)

It is clear that at the first step, the above induction yields

H1 = spanK {dz} and that

E⊃H0⊃ . . .⊃Hk∗ ⊃Hk∗+1 = · · ·,H∞ . (9)

The existence of the integer k∗ > 0 comes from the fact

that each Hk is a finite dimensional K-vector space so that,

at each step either its dimension decreases or Hk+1 = Hk.

Moreover 5k∗ 6 n+ s+ 1 = dimK H1.

Remark 7: From (8) it is obvious that Hk contains the

one-forms whose relative degree is greater than or equal to

k. Additionally, H∞ is the largest subspace of H1, invariant

under σ-differentiation ∆.

The quantities defined so far are now used to prove the

following fact.

Lemma 8: The sequence {Hk} is invariant under any

diffeomorphism on the state variables.

Proof. The lemma follows directly from Remark 7 and

from the fact that the relative degree is invariant under the

state diffeomorphism. �
The following algorithm allows to explicitly construct the

bases vectors for the subspaces Hk 6= H∞.

4Like in the case of functions, the notations ∆(ω) and ω∆, as well as
σ(ω) and ωσ , are equivalent.

5dimK Hk is the dimension of the space Hk over the field K.
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Step 1. Take {dz1, . . . ,dzn+s+1, dv} and

{dz1, . . . ,dzn+s+1} as bases of H0 and H1, respectively.

Step k+1. Suppose that {η1, . . . , ηn+s−k+2, ϑ} and {η1,

. . . , ηn+s−k+2} are the bases of Hk−1 and Hk, respectively,

and construct a basis for Hk+1 as follows. The elements of

Hk+1 are the one-forms ω ∈ Hk such that ω∆ ∈ Hk. In

order to compute Hk explicitly, let

ω =

n+s−k+2
∑

j=1

λjηj ∈ Hk,

where λj ∈ K. Then by (6)

ω∆ =

n+s−k+2
∑

j=1

(

λ∆
j ηj + λσ

j η
∆
j

)

.

It is clear that ω∆ ∈ Hk if and only if

n+s−k+2
∑

j=1

λσ
j η

∆
j ∈ Hk.

Now, since ηj ∈ Hk, η∆
j must be in Hk−1, so

∑

j

λσ
j η

∆
j

may be written in the following form:

n+s−k+2
∑

j=1

λσ
j η

∆
j =

n+s−k+2
∑

j=1

λσ
j

(

∑

l

αljηl + βjϑ

)

.

Thus, ω∆ ∈ Hk if and only if the coefficients λj satisfy the

following linear equation

n+s−k+2
∑

j=1

λσ
j βj = 0 (10)

This equation has n+s−k+1 linearly independent solutions

λ
σ
i = (λσ

i,1, . . . λ
σ
i,n+s−k+1)

⊤, for i=1, . . . , n+s−k+1. To

find λi we have to apply σ−1 which is uniquely determined

as σ is an automorphism. Hence, a basis of Hk+1 can be

computed as

ω̄i =

n+s−k+2
∑

j=1

λi,jηj , i = 1, . . . , n+s−k+1 .

where λi,j is the j-th component of the i-th solution λi.

Lemma 9: Let {ω1, . . . , ωr∞
} be a basis for H∞. Then

there exists (locally) a basis for H∞ composed of exact one-

forms, i.e. H∞ is integrable.

Proof. For µ = 0 the proof of Lemma 9 is given in [10]. If

µ 6= 0, from (i) in Proposition 3 one obtains

σ(ω) = ω + µ∆(ω). (11)

Hence, Hk in (8) can be alternatively defined as Hk =
spanK{ω ∈ Hk−1 | σ(ω) ∈ Hk−1}. As a matter of fact,

by (11), ω∈Hk if and only if ω∈Hk−1 and σ(ω)∈Hk−1.

Therefore the subspace H∞ is invariant both under delta-

differentiation and under shift operator σ. Hence in the case

µ 6= 0 the integrability of H∞ can be deducted from the

results in [8]. �

IV. IRREDUCIBILITY

Definition 10: A function ϕr ∈ K is an autonomous

variable (see [7], [6]) for (3) (or for (4)) if there exist an

integer ν > 1 and a non-zero meromorphic function G so

that G
(

ϕr, ϕ
∆
r , . . . , ϕ

[ν]
r

)

= 0.

Proposition 11: If function ϕr ∈ K is an autonomous

variable for (3) (or for (4)), then ϕr has infinite relative

degree.

Proof. If a non-constant function ϕr has a finite relative

degree, then it is eventually influenced by the input v and

by its delta derivatives, and therefore, since dv, dv[1], dv[2],

. . . are independent vectors, we have

dim spanK{dϕr, . . . ,dϕ
[k−1]
r } = k,

for any k > 1. This contradicts Definition 10. �
Definition 12: If there does not exist any non-zero au-

tonomous variable in K for (3) and (4), then system (2) is

said to be irreducible (see [7]) and system (4) is said to be

accessible. Otherwise system (2) is called reducible.

Since the mathematical tools we employ require that

instead of working with the equations themselves we work

with their differentials, the systems ϕ(·) = 0 and ϕ(·)+c = 0
are not distinguished for an arbitrary constant c. In order to

avoid such situations we fix the constant c and assume it to

be defined by the equilibrium point of the system.

If system (3) is reducible (or system (4) is not accessible),

then by Definition 12 there exists a non zero autonomous

variable ϕr(z). Then, since ϕr has infinite relative degree,

dϕr ∈ H∞. Consider, now, the system of equations

ϕr(z) = 0 ,
ϕ∆

r (z) = 0 ,
...

ϕ
[k]
r (z) = 0 ,

(12)

where k > ν and ν is some integer greater or equal to 1.

The Jacobian matrix over K of the left hand side of (12),

namely










dϕr(z)
dϕ∆

r (z)
...

dϕ
[k]
r (z)











,

has a limiting rank for some ν. This implies locally that if

in the neighborhood of the equilibrium point z of the system

there is no point at which all entries of the Jacobian matrix

are zero, then there exist a function G such that

G
(

ϕr, ϕ
∆
r , . . . , ϕ

[ν]
r

)

= 0.

Since also ϕ(·) = 0, one gets the following corollary.

Corollary 13: If the system (3) is reducible, then its

behaviour can be expressed as

ϕ = kG(ϕr, ϕ
∆
r , . . . , ϕ

[ν]
r ) = 0,

where ϕr = ϕr(y, . . . , y
[m], u, . . . , u[l]), with m < n, l < s

and k 6= 0 is an element of K.
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Now the main result of the section can be proven.

Theorem 14: A necessary and sufficient condition for sys-

tem (3) to be irreducible is that H∞ = {0} for the extended

system (4).

Proof. (Sufficiency). We prove by contradiction. Suppose

that H∞ = {0} for the extended system (4) and simul-

taneously (3) is reducible. Then, by Corollary 13 there

exist two non-zero meromorphic functions ϕr(y
[m],u[l]) and

G(ϕr, ϕ
∆
r , . . . , ϕ

[ν]
r ) such that

dϕ[ν]
r =

ν−1
∑

i=0

αidϕ
[i]
r , (13)

where αi =

∂G

∂ϕ
[i]
r

∂G

∂ϕ
[ν]
r

∈ K. Note that r+ ν = n, l+ ν = s and

ϕr depends on y[m] and u[l]. By (13), ϕr has infinite relative

degree which implies dϕr ∈ H∞. Therefore H∞ 6= {0},

what gives rise to a contradiction.

(Necessity). Let A be the set of all autonomous variables

for (3); then, for ϕr ∈ A, an one-form dϕr has infinite rel-

ative degree. Therefore, by (8) and since H∞ contains one-

forms whose relative degree is infinite, spanK{dϕr| ϕr ∈
A} = H∞. Hence, if the system is irreducible, then, from

Definition 12, A = ∅, which implies H∞ = {0}. �
Corollary 15: From Definition 12 the irreducibility of

system (2) is equivalent to the accessibility of system (4).

Therefore the extended system (4) is accessible if and only

if H∞ = {0}.

This section is concluded by presenting some examples

useful to understand the concepts explained so far. The

calculations carried out to find the quantities which are of

interest in the examples are simple and hence omitted. In

particular, they can be performed with any software for

symbolic calculations.

Example 16: Consider the system described by the i/o

delta-differential equation

ϕ0 = y∆ − uy = 0. (14)

The extended state-space system associated to (14), with z =
(y, u), has the following form

z∆
1 = z1z2 ,

z∆
2 = v.

(15)

One can compute

H1 = spanK {dy, du} = spanK {dz1, dz2} ,
H2 = spanK {dy} = spanK {dz1} ,
Hk = {0} , k > 3.

Hence, according to Theorem 14, system (14) is irreducible

and (15) is accessible.

Example 17: Consider the system described by the i/o

delta-differential equation

ϕ∆
0 + yϕ0 = y[2] − y∆u− yu∆ − µy∆u∆+

+ yy∆ − uy2 = 0 . (16)

The extended state-space system associated to (16), with z =
(y, y∆, u, u∆), has the following form

z∆
1 = z2 ,

z∆
2 = z2(z3 − z1 + µz4) + z1(z4 + z3z1) ,
z∆
3 = z4 ,

z∆
4 = v .

(17)

One can compute

H1 = spanK

{

dy, dy∆, du, du∆
}

= spanK {dz1, dz2, dz3, dz4} ,
H2 = spanK

{

dy, dy∆, du
}

= spanK {dz1, dz2, dz3} ,
H3 = spanK

{

dy, dy∆ − ydu
}

= spanK {dz1, dz2 − z1dz3} ,
H4 = spanK

{

dy∆ − ydu− udy
}

= spanK {dz2 − z1dz3 − z3dz1} ,
Hk = {0} , for k > 5 .

Since H∞ = {0}, system (16) is irreducible and system (17)

is accessible.

Example 18: Consider the system described by the i/o

delta-differential equation

ϕ∆
0 + ϕ0 = y[2] − y∆u− yu∆ − µy∆u∆+

+ y∆ − uy = 0. (18)

One can compute

H1 = spanK

{

dy, dy∆, du, du∆
}

,

H2 = spanK

{

dy, dy∆, du
}

,

H3 = spanK

{

dy, dy∆ − ydu
}

,

Hk = spanK

{

d(y∆ − yu)
}

, k > 4 .

Since H∞ = {d(y∆ − yu)}, system (18) is reducible.

V. TRANSFER EQUIVALENCE

The notion of irreducibility studied in the previous section

is now used to define the notion of transfer equivalence. For,

some further definitions are needed.

Definition 19: An exact non-zero one-form dϕr ∈ H∞ is

said to be a reduced differential form of system (3).

Definition 20: Consider the input-output system

ϕr(·) = 0. (19)

System (19) is said to be a reduced form of system (3) if

either dϕr is a reduced differential form of system (3), or

(19) is irreducible.

Definition 21: If system (19) is irreducible, then dϕr is

said to be an irreducible differential form.

A. Reduced forms

In this subsection we present an algorithm to possibly

reduce a differential form and to find, for a system in

the form (3), an irreducible (accessible) realization. This

procedure is also helpful, as explained in the final part of

the paper, to check the equivalence of two systems.

To begin with, observe that by Corollary 13 the reducibil-

ity of system (3) implies that there exists a meromorphic
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function ψ such that the original equation ϕ(·) = 0 can be

replaced by the equation ψ(·) = 0.

Now, if system (3) is reducible, then, according to The-

orem 14, H∞ 6= {0}. Moreover, Lemma 9 guarantees that

there exists a basis of exact one-forms, thus one may pick

as ψ any non-zero function such that dψ belongs to6 H∞.

Then dψ is a reduced differential form and ψ(·) = 0 is

a reduced equation of the i/o system (3). Now, the system

ψ(·) = 0 may be either irreducible or not. We may repeat the

reduction procedure for the system ψ(·) = 0 provided that it

can be solved uniquely (at least locally) for the highest order

delta derivative of y, i.e.

ψ(y, . . . , y[k], u, . . . , u[ℓ]) =

= y[k] − Ψ(y, . . . , y[k−1], u, . . . , u[ℓ]) (20)

and either

1 +

k
∑

i=1

(−1)i+1µi ∂Ψ

∂y[k−i]
6≡ 0 (21)

or
ℓ
∑

j=0

(−1)jµj+2 ∂Ψ

∂u[ℓ−j]
6≡ 0 (22)

is satisfied. At each step the order of the i/o equation

decreases and eventually the reduction procedure converges

to an irreducible i/o equation ϕir(·) = 0 and the form dϕir

is an irreducible differential form of system (3), provided the

assumptions (20) and (21) or (22) are satisfied at each inter-

mediate step. If at some step the assumptions are not satisfied

we say that i/o equation does not admit an irreducible form.

B. Transfer equivalence

With respect to the subclass of input-output equations that

admit an irreducible form, the equivalence relation is defined

as follows.

Definition 22: Two systems Σ1 and Σ2, which are as-

sumed to admit an irreducible form, are transfer equivalent

if they have the same irreducible differential form.

Example 23: Consider the i/o delta differential equa-

tions (14) and (18). System (14) is irreducible (see Exam-

ple 16). For system (18), which is reducible (see Exam-

ple 18), one can define dϕr = d(y∆−yu). Hence, according

to Definition 22, systems (14) and (18) are equivalent since

both have the same irreducible differential form d(y∆−yu).
Example 24: Compare the two systems described by i/o

delta differential equations (14) and (16). They are not

equivalent because both are irreducible and their irreducible

differential forms are not the same.

VI. CONCLUSIONS

The problem of transfer equivalence and reduction of

nonlinear delta-differential equations on homogeneous time

scale has been addressed. A necessary and sufficient con-

dition for irreducibility is provided in terms of a sequence

6Finding a basis of H∞ may sometimes require finding the integrating
factors.

of subspaces of differential one-forms, associated to control

system. The reduction procedure is described in details and

the reduced system it provides is accessible and transfer

equivalent to the original system. Compared to the condition

for irreducibility previously given, our condition matches

well with the realizability condition, providing in this way a

unified framework to solve the minimal realization problem

for i/o delta-differential equation on homogeneous time scale.

Though in this paper we focus on homogeneous time

scales, which are models of continuous-time systems or

uniformly time-sampled (discrete time) systems, one of the

future goals is to build a framework that allows to extend the

results to the non-homogeneous case. This paper is aimed to

be a first step towards this goal. Very recently, the notion of

transfer function was generalized for a class of nonlinear

systems, that includes also the nonlinear i/o equation on

homogeneous time scale (see [11]). Another open problem is

to prove that the notion of transfer equivalence introduced in

this paper has the same meaning as the equality of transfer

functions, like in the linear case. Finally, a further extension

of the notion of transfer equivalence and of the reduction

procedure should concern the MIMO case.
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