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Abstract— For MIMO motion systems, a data-based feed-
forward control is derived and implemented on a wafer stage of
a wafer scanner. On the basis of a quadratic objective function
related to a performance-relevant time-frame of the servo error
signals, the coefficients of a set of finite impulse response (FIR)
filters are optimized using a Gauss-Newton method. Applied
to the wafer stage both the optimization algorithm and the
FIR filter structure provide the means to significantly improve
upon scanning performance. This includes improved settling
behavior, the reduced effect of cross talk by MIMO feed-
forward forces, and the generalizing properties of these forces
at set-points other than for which is optimized.

Index Terms— Data-Based Control, Finite Impulse Response
Modelling, Gauss-Newton Optimization, Wafer Scanners.

I. INTRODUCTION

In industry, motion systems performing repetitive tasks

are frequently encountered [8]. Examples include pick and

place modules in component mounting machines, stages in

lithographic machinery [3] or welding robots in assembly

lines. Generally speaking these systems require fast posi-

tioning with a high position accuracy. Being exposed to large

levels of acceleration, a combined feed-forward and feedback

design then becomes necessary to achieve performance.

In view of performance, a data-based feed-forward design

is presented which forms an extension to the generally

applied model-based single-input single-output (SISO) feed-

forwards. Having a quadratic objective function, a Gauss-

Newton method is used to find the set of coefficients of

a multi-input multi-output (MIMO) finite impulse response

(FIR) filter in a single iteration (or trial). These coefficients

are used to minimize the error response underlying the

objective function. Because the objective function is based

on measured error responses, whereas system knowledge is

obtained through perturbed-parameter experiment, the given

approach is strictly data-based. This is different, for example,

from [5]. Furthermore, the finite impulse response filter

implementation (see also [7]) puts limited constraint on the

filter structure or the filter order of the feed-forward control.

In fact, design freedom and limited system knowledge are

expected advantages as compared to fixed-structure alterna-

tives. Additionally, the data-based approach is expected to

Mark Baggen is with TMC Engineering Professionals, Vestdijk 6, 5611
CA Eindhoven, The Netherlands, e-mail: mark.baggen@asml.com

Marcel Heertjes is with the Department of Mechanical Engineering,
Eindhoven University of Technology, 5600 MD Eindhoven, The Nether-
lands, e-mail: m.f.heertjes@tue.nl and with ASML, Mechatronic
Systems Development, De Run 6501, 5504 DR Veldhoven, The Netherlands,
e-mail: marcel.heertjes@asml.com

Ramidin Kamidi is with ASML, Mechatronic Systems Develop-
ment, De Run 6501, 5504 DR Veldhoven, The Netherlands, e-mail:
ramidin.kamidi@asml.com

provide the means for improved performance as compared

to model-based alternatives, see also [1], the latter being

strongly limited by uncertainty inherently present in the

modelling of complex industrial structures.

Applied to the wafer stage of an industrial wafer scanner,

the data-based approach is shown to be effective in achiev-

ing performance. Not only for the set-points for which is

optimized. But also for other set-points occurring during

the process of wafer scanning. To a certain extent, this

demonstrates the generalizing - and desired - properties of

the optimized feed-forward control; see [2], [4], [9], [10],

and [11] for different approaches but with a similar goal.

The paper is further organized as follows. In Section II, the

wafer scanning principle in general and wafer stage control

in particular is considered. This includes a presentation of

the MIMO feed-forward structure based on FIR modelling.

Data-based optimization of the FIR filter coefficients using

a Gauss-Newton method is discussed in Section III. In

Section IV the experimental results are discussed of the

optimization approach applied to a wafer stage. The main

conclusions of this work are summarized in Section V.

II. WAFER STAGE DYNAMICS AND CONTROL

To outline the wafer scanning problem, the wafer stage

dynamics and control are presented in four parts: the wafer

scanning principle, the wafer stage dynamics, the SISO

control design, and the proposed MIMO feed-forward design.

A. Wafer Scanning Principle

In the production of ICs a wafer scanner is used to

illuminate a pattern on a silicon disk called wafer, see also

[3], [6]. A schematic representation of a wafer scanner

and its main components is shown in Fig.1. Light passes

through a mask (reticle), a lens, and onto a die on the

wafer. Both reticle and wafer are positioned by accurately

controlled stages that perform (repeated) scanning motions

while exposing subsequent dies. We will restrict ourselves to

the short-stroke of a generally dual-stroke wafer stage and

study its dynamics.

B. Wafer Stage Dynamics

To model the wafer stage dynamics, we start with the

simplified (horizontal) dynamics in the center of gravity:

xcg(s) =H (s)fcg(s), (1)
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Fig. 1. Schematics of a wafer scanner and its main components.

with s the Laplace variable, xcg = [xcg ycg rz,cg]
T a column

with center-of-gravity positions,
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a process matrix which only contains double integrators

with m the wafer stage mass and J its moment of inertia,

fcg = [fx,cg fy,cg frz,cg]
T represents a column with center-

of-gravity forces, respectively. Having three actuators in the

horizontal plane, it also follows that

fcg =P fact, (3)

with P a matrix containing the actuator geometry, and fact =
[f1 f2 f3]

T a column with actuator forces.

Since the point-to-be-controlled refers to the die position

that during illumination is located under the lens, see Fig.1,

the center-of-gravity position xcg and this controlled die

position xctrl = [xctrl yctrl rzctrl]
T are related by

xctrl =Q xcg, (4)

with

Q=





1 0 (ysetp + ycg,offset)
0 1 −(xsetp + xcg,offset)
0 0 1



 , (5)

a position-dependent (and linearized) matrix with xsetp and

ysetp the wafer stage position set-points and xcg,offset and

ycg,offset fixed off-sets between the center of the stage and

the center of gravity. Graphically, the relations are given in

Fig.2. The overall transfer from the actuator forces fact to

the controlled positions xctrl then becomes

Hraw (s) =QH (s) P . (6)

Because (6) represents a model of the actual plant, it can only

be measured through the transfer between the actuator forces

fact and the controlled positions xctrl. From a modelling

point of view, however, the relation between the controller
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Fig. 2. Graphical representation of the relation between control coordinates
and center-of-gravity coordinates.

forces fctrl and the actuator forces fact can be made explicit:

fact(s) =P−1G (s)fctrl(s), (7)

with

G (s) =H−1 (s) Q−1H (s)

=





1 0 −m
J
(ysetp + ycg,offset)

0 1 m
J
(xsetp + xcg,offset)

0 0 1



 .
(8)

Herein it is assumed that xctrl(s) =H (s)fctrl(s). The

combination of Eqs.(6) and (7) now gives

xctrl(s) =Hraw (s) P−1G (s)fctrl(s), (9)

hence an expression for the wafer stage dynamics.

The validity of (9) is partly shown in Fig. 3 where the

transfer from fctrl to xctrl is depicted in Bode magnitude

representation. At the center of gravity, it can be seen
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Fig. 3. Bode magnitude representation of the MIMO wafer stage dynamics
in the horizontal plane.

that double integrator behavior dominates the low-frequent
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diagonal entries. In the high-frequency range, higher-order

dynamics appear. Near 180 Hz (the desired bandwidth) the

diagonal terms sufficiently exceed the off-diagonal terms

in amplitude indicating a proper decoupling. At either the

low- or the high-frequency range, however, the dynamics

still show a significant expression of coupling. In the low-

frequency range this is due to parasitic stiffness and damping

contributions. In the high-frequency range, it can be seen

that the decoupling, which is based on rigid-body modelling,

neglects flexibility. In view of these clear shortcomings, the

effect of SISO control is studied.

C. SISO Control Design

A SISO control design is shown in the simplified block

diagram of Fig. 4. It consists of three parts: a feedback con-
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Fig. 4. Block diagram of the controlled wafer stage dynamics.

troller C, an inertia-based feed-forward controller Fff , and a

MIMO feed-forward controller Ffir. xsetp and asetp represent

the position and acceleration set-points, respectively.

The feedback controller C has a diagonal matrix structure

with controllers Cx, Cy , and Crz
. Each of these controllers

is based on a series connection of a PID-controller, a notch

filter and a low-pass filter, or

Ci(s) =PID (s) N (s) LP (s), with i ∈ {x, y, rz}.
(10)

The PID part is used for servo tracking and is defined as

PID (s) =
kp (s2+ ωd s+ ωiωd)

ωd s
, (11)

with ωi the cut-off frequency of the integral action, ωd

the cut-off frequency of the differential action, and kp the

controller gain. A second-order notch filter is used for

dealing with the first plant resonances, or

N (s) =

(

ωp

ωz

)2
s2 + 2 βzωz s+ ωz

2

s2 + 2 βpωp s+ ωp
2
. (12)

Herein ωz and ωp represent the zero and pole corner frequen-

cies, βz and βp the corresponding damping coefficients. A

second-order low-pass filter is used to avoid the amplification

of noise and reads

LP (s) =
ωlp

2

s2 + 2 βlpωlp s+ ωlp
2
, (13)

with ωlp a cut-off frequency and βlp a dimensionless damp-

ing coefficient. On the basis of a sampling frequency of

fs = 5 kHz, a discrete-time equivalent of these controllers is

implemented. The result of which is shown in Fig. 5 through

the open-loop characteristics OLy(jω) = Cy(jω)Hy(jω)
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Fig. 5. Bode diagram of the measured open-loop frequency response
function of a short-stroke wafer stage in scanning y-direction.

of a wafer stage in scanning y-direction. Here a controller

bandwidth of ≈ 180 Hz is realized along with a phase margin

of ≈ 26 degrees and a gain margin of ≈ 4.6 dB.

The feed-forward controller Fff (see Fig.4) also has a

diagonal matrix structure with controllers Fff,x and Fff,y but

with Fff,rz
= 0; this is because the set-points in rz-direction

are zero valued. Motivated by the dominant diagonal rigid-

body behavior of Fig. 3, Fff,i is given by Fff,i = m
with i ∈ {x, y}. Though inducing a significant performance

improvement, the model-based acceleration feed-forwards

tend to limit the achievable performance of the system at

hand. This is because cross-talk (recall Fig. 3) and flexibility,

both being considered as model uncertainty, are not properly

accounted for. To improve upon performance in view of these

uncertainties, a data-based MIMO feed-forward controller

Ffir is studied. The SISO model-based feed-forward con-

troller, which strictly speaking becomes redundant, is kept as

an initial estimate for the required feed-forward commands.

D. MIMO Feed-Forward Design

The MIMO feed-forward controller Ffir is shown in more

detail in Fig. 6. It consists of six finite impulse response

(FIR) filters. Input to these filters are the acceleration set-

point signals asetp,x and asetp,y , respectively. The output

is given by the feed-forward forces ffir,x, ffir,y , and ffir,rz
.

Apart from the MIMO properties, the inclusion of rotations

rz in the feed-forward design proves beneficial. This is

because the position is not measured at a fixed location on

the stage (see Fig. 2). As a result, rotations about the center

of gravity will induce position-dependent tracking errors in

the translational directions. Improvements in rz reduce this

effect thereby giving improved error reproducibility.
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Fig. 6. Block diagram of the MIMO feed-forward controller structure.

In Fig.6, the relation between asetp,x and ffir,x expressed

by Fxx is given by a discrete-time linear FIR filter,

ffir,x(j) =

n2
∑

i=−n1

θxx (i)asetp,x(j − i). (14)

Herein j denotes a sampling instance, θxx ∈ R
n1+n2+1×1

is a vector containing the FIR filter coefficients, n = n1 +
n2 + 1 is the order of the filter, n1 > 0 is the look-ahead

horizon, and n2 > 0 is the look-behind horizon. A non-

causal mapping is obtained since ffir,x(j) can be a function

of asetp,x(j + n1) future set-point samples. Non-causality

enables the feed-forward controller to handle non-minimum

phase behavior. Moreover, differentiation of the input asetp,x

without introducing delay requires n1 to be n1 > 1. The filter

order n is obtained by trial-and-error but is bound to the

following trade-off: choosing n too small limits the ability

to describe the required feed-forward signals. Choosing n too

large involves the risk of over-fitting. In this study, a filter

order of n = 15 with n1 = 5 and n2 = 9 is used. In addition

to the simplified structure of Fig.6, a direction-dependent

structure is used. Given the sign of the accelerations, two

different FIR filters are used giving a total of 12 filters. The

contribution of the paper now consists of deriving a set of

FIR filter coefficients through data-based optimization.

III. DATA-BASED OPTIMIZATION

In deriving the FIR filter coefficients of the MIMO feed-

forward control, a data-based optimization approach is used.

The approach consists of three steps: the choice for an

objective function, the optimization algorithm needed to

minimize this objective function, and the derivation of its

gradients used in the process of optimization.

The objective function V is chosen to be a quadratic

function of the measured tracking error, or

V (θ) = eT
x(θ)ex(θ) + eT

y(θ)ey(θ) + γeT
rz

(θ)erz
(θ). (15)

Hence the sum of squares of the tracking error along a

repeated task. To equally distribute the individual error con-

tributions, the scaling factor γ is chosen to be 0.01 m2/rad2.

This value results from a scaling toward the wafer radius

dimension of 0.1 m. Moreover, the tracking error is assumed

to be a linear function of the controller parameters θ= [θT
xx

. . . θT
yrz

]T, i.e., the FIR filter coefficients, with θ ∈ R
m×1.

As such the objective function will be a quadratic function of

these parameters, thus giving a convex optimization problem.

In minimizing the objective function, a second-order Taylor

series expansion of V about θk is considered:

V (θ) ≈ V (θk) + ∇V (θk)T(θ − θk)

+
1

2
(θ − θk)T∇2V (θk)(θ − θk).

(16)

Minimizing (16) such that V (θk) → V (θk+1) follows from

applying a (one-trial) Gauss-Newton update law [5],

θk+1=θk −2
(

∇2V (θk) + ∇2V (θk)T
)

−1
∇V (θk). (17)

Here k refers to the trial number, ∇V (θ) ∈ R
m×1 is the

gradient vector of the objective function with respect to

the FIR filter coefficients θ, and ∇2V (θ) ∈ R
m×m is the

corresponding Hessian matrix.

To obtain both ∇V (θ) and ∇2V (θ), measured data is

used from the tracking error signals along a performance-

relevant time interval – this is the interval of constant velocity

in between acceleration and deceleration where illumination

takes place. For each trial k, two experiments are conducted.

One experiment is performed under initial parameter condi-

tions. This gives the error signal e0(θ0). A second experiment

is conducted under perturbation of filter parameter θi with

i ∈ N
+ and gives the error signal ep(θ0 +∆ θi). Note that

both e0 and ep are time signals with dimensions depending

on the time-length of the repeated task. A first-order Euler

approximation of the gradient ∇ei now follows from:

∇ei ≈ (ep,i − e0)/∆ θi, (18)

which is used to obtain

∇V (θi) ≈ 2∇eT
i (θ)ei(θ),

∇2V (θi) ≈ 2∇2eT
i (θ)ei(θ) + 2∇eT

i (θ)∇ei(θ).
(19)

Herein 2∇2eT
i (θ)ei(θ) is (generally) small and time consum-

ing to obtain such that (19) is further approximated by

∇2V (θi) ≈ 2∇eT
i (θ)∇ei(θ). (20)

Eqs.(17), (18), (19), and (20) are subsequently used to obtain

an updated set of FIR filter coefficients.

The derivation of an updated set of FIR filter coefficients

generally requires a large-scale experiment which scales

with the number of perturbed parameters times the number

of FIR filters. To make the optimization technique more

suited for practical application, the choice for a FIR filter

structure appears beneficial. This is because the gradient
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error responses ∇ex, ∇ey , and ∇erz
for θj with j ∈ N

+

relate to the gradient error responses for θ1 through θj=θ1

z−j+1; z−1 being a unit sampling delay. The effect is shown

in Fig. 7 for two coefficients: θ1 and θ10. This reduces
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Fig. 7. Time-series measurement of the gradients ∇ex, ∇ey , and ∇erz

(left) and the objective function V (θ) (right).

the required number of perturbed-parameter experiments to

one for each filter. In summary, the following procedure is

adopted in obtaining an updated set of FIR filter coefficients.

1) Set the initial controller parameters θ to θ0= 0.

2) Execute a repeated task and obtain the error signals e0

from the time-relevant intervals.

3) Perturb the parameter θxx (1) of Fxx with ∆ θ1,

execute the repeated task, and store the signals ep,1.

4) Use (18) to compute the error gradient ∇exx,1.

5) Apply time-shifts and get ∇exx,i ∀ i ∈ [2 . . . n + 1].
6) Restore the parameters and repeat steps 3, 4 and 5 for

the remaining filters [Fxy, Fxrz
, Fyx, Fyy, Fyrz

].
7) Use (17), (19), and (20) to subsequently compute an

updated set of filter coefficients.

For gradients obtained from the previously described experi-

ments, the effect of the optimization method on the objective

function V (θ) is shown in the right part of Fig.7. Here a

significant reduction of V (θ) is obtained in a single trial.

Additional trials do not seem to improve upon this result,

an observation that favors the validity of the assumptions

underlying the method. With this optimized set of FIR filter

coefficients, performance is studied on a wafer stage.

IV. WAFER STAGE PERFORMANCE ASSESSMENT

At a wafer stage of an industrial wafer scanner perfor-

mance using data-based MIMO feed-forward control is as-

sessed through experiment. Performance is evaluated before-

and after optimization and involves: i) improved wafer scan-

ning performance at a single wafer location, ii) the ability

to generalize this improvement toward other locations along

the wafer, and iii) a performance deterioration in the interval

beyond scanning where performance is no longer required.

At a single wafer location, improved wafer scanning

performance is shown in Fig.8. For a repeated acceleration
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(left), and the corresponding cumulative power spectral densities (right).

set-point during scanning, the filtered error ex is depicted

before and after feed-forward optimization. Filtering is based

on a moving average filter operation, which is defined as

Ma(i) =
1

n

i+n/2−1
∑

j=i−n/2

e(j), ∀i ∈ Z, (21)

with n ∈ N
+ an application specific time frame. Eq.(21)

acts as a low-pass filter operation on the error signal e and

expresses the level of position accuracy (scanning overlay)

that can be obtained during the process of wafer scanning.

Either in time-domain (left) or via cumulative power spectral

density (cpsd) analysis (right) it can be seen that the filtered

errors during scanning – the interval of constant velocity

beyond the acceleration phase – are much smaller than the er-

rors without feed-forward optimization. In particular in terms

of settling behavior, scanning performance is significantly

improved. Note that the generalized FIR forces (left) can but

partly be described in terms of xsetp, asetp, and the principle

derivatives. This justifies the FIR filter design with respect

to the more straightforward fixed structure approaches.

Both the validity and generality of the optimized MIMO

feed-forward approach is tested through five representative

scans along the wafer, see Fig.9. At different locations
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Fig. 9. Schematic overview of five different scan locations along the wafer.
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numbered with die one through die five, a combined {x, y}
scan is performed, the relevant parts of which are shown in

Fig.9. An optimized MIMO feed-forward is derived using

the error information corresponding to these scans. This

feed-forward control is subsequently applied to the wafer

stage while performing these five scans, the result of which

is depicted in Fig.10. It can be seen that settling behavior
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Fig. 10. Time-series measurement of the Ma-filtered error responses ex,
ey , and erz

at five different die locations along the wafer.

prior to scanning is significantly improved; note the start of

the interval of constant velocity (grey → black). This also

follows from cumulative power spectral density analysis, see

Fig.11 which shows that the rms-values of the corresponding
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error signals are significantly reduced. Additionally, Fig.10

shows a performance deterioration in the deceleration phase

beyond the scanning interval. Though not performance limit-

ing, this is a side-effect of the optimization approach in view

of direction-dependent behavior and system nonlinearity.

Hence the kind of behavior that would hinder any kind of

(linear) model-based feed-forward approach. Basically, the

generalizing properties of the obtained feed-forward control

appear sensitive to the degree of linearity of the underlying

dynamics. It is therefore concluded that large expressions of

nonlinearity either come at the price of performance or at

the price of robustness to set-point variation.

V. CONCLUSIONS

Using a FIR filter structure, a data-based MIMO feed-

forward control is derived with improved wafer scanning

properties. The FIR filter coefficients are optimized in a

single trial of a data-based optimization using a quadratic

objective function on the tracking error. This requires only a

single perturbed-parameter experiment for each FIR filter.

Wafer scanning performance is achieved in terms of im-

proved settling behavior. Not only for a single acceleration

set-point, but in principle generalized to arbitrary set-points

along the wafer. The validity of such a generalization is partly

studied in view of the direction-dependent (and nonlinear)

behavior such as encountered at the wafer stage. Herein

performance during scanning is improved but at the cost

of deteriorated performance beyond scanning. It is therefore

concluded that the strength of the optimization lies in des-

ignating performance-relevant time-frames and anticipate to

these time-frames at the price of less performance-relevant

time-frames. Essentially, this requires a good understanding

of what is performance-relevant and what is not. A distinc-

tion that appears valid for the scanning wafer stage at hand.
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