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Abstract— This paper shows the application of a Min-Max
Model Predictive Control (MMMPC) strategy to a pilot plant
in which the temperature of a reactor is controlled. An
approximation of the worst case cost is used to obtain the
control action. This approximation can be easily computed
yielding a solution of the min-max problem very close to the
exact one. The complexity of the algorithm allows the real time
implementation for typical prediction and control horizons. The
behavior of the system and the controller will be illustrated by
means of experimental results.

I. INTRODUCTION

In Min-Max Model Predictive Control (MMMPC) [1],

the value of the control signal applied to the controlled

process, is computed minimizing the worst possible case

of a cost function, usually quadratic. The worst case is

calculated maximizing the cost function with respect to all

possible cases of disturbances and uncertainties. The solution

of these optimization problems requires an enormous amount

of calculations, since the problem is NP-hard [2]. Therefore,

the implementation of MMMPC is quite difficult, having

as a consequence a very limited number of applications

reported in the literature, usually to processes with slow

dynamics or to complex simulation models [3]. It is not

possible to solve the min-max problem in real time for

processes with moderately fast dynamics, except when the

number of possible cases of the uncertainty is relatively

low. When fast dynamics have to be controlled the min-

max problem cannot be solved numerically in real time

and approximate solutions have to be used [4]. However,

these techniques impose a great rigidity in the controller

(as well as a certain degree of approximation error) and the

controller must be computed again if the process model or the

controller parameters change. This is also a problem with the

explicit solutions that can be obtained using multiparametric

mathematical programming [1], [5]. Another problem is the

great amount of memory necessary to store all the regions

that compose the explicit description. The number of those

regions grows with the prediction horizon in a combinatorial

way. Also, searching times can be high and search strategies

such as [6] must be used.

The computational burden issue can be circumvented by

using an upper bound of the worst case cost instead of

calculating it explicitly. In a previous work [7] the authors

presented an upper bound of the worst case cost based on

simple matrix operations that can be calculated in a fast way

and implemented in computers with limited computational
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capabilities. In addition, the use of the upper bound instead

of the worst exact cost does not lead to an excessive error

with respect to the exact solution of the original problem [7].
In this work the theoretical results presented in [7] are

validated by means of their application to a pilot plant.

The pilot plant is used to simulate an exothermic chemical

reaction with nonlinear dynamics. This process has been used

in previous works, thus the experimental results presented

can be compared with other strategies such as nonlinear and

linear predictive control [8]. In the experiments, restrictions

in the control action and the output have been considered.

The results obtained prove the validity of the used control

strategy.
The paper is organized in the following way: section II

presents the problem description of the predictive control

and the notation used in this work. Section III presents the

algorithm to calculate the upper bound of the worst case cost

and section IV gives a description of the process on which

the presented control algorithm has been proven. In section

V the experimental results are shown and, finally, in section

VI the conclusions.

II. PROBLEM DESCRIPTION

Without loss of generality a discrete model in state space

with additive uncertainties will be considered [1]:

x(t + 1) = Ax(t) + Bu(t) + Dθ(t + 1) (1)

y(t) = Cx(t)

with x(t) ∈ R
dimx, u(t) ∈ R

dimu, θ(t) ∈ {θ ∈ R
dimθ :

‖θ‖∞ ≤ ǫ}, y(t) ∈ R
dimy. For simplicity ǫ = 1 is

assumed (in opposite case the matrix D can be scaled to

ǫD). A control horizon Nu and a prediction horizon N is

considered. Furthermore, the cost function J(θ,u, x) is a

quadratic performance index of the form:

J(θ,u, x) =

N
∑

j=1

x(t + j|t)T Qjx(t + j|t)

+

Nu−1
∑

j=0

u(t + j|t)T Rju(t + j|t) (2)

where x(t+j|t) is the prediction of the state for t+j made at

t when the future values of the uncertainty are supposed to be

given by the sequence θ ∈ Θ = {θ ∈ R
N ·dimθ : ‖θ‖∞ ≤ 1}

and the values of the control action throughout the control

horizon are given by u ∈ R
Nu·dimu. On the other hand,

Qj ∈ R
dimx×dimx, Rj ∈ R

dimu×dimu are symmetrical

positive definite matrices used as weighting parameters. The

cost function can be rewritten as [1]:

J(θ,u, x) = u
T Muuu + θ

T Mθθθ + 2θ
T Mθuu (3)

+2xT MT
ufu + 2xT MT

θfθ + xT Mffx

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeB13.2

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1115



The considered initial scheme of predictive control is

the Min-Max Predictive Control [1] in which the optimal

sequence u
∗ is calculated solving a min-max problem:

u
∗(x) = arg min

u

J∗(u, x)

s.t. Lu ≤ c + Fx
(4)

with

J∗(u, x) = max
θ∈Θ

J(θ,u, x) (5)

with L ∈ R
nc×(Nu·dimu), F ∈ R

nc×dimx and c ∈ R
nc

(being nc the number of restrictions). The solution of this

problem is applied using receding horizon strategy, habitual

in all predictive control schemes. The results presented in

this work are valid for MMMPC with open loop predictions

or semi-feedback strategies [7], [9].

With the model being linear in x, u, θ, and assuming

Rj > 0, the quadratic cost function is convex in θ and u

and the solution of the maximization problem is attained at

least at one of the vertices of the unitary hypercube θ [1].

Therefore the maximization problem (5) is equivalent to

J∗(u, x) = max
θ∈vert{Θ}

J(θ,u, x) (6)

The resolution of the maximization problem is a well known

NP hard problem. The obligatory evaluation of each one of

the 2N ·dimθ vertices of θ leads to an exponential complexity.

Therefore this problem, and as a consequence the min-

max problem (4), can only be solved for small prediction

horizons.

The adopted strategy in the control scheme used in this

work is directed to reduce the computacional cost of problem

(4). The idea is to replace the worst case cost J∗(u, x) in

(4) by an upper bound that can be calculated easily. Section

III presents the mentioned bound, which can be computed

with a complexity O(n3) instead of O(2n).

III. CALCULATION OF THE UPPER BOUND OF THE WORST

CASE COST

This section presents the algorithm to compute the upper

bound of the worst case cost. The computation of this

bound is based on simple matrix operations allowing an easy

implementation. Only the fundamental results are described,

for a complete description see [7].

It can be seen from (3) that:

J∗(u, x) = max
θ∈vert{Θ}

θ
T Sθ + 2θ

T p(u, x) + r(u, x) (7)

with

S = Mθθ

p(u, x) = Mθuu + Mθfx (8)

r(u, x) = u
T Muuu + 2xT MT

ufu + xT Mffx (9)

Therefore, the calculation of J∗(u, x) turns out to be a

mathematical problem of the following type:

γ∗ = max
θ∈vert{Θ}

θT Sθ + 2θT p + r (10)

This problem is, as will be shown in the following propo-

sition, equivalent to an augmented quadratic maximization

problem. The proof can be found in [7].

Proposition 1: The problem (10) is equivalent to the fol-

lowing augmented problem:

γ∗ = max
[

θe

θ

]

∈vert{ΘA}

[

θe

θ

]T [

r pT

p S

] [

θe

θ

]

(11)

where θe ∈ R and ΘA is the augmented unitary hypercube:

ΘA =

{[

θe

θ

]

, θe ∈ R, |θe| ≤ 1, θ ∈ Θ

}

.

�

Therefore the augmented problem can be rewritten like:

γ∗ = max
z∈vert{ΘA}

zT Hz (12)

with H ∈ R
n×n a symmetric matrix. Assume now a diagonal

matrix T that verifies1 T ≥ H , thus:

zT Hz ≤ zT Tz =

n
∑

i=1

Tiiz
2
i ≤

≤ trace(T )‖z‖2
∞ ≤ trace(T )

and therefore:

γ∗ ≤ trace(T )

That means that the trace of T is an upper bound of γ∗.

The strategy used in this paper is to obtain a diagonal matrix

T ≥ H with a computationally efficient procedure that keeps

the upper bound (i.e. trace(T )) close to γ∗. The details of the

computation procedure and properties of this upper bound are

described in depth in [7]. In the following, the computation

procedure is briefly described.

Matrix H will be diagonalized by adding n − 1 positive

semidefinite matrices (with n the dimension of H), all of the

form viv
T
i such that:

H + v1v
T
1 + v2v

T
2 + v3v

T
3 + · · · + vn−1v

T
n−1 = T

where T is diagonal matrix and vi vectors of appropriate

dimension. Vectors vi are computed in such a way that: a)

T is diagonal and b) the trace of T yields a close upper bound

of γ∗. This is accomplished by the following procedure in

which the upper bound σu is computed:

Procedure 1: Procedure to compute the upper bound of

the worst case cost σu(H) ≥ max
z∈vert{ΘA}

zT Hz.

1) Let T = H ∈ R
n×n.

2) For k = 1 to n − 1
3) Let Hsub = [Tij ] for i, j = k · · ·n.

4) Compute α for Hsub =

[

a b
bT Hr

]

using the

expression α =
√

‖b‖1.

5) Make vT
k =

[

α −bT

α

]

.

6) Make vT
e =

[

0 · · · 0 vT
k

]

∈ R
n.

7) Update T by making T = T + vev
′
e.

8) Endfor.

1In this work a matrix inequality of the type T ≥ H is fulfilled if and
only if T − H is positive semidefinite.
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Fig. 1. Pilot plant used to apply the MMMPC.

9) Compute the upper bound from σu(H) =
n
∑

i=1

Tii.

It is evident from the algorithm that T ≥ H . Therefore

max
z∈vert{ΘA}

zT Hz ≤ max
z∈vert{ΘA}

zT Tz = σu(H).

What implies that,

J∗(u, x) = max
z∈vert{ΘA}

zT

[

r(u, x) pT (u, x)
p(u, x) S

]

z

≤ σu

([

r(u, x) pT (u, x)
p(u, x) S

])

.

Then, σu(·) calculated in procedure 1 is an upper bound of

the worst case cost.

Note that procedure 1 can be coded easily as only simple

matrix operations are needed to compute the upper bound.

This is relevant because a difficult implementation is a

drawback when applying complex control strategies in the

industry.

IV. PROCESS DESCRIPTION

A real process represented by a pilot plant has been chosen

for the application of the proposed algorithm. The process

has been studied previously by several authors [8], [10].

A. Laboratory process

The used pilot plant (see Fig. 1) serves to simulate exother-

mic chemical reactions based on temperature changes. It has

been used as a benchmark for control purposes by several

researchers [4], [8]. The main elements of the pilot plant are

the reactor, the heat exchanger, the cooling jacket and the

valve to manipulate the flow rate through the cooling jacket

(see Fig. 2).

For the temperature reduction in the reactor a cooling

jacket is used. The heat dissipation can be regulated by the

valve v8 which manipulates the flow rate Fj through the

cooling jacket. The cooling fluid, water, enters the cooling

jacket with a constant temperature. In order to maintain

the chemical reaction running, the reactive of the chemical

reaction is supplied to the reactor by the feed Ff,in. Before

entering the reactor, the feed passes through a heat exchanger

H
ea

t
ex

ch
an

g
er

Water tank

v8

Fj

Fj

Tj,out

Tj,in

Ff

Ff

TT2

T

Fig. 2. Diagram of the pilot plant with its four main elements: reactor,
heat exchanger, cooling jacket and valve.

in order to adopt the temperature of the reactor content. The

outflow Ff,out is used to keep the volume of the reactor

content constant.

To simulate exothermic reactions, the reactor possesses an

electrical resistance in order to supply caloric energy. The

energy to be supplied by the electrical resistance is calculated

by means of a mathematical model of the simulated reaction.

The use of a resistance means that no chemical reaction takes

place in the reactor, instead the reaction is emulated on basis

of temperature changes, as done by [11].

B. Mathematical model

Although it is not necessary to have a mathematical model

for the design of the min-max predictive controller, this

section shows the process model to emphasize its nonlinear

character. The mathematical model also justifies the way to

emulate the heat generated by the chemical reaction with the

aid of the resistance.

The emulated chemical reaction, representing a refinement

process, was used previously in [8]. With Ff = Ff,in =
Ff,out and a constant volume, the model of the chemical

reaction can be defined as:

dT

dt
= −

Fj

V
(Tj,in − Tj,out)

+
(−∆H) · V

MCp
k0 e−E/(R T )C2

A (13)

dCA

dt
=

Ff

V
(CA,in−CA)−k0 e−E/(R T )C2

A (14)

denoting Fj , Tj,in and Tj,out the flow rate through the

jacket and the temperature of the water entering and leaving

the cooling jacket, respectively. CA and CA,in represent

the reactive concentration in the reactor and in the feed,

respectively. As the feed passes through the heat exchanger

and enters the reactor nearly with the temperature of the

reactor content, it was assumed that no heat removal or

supply takes place by the feed.
For the heat exchange in the cooling jacket the empirical

model:

Fj · (Tj,out−Tj,in) =
T−α

β
(1−e−γFj) (15)
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with α = 292.19 K, β = 14.94 s/l and γ = 13.18 s/l was

used.

As can be easily seen from the model equations (13) and

(14) the chemical reaction possesses nonlinearities in the

dynamics of the temperature and the concentration due to

the quadratic terms of the concentration. For further details

on the model parameters see [8]

V. EXPERIMENTAL RESULTS

In this section the strategy of control described in section

III is applied to the refinement process. The achieved ex-

perimental results will be exposed and discussed. CARIMA

type prediction models with bounded additive uncertainties

were used in the experiments. This type of model extends

the concept of noise in traditional CARIMA models so that

an uncertainty is considered:

A(z−1)y(t) = z−dB(z−1)u(t − 1) + C(z−1)
θ(t)

∆

with ∆ = 1 − z−1, θ(t) ∈ {θ ∈ R
dimy : ‖θ‖∞ ≤ ǫ},

and dimy the dimension of y(t). The use of this type of

prediction models results in a control law without error

in steady state. The differences between implementing the

algorithm of section III for a state space model and a

CARIMA model with bounded additive uncertainties are

minimal. They reduce to the method used to find the matrices

of the prediction equation [1]. The cost function is the same

as in (3).

In the following sections the control system in the pilot

plant will be described, the necessary steps to obtain a

prediction model will be presented and the experimental

results will be exposed.

A. Description of the control system

The sensors and actuators in the plant are connected

to a PMC-10 control unit. The PMC-10 is connected by

ARCnet to a personal computer that runs the control and

monitoring system Simatic-IT. The control algorithm has

been implemented directly in Matlab and the communication

with Simatic-IT is done using the OPC protocol (OLE

for Process Control). Both Simatic-IT and the controller

run on the same personal computer, based on a Pentium

II processor with 300 Mhz. This computer does not have

enough computational power to solve exactly the min-max

problem of a typical MMMPC, but can compute the control

action using the proposed strategy.

B. Identification of the prediction model

A PRMSS (Pseudo-Random Multilevel Step Sequence) has

been applied to the recirculation valve with the objective

of collecting data for the parameter identification of the

prediction model. The periods of the PRMSS have been

chosen sufficiently long to observe the reaction of the pilot

plant to changes in the input (see Fig. 3). It can be seen that

the temperature of the tank reaches steady state in each step

in something more than two hours, although the variations in

steady state are of several degrees. The reagent concentration

also suffers variations in steady state. It can be observed that

the input–output gain is negative and clearly variable (greater
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Fig. 3. Experiment for the prediction model identification. From top to
bottom: Tank temperature (T ), valve opening (v8) y reagent concentration
(CA).

gain for low openings of v8). A first order transfer function

model with delay is proposed as prediction model. This low

order model cannot correctly describe the dynamics of the

plant, but it is a good approach to check the robustness of

the controller in presence of uncertainties and disturbances.

Using the data of Fig. 3 the following model has been

identified:

G(s) =
−0.975

950s + 1
e−31.25s (16)

This model was discretized with a sampling time of Ts = 60.

The delay was rounded to 1 sampling time in order to avoid

approximations of the time delay, e.g. Padé approximation.

Thereby, the following CARIMA model was obtained:

y(t + 1) = 0.939 y(t)− 0.0597 u(t− 1) +
θ(t)

∆
(17)

with the noise polynomial C(z−1) = 1.

C. Experimental results of the controller

In the experiments (17) has been used as a the prediction

model in the proposed controller. The prediction and control

horizons have been chosen equal to N = 15 and Nu =
12. Note that the prediction horizon includes approximately

one time constant of the process, a common value for this

parameter. On the other hand, since the prediction model has

an additional delay, the prediction horizon would be defined

between ŷ(t + 2|t) and ŷ(t + 16|t). The control effort will

be weighed by the factor Rj = 2. The parameter ǫ has been

chosen based on the prediction error one step ahead as shown

in Fig. 4. The finally chosen value is ǫ = 0.25. In fact, in

97% of the samples the prediction error one step ahead is

bounded by the chosen value.

In addition to the previously mentioned parameters, a

correction in the prediction of y(t + 1), similar to the Smith

predictor, has been considered. This is due to the varying

delay of real process. Therefore the prediction of the output

at time t+1 using the nominal model, ŷn(t+1|t), is corrected

in this way:

ŷ(t + 1|t) = ŷn(t + 1|t) + (ŷn(t|t) − y(t)) (18)
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Fig. 5. Reference tracking experiment. From top to bottom: Tank
temperature (T ), valve opening (v8), reagent concentration (CA) and cold
water temperature (TT2).

where y(t) is the real process output at time t. This simple

correction improves the performance of predictive controllers

in the case of time delay systems [12].

Finally, input and output restrictions have been considered

in the experiments. The process output, the control signal and

the control moves are limited to:

30 ≤ ŷ(t + j|t) ≤ 70 j = 2, . . . , 16

5 ≤ u(t + j|t) ≤ 100 j = 0, . . . , 11

−20 ≤ ∆u(t + j|t) ≤ 20 j = 0, . . . , 11

Note that in the output restrictions the effect of the uncer-

tainty has to be considered.

With the proposed strategy several experiments with set-

point changes and disturbance rejection have been made.

In the tracking experiment (see Fig. 5) the values used

for the setpoint are different enough to result in control

actions nearly throughout the entire valid interval. It is

noteworthy that in the first setpoint change no overshoot

appears, although the controller reaction is quite fast. After

the second setpoint change a small overshoot (of approx-
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Fig. 6. Experiment with input disturbance rejection. From top to bottom:
Tank temperature (T ), valve opening(v8), controller output (u), reagent
concentration (CA) and cold water temperature (TT2).

imately −0.35oC), totally justified by the nonlinearity of

the process, can be observed. In steady state, the output

practically remains on the reference, whereas the control

signal does not present significant oscillations. The small

changes in the control action (smaller than 2%) are necessary

to hold the output on the reference due to the variations in

the generated heat and the cold water temperature.

In second place, two experiments with disturbance rejec-

tion are presented. As disturbances the feeding flow Ff , see

equation (14), and the opening of the valve v8 have been

chosen. Figure 6 shows the results of the experiment with

disturbance rejection in the system input. In this experiment,

after t = 71 min a constant disturbance in the entrance

∆v8 = 15 % is applied. As can be observed in the figure

the controller totally rejects the disturbance in less than 20

minutes, without significant oscillations neither in the output

nor in the control action. The same behavior can be seen after

the disappearance of the disturbance in t = 101 min. At the

beginning of this experiment the pilot plant was far from

its equilibrium point which explains that the output does

not follow immediately the reference in the first sampling

periods.

The third experiment is shown in Fig. 7. In this experiment

an additive disturbance in the feeding of ∆Ff = 0.0125 l/s,
which corresponds to an error of 25 %, has been applied. As

in the previous case, the disturbance is rejected completely in

less than 20 minutes, although in this case a small and slow

overshoot with an error inferior to 0.2oC can be observed.

Finally, it is important to mention that the calculation of

the control signal took place without problems within the

1119



v
8

[%
]

T
[o

C
]

t [min]

0

0

20

20

40

40

60

60

80

80

100

100

40

40

45

50

50

55

60

60

65

70

80

30

T
T

2
[o

C
]

C
A

[m
o
l/

l]

t [min]

0

0

20

20

40

40

60

60

80

80

100

100
0.05

0.1

0.15

0.2

0.25

17

17.5

18

18.5

Fig. 7. Experiment with disturbance rejection in the feed flow. From top
to bottom: Tank temperature (T ), valve opening(v8), reagent concentration
(CA) and cold water temperature (TT2).

chosen sampling time (60 seconds). During the experiments

the average computation time was 9.54 seconds, with a

maximum of 16.3 seconds and a minimum of 5.32 seconds.

The required computacional effort is quite low considering

the used horizons and the low computational power of the

computer. For a more exhaustive analysis of the compu-

tational cost of the upper bound or the calculation of the

control signal see [7].

To compare the obtained results a reference tracking

experiment with a linear predictive controller was carried out.

The used controller was a GPC based on the model (17). For

the horizons and the weighting function the same values as in

the case of the MMMPC have been used (N = 15, Nu = 12,

Qj = 1, Rj = 2). With the two controllers based on the same

discrete model and using the same parameters, the obtained

results can be compared directly (see Fig. 8). As can be

seen in the figure, the GPC exhibits significant temperature

oscillations after setpoint changes. The direct comparison

of the results show that the MMMPC stabilises the tank

temperature in a more efficient way with less oscillations

in the control action.

VI. CONCLUSIONS

In this paper the application of a MMMPC based on the

upper bound of the worst case cost to a laboratory process

has been presented. The process is a pilot plant where an

exothermic chemical reaction is simulated generating the

reaction heat by means of an electrical resistance.

The results showed a good system behavior and the

stabilization of the plant temperature around the operation

point. After changes in the desired reference the controller
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Fig. 8. Reference tracking results of the MMMPC and the GPC. From top
to bottom: Tank temperature (T ), valve opening (v8).

quickly compensates the error between output and reference.

Furthermore, experiments with disturbances have been made,

showing the MMMPC its capacity to compensate errors

caused by the disturbances.

The application shown in this work joins the small number

of MMMPC applications reported in specialized literature.

The low computational requirements of the proposed control

strategy allowed the use of appropriate sampling times (ap-

proximately 15 times smaller than the typical time constant

of the system) and realistic prediction and control horizons

(15 and 12, respectively).
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”Min-Max MPC based on a computationally efficient upper-bound of
the worst case cost”, Journal of Process Control, vol. 16, pp 511-519,
2006.

[8] J.K. Gruber and C. Bordons, ”Control Predictivo no Lineal Basado
en Modelos de Volterra. Aplicación a una Planta Piloto”, Revista
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