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Abstract— This paper considers the time scaling of a
multi-output observer form (TOF) for uncontrolled nonlinear
continuous-time systems. It is the multi-output version of an
existing single-output result. Time scaling broadens the class of
systems which admits an Exact Error Linearization observer
design by including Time Scaling Functions (TSFs). Two types
of TSFs are considered and the corresponding existence condi-
tions of the time scaling transformation and the change of state
coordinates to a TOF are provided. The necessary and sufficient
conditions on TSFs to preserve the global exponential stability
of the error dynamics are presented.

I. INTRODUCTION

We consider observer design for uncontrolled multi-output

systems in the state space form

ζ̇ = f(ζ),

y = h(ζ),
(1)

where ζ ∈ R
n is the state, f : R

n → R
n is a C∞ vector

field, and h : R
n → R

p is a C∞ output function. The

well-established Exact Error Linearization (EEL) nonlinear

observer design method is based on an Observer Form (OF)

and obtains stable LTI state estimate error dynamics in OF

coordinates [14], [3]. A multi-output extension of this work

is in [15], [26]. Some other extensions to OF-based work

include [18], [10], [12], [17], [1], [11], [24], [25], [22],

[2], [19]. Recent work [23], [7] considers a generalization

of EEL by incorporating an output dependent time scaling

transformation for a single-output nonlinear system. This

result is generalized to the output dependent observability

linear normal form in [27]. Time scaling transformation

introduces a to-be-determined time scale function (TSF)

into the original system dynamics f , and thus yields an

extra degree-of-freedom when transforming the system. The

system in the new time scale admits an OF.

This paper considers a multi-output version of work in

[23], [6], [27]. In Section II we present two motivational

examples, introduce the time scaled multi-output observer

form (TOF), and state the problem to be solved. In Section III

we discuss the single and multiple time scaling transfor-

mation cases, and propose the existence conditions of a

TOF. TOF-based observer design ensures global exponential

error convergence in the transformed time scales. The error

dynamics stability in the original time scale is discussed and

the necessary and sufficient conditions on TSFs to preserve

the globally exponential stability are given in Section IV.
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II. PROBLEM STATEMENT

The multi-output observer form (OF) existence conditions

have been established in [26], [15]. Although an OF allows

EEL observer design, the class of systems admitting it is

limited. To generalize the class of single-output systems ad-

mitting EEL observer design, the following output dependent

time scaling transformation was employed in [23]:

dτ

dt
= s(y(t)) > 0, τ(t0) = τ0, (2)

where s(y(t)) is a non-vanishing positive smooth function,

called a time scale function (TSF). The extension to the

multi-output system case will be considered in this note.

A. Motivational Examples

Example 1 We consider a two-output system in observable

form with observability indices (2, 2) corresponding to the

output y = (y1, y2)
T .

ẋ =







x1,2

x2
1,2 + x1,2x2,2

x2,2

x2
2,2 + x1,2x2,2







, f(x), y =

(
x1,1

x2,1

)

, h(x). (3)

One can verify system (3) is not transformable to an OF.

However, if we introduce the time scaling transformation

dτ

dt
= s(y) = ey1+y2 > 0, τ(0) = τ0, (4)

then system (3) in τ time is given by

dx

dτ
=

1

s
f , f̄ , y = h(x).

Following the OF result, one can solve the starting vector

fields ḡ1 = s∂/∂x1,2, ḡ2 = s∂/∂x2,2, and verify the Lie

bracket conditions are satisfied
[

adk
−f̄ ḡr, adl

−f̄ ḡq

]

= 0, 0 ≤ k, l ≤ 1; 1 ≤ r, q ≤ 2.

System (3) in τ time is transformed into an OF by the

transformation Φ(x) = (x1,1, x1,2/s, x2,1, x2,2/s)T .
Example 2 We modify the dynamics of system (3) by

taking
ẋ1,2 = x2

1,2 + x1,1x2,1

ẋ2,2 = x2
2,2 + x1,1.

Using the results provided below, one can show that no

TSF of the form (4) will transform the system to OF in

τ time. However, if we introduce a different time scaling

transformation for each subsystem

dτ1

dt
= s1(y) = ey1 > 0, τ1(0) = τ10

dτ2

dt
= s2(y) = ey2 > 0, τ2(0) = τ20,
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and rewrite the system in new time scales

dx

dτ
=

(
s1I2 0

0 s2I2

)−1

f , f̄ ,

where dx/dτ = (dx1/dτ1, dx1/dτ2)
T , x1 =

(x1,1, x1,2)
T , x2 = (x2,1, x2,2)

T , Ik is the k×k dimensional

identity matrix, then the system in new time can be put into

an OF using Φ(x) = (x11, x12/s1, x21, x22/s2)
T .

B. TOF Problem

Given time scaling transformations for each subsystem

dτi

dt
= si(y(t)) > 0, τi(t0) = τi0, (5)

we define the TOF as an OF in the new times

dzi

dτi

= Aizi + γi(y), yi = Cizi, 1 ≤ i ≤ p, (6)

where zi = (zi,1, · · · , zi,λi
)T , γi(y) = (γi,1, · · · , γi,λi

)T ,

λi denote the system’s observability indices [21], and Ai =(
0 Iλi−1

0 0

)

, Ci = (1,0)T . The ith subsystem in TOF and

t time is given by

żi = si(Aizi + γi(y)), yi = Cizi, 1 ≤ i ≤ p,

where si abbreviates si(y(t)). The TOF for the entire system

in t time is

ż = S(Az + γ(y)), y = Cz, (7)

where z = ((z1)
T , · · · , (zp)

T )T , γ(y) =
((γ1)

T , · · · , (γp)
T )T , S = Blockdiag{s1Iλ1

, · · · , spIλp
},

A = Blockdiag{A1, · · · , Ap}, C =
Blockdiag{C1, · · · , Cp}. We remark that the difference

between multi-output and single-output TOF is in the matrix

S. This difference leads to a different approach to derive

the TOF existence conditions. Given TSF (5) and TOF (6),

we have the following definition.

Definition 2.1: The nonlinear system (1) locally (globally)

observable w.r.t. the observability indices [21] is said to be

locally (globally) transformable to a TOF (6) if there exists

a local (global) diffeomorphism z = Φ(x), Φ(0) = 0 and

time scaling transformations (5) such that the transformed

system in the τ times is

dz

dτ
= S−1(y)

∂Φ(x)

∂x
S(y)f̄ = Az + γ(y), (8)

where dz/dτ = (dz1/dτ1, · · · , dzp/dτp)
T , f̄ = S−1(y)f .

Remark 2.2: System (1) is transformable to a TOF (6)

if and only if there exists a change of coordinates z =
Φ(x), Φ(0) = 0 and time scaling transformations (5) such

that the system in the t time is changed to

ż =
∂Φ(x)

∂x
f(x) = S(y)(Az + γ(y)). (9)

We can show the sufficiency of this result by assuming sys-

tem (1) in t time is transformed to (9) by z = Φ(x), Φ(0) =

0 and time scaling transformations (5). Since TSFs are non-

vanishing, we can multiply S−1 to both sides of (9) and

obtain

S−1(y)ż = S−1(y)
∂Φ(x)

∂x
f = Az + γ(y).

This implies (8) holds since it is straightforward to check

S−1(y)ż = (dz1/dτ1, · · · , dzp/dτp).

III. EXISTENCE CONDITIONS

We first introduce some notation, then present the exis-

tence conditions for a TOF. Next, the necessary and sufficient

conditions for a TOF where the same time scaling transfor-

mation is used for all subsystems are given; these conditions

can be specified in a concise form and are similar to the

established result for an OF. Following [26] we define two

co-distributions Qi, Q:

Qi = span{dLk
fhr, 0 ≤ k ≤ λi − 1, 1 ≤ r ≤ p,

where dLλi−1
f hi is omitted}, 1 ≤ i ≤ p,

Q = span{dLk
fhr, 0 ≤ k ≤ λr − 1, 1 ≤ r ≤ p}.

For system (1), it has been shown in [26] that Qi = Qi ∩Q
guarantees the existence of the starting vector gi satisfying

Lgi
Lk

fhr = δk,λi−1δi,r, 0 ≤ k ≤ λi−1, 1 ≤ r ≤ p. (10)

A. Multiple Time Scaling Transformation Case

Theorem 3.1: The nonlinear system (1) is locally trans-

formable to a TOF (8) if and only if, locally at x0,

1) The TSF of the ith subsystem (5), denoted by si,

satisfies the PDEs

dLgi
Lλi

f hi =
1

si

(

lλi

∂si

∂zi,1
dLfhi

+(lλi
− 1)

p
∑

j=1,j 6=i

∂si

∂zj,1
dLfhj



 mod {dy},

(11)

where lk = k(k−1)
2 + 1, 1 ≤ k ≤ λi, and gi is the

starting vector field in the original time and defined

by (10).

2) Qi=Qi ∩ Q.

3) The Lie brackets conditions are satisfied

[ηi,r, ηl,s] = 0, 1 ≤ r, s ≤ λi; 1 ≤ i, l ≤ p, (12)

where for 1 ≤ i ≤ p,

ηi,1 = ḡi, ηi,j =
1

si

ad−fηi,j−1, 2 ≤ j ≤ λi, (13)

and ḡi are the starting vector fields and defined by

Lḡi
Lk

fhl = sλi−1
i δk,λi−1δl,i,

{

0 ≤ k ≤ λi − 1,

1 ≤ l ≤ p.
(14)

Remark 3.2: The transformation z = Φ(x) is the solution

of the n2 PDEs

∂Φ(x)

∂x

[
η1,λ1

, · · · , η1,1, · · · , ηp,λp
, · · · , ηp,1

]
= In. (15)
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Remark 3.3: The TOF coordinates are globally defined

if the system is globally observable and the vector fields

ηi,j , 1 ≤ j ≤ λi, 1 ≤ i ≤ p are complete.

Remark 3.4: Given the matrix TSF S one can verify

dhi

∂S

∂zi,1
(Az + γ) = dhi

∂S

∂zi,1
S−1 S(Az + γ)

︸ ︷︷ ︸

f

= [0, · · · ,
∂si

∂zi,1

1

si

, 0, · · · , 0

︸ ︷︷ ︸

ith block

, · · · ,0]f

=
∂si

∂zi,1

1

si

Lfhi.

Remark 3.5: From Definition (14), we know ḡi = sλi−1
i gi

and its existence is guaranteed by Condition 2 [26].

Proof: ⇐: Taking ηi,1 = ∂/∂zi,λi
, 1 ≤ i ≤ p and

following definition (13) of ηi,k, 2 ≤ k ≤ λi, we have ηi,k =
∂/∂zi,λi−k+1. Clearly, ηi,k, 1 ≤ k ≤ λi, 1 ≤ i ≤ p are unit

vectors and commute, i.e., condition (12) is necessary. Next

we derive the definition of the starting vector ḡi (14). Since

ḡi = ηi,1, 1 ≤ i ≤ p, we have ∂hl/∂zi,λi
= 0 ⇒ Lḡi

hl = 0
for 1 ≤ l ≤ p. Further computation gives

0 =
∂hl

∂zi,λi−1
= 〈dhl, ηi,2〉 =

〈

dhl,
1

si

[−f, ḡi]

〉

=
1

si

〈dLfhl, ḡi〉 −
1

si

Lf 〈dhl, ḡi〉

=
1

si

Lḡi
Lfhl,

for 1 ≤ l ≤ p. By induction, one can show

Lḡi
Lk

fhl =

{

sk
i

∂hl

∂zi,λi−k
= 0, 0 ≤ k ≤ λi − 2; 1 ≤ l ≤ p,

sλi−1
i

∂hl

∂zi,1
= sλi−1

i , k = λi − 1; 1 ≤ l ≤ p.

Hence, the starting vector ḡi satisfies (14).

To derive the condition on the TSF, we first state the

equations ensuring the existence of state transformation

Φ(x), for 1 ≤ i ≤ p

si

∂W

∂zi,j

= ad−f

∂W

∂zi,j+1
, 1 ≤ j ≤ λi − 1, (16a)

∂W

∂z

∂

∂zi,1
(S(Az + γ)) = ad−f

∂W

∂zi,1
, (16b)

dhr

∂W

∂zi,k

= δk,1δr,i, 0 ≤ k ≤ λi − 1; 1 ≤ r ≤ p, (16c)

where W = Φ−1(z), and ∂W/∂zi,λi
is the starting vector

ḡi. One can see from (16a) that ∂W/∂zi,j = ηi,λi−j+1, 1 ≤
j ≤ λi, 1 ≤ i ≤ p.

The left hand side of (16b) is

∂W

∂z

∂

∂zi,1
(S(Az+γ)) =

∂W

∂z

(
∂S

∂zi,1
(Az + γ) + S

∂γ

∂zi,1

)

.

Given the right hand side of (16b) in Remark 3.6, (16b)

multiplied by dhi(∂W/∂z)−1 is

dhi

∂S

∂zi,1
(Az + γ) + dhiS

∂γ

∂zi,1
= dhi

1

sλi−1
i

adλi

−f ḡi

+ dhi

∑λi−1
j=1 j

sλi

i

Lf(si)adλi−1
−f ḡi.

(17)

According to Remark 3.4, (17) is modified into

∂si

∂zi,1

1

si

Lfhi + ρ(y) =
1

sλi−1
i

L
ad

λi
−f

ḡi
hi

+

∑λi−1
j=1 j

sλi

i

Lf (si)Lad
λi−1

−f
ḡi

hi,

(18)

where ρ(y) = dhiS∂γ/∂zi,1 is some function of y. From

[9, Lem. 4.1.2], [20, Thm. A.3.1]

L
ad

λi−1

−f
ḡi

hi = Lḡi
Lλi−1

f hi = sλi−1
i ,

L
ad

λi
−f

ḡi
hi = Lḡi

Lλi

f hi,

we can rearrange (18) as

∂si

∂zi,1

1

si

Lfhi + ρ(y) =
1

sλi−1
i

Lḡi
Lλi

f hi −
lλi

− 1

si

Lf (si).

(19)

Collecting the terms of (19) and taking the differential, we

have

dLḡi
Lλi

f hi = lλi
sλi−2

i

∂si

∂yi

dLfhi

+ (lλi
− 1)sλi−2

i

p
∑

j=1,j 6=i

∂si

∂yj

dLfhj mod {dy},
(20)

where yi = zi,1, yj = zj,1. Since ḡi = sλi−1
i gi, we have

dLḡi
Lλi

f hi = sλi−1dLgi
Lλi

f hi mod {dy}. Hence, we have

condition (11) by plugging the above equation into (20).

⇒: Given the TSFs of each subsystem si solved from (11),

it is readily shown Conditions 2)–3) are sufficient to guar-

antee the existence of state coordinate z = Φ(x) which puts

system (1) into a TOF (7) by following the standard proof

in [14], [26], [20].

Remark 3.6: Given (16a), one can compute

∂W/∂zi,j, 1 ≤ j ≤ λi − 1 iteratively and have

∂W

∂zi,λi−k

=
1

sk
i

adk
−f ḡi +

∑k−1
j=1 j

sk+1
i

Lf(si)adk−1
−f ḡi

mod {adj
−f ḡi, 0 ≤ j ≤ k − 2}, 1 ≤ k ≤ λi − 1.

Further calculation yields the right hand side of (16b)

ad−f

∂W

∂zi,1
=

1

sλi−1
i

adλi

−f ḡi +

∑λi−1
j=1 j

sλi

i

Lf(si)adλi−1
−f ḡi

mod {adj
−f ḡi, 0 ≤ j ≤ λi − 2}.

Remark 3.7: The multiple time scaling transformation

case has a different TSF for each subsystem. This can

be generalized by employing a TSF for each state, i.e.,

S = Blockdiag{s1, · · · , sn}, which leads to the multi-output

extension of the output dependent observability linear normal

form in [27]. A similar procedure can be followed to obtain

the existence conditions of the corresponding TOF.

Remark 3.8: The type of freedom time scaling transfor-

mation introduces is apparent by comparing the characteristic

equations with and without TSFs. More specifically we

derive a necessary condition on the expression of ϕi =
Lλi

f hi in observable coordinates for a system (1) admitting
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a TOF. This condition is less restrictive than the polynomial

condition of a system admitting OF [15]. Assuming (1) is

in observable form with observability indices λi, 1 ≤ i ≤ p,

the ith subsystem is

ẋi =






xi,2

...

ϕi(x)




 , yi = xi,1.

When λi ≥ 2 and taking the typical starting vector gi =
∂/∂xi,λi

, condition (11) is formulated as

d
∂ϕi(x)

∂xi,λi

=
1

si(y)



lλi

∂si(y)

∂yi

dxi,2 + (lλi
− 1)

p
∑

j=1,j 6=i

dxj,2





mod {dy}.

Performing coefficient matching on the above equation, one

can solve si only if the coefficients of xi,λi
in ϕi are

of the form α1(y)xj,2, α2(y). We note a system having

xj,kxi,λi
, k ≥ 3 in ϕi is not transformable to a TOF.

As a special case, if λi = 1, condition (11) is

d
∂ϕi(x)

∂xi,1
=

1

si(y)

∂si(y)

∂yi

dϕi(x) mod {dy}.

If ϕi(x) depends on xj,k, k ≥ 2 and y, no TSF can be

solved. On the other hand, if ϕi(x) depends on y only,

no si is required for the ith subsystem is already in OF.

Hence, we conclude, time scaling transformation is not

helpful in transforming 1-dimensional subsystems into an

OF. Following a similar procedure, one can verify unlike

the single-output case, time scaling transformation is not

equivalent to output transformation for a p-output (p > 2)

system with observability indices λk = 2, 1 ≤ k ≤ p.

Example 2 (Continued) One can apply Theorem 3.1

to solve the candidate matrix TSF and compute the state

transformation. Condition (12) is reduced to

2dx1,2 = s−1
1 (2

∂s1

∂y1
dx1,2 +

∂s1

∂y2
dx2,2) mod {dy}

2dx2,2 = s−1
2 (2

∂s2

∂y2
dx2,2 +

∂s2

∂y1
dx1,2) mod {dy},

which yields the PDEs

∂s1

∂y1
= s1,

∂s1

∂y2
= 0,

∂s2

∂y1
= 0,

∂s2

∂y2
= s2.

Hence, we solve the TSF s1 = ey1 , s2 = ey2 . Lie bracket

condition (12) is satisfied for 1 ≤ r, s, i, l ≤ 2 and the system

is transformable to a TOF.

B. Single Time Scaling Transformation Case

The existence conditions are given in the following theo-

rem without proof.

Theorem 3.9: The nonlinear system (1) is locally trans-

formable to a TOF (8) if and only if, locally at x0,

1) Condition 1) in Theorem 3.1 with s = si, 1 ≤ i ≤ p
holds.

2) Qi=Qi ∩ Q.

3) The Lie brackets conditions are satisfied

[

adk
−f̄ ḡr, adl

−f̄ ḡq

]

= 0,







0 ≤ k ≤ λr − 1,
0 ≤ l ≤ λq − 1,
1 ≤ r, q ≤ p,

(21)

where ḡi is the starting vector field in τ time and

defined by

Lḡi
Lk

f̄
hr = δk,λi−1δi,r, 0 ≤ k ≤ λi−1, 1 ≤ r ≤ p.

(22)

Remark 3.10: The transformation z = Φ(x) is the solu-

tion of the n2 PDEs

∂Φ(x)

∂x

[

adλ1−1
−f g1 · · · g1 · · · ad

λp−1
−f gp · · · ad−fgp

]

= In.

(23)

Remark 3.11: Comparing Theorem 3.9 with [26, Thm. 3.1

], one can see the difference is the additional Condition 1) on

the TSF. Provided the existence of a TSF, the necessity and

sufficiency of Condition 2) – 3) have been shown in [26].

Also, Condition 1) is obvious given Condition 1) in Theorem

3.1.

Remark 3.12: Assuming for system (1), the starting vec-

tors gi, 1 ≤ i ≤ p in the original time can be solved

from (10), we have the starting vectors defined by (22)

ḡi = sλi−1gi, 1 ≤ i ≤ p. This is because by induction,

one can derive that for a fixed i and any r, 1 ≤ r ≤ p,

dLk
f̄
hr =

{

s−1dLfhr mod {dhr}, k = 0,

s−kdLk
fhr mod {dLj

fhr, 0 ≤ j ≤ k − 1},

for 1 ≤ k ≤ λi − 1. Therefore, it is straightforward to verify

if gi satisfies (10) then ḡi satisfies (22).

Remark 3.13: The case of multiple time scaling trans-

formation is a generalization of the single time scaling

transformation. This is because replacing the matrix TSF

with a scalar TSF, Theorem 3.1 is equivalent to Theorem

3.9. We can verify the ḡi solved from (14) is the same as

ḡi solved from (22), and adk−1
−f̄

ḡi = ηi,k, 1 ≤ k ≤ λi, 1 ≤
i ≤ p. Thus the Lie bracket conditions are equivalent. When

p = 1, Theorem 3.9, Theorem 3.1 lead to the same existence

conditions as [23, Thm. 1].

Example 1 (Continued) One can apply Theorem 3.9 to

solve the scalar TSF, and compute the transformation. Since

Lgi
L2

fhi, dLfhi, i = 1, 2 can be readily obtained, condition

(11) is reduced to

d(2x1,2 + x2,2) = s−1(2
∂s

∂y1
dx1,2 +

∂s

∂y2
dx2,2) mod {dy}

(24a)

d(2x2,2 + x1,2) = s−1(2
∂s

∂y2
dx2,2 +

∂s

∂y1
dx1,2) mod {dy}.

(24b)

(24a) yields the PDEs

∂s

∂y1
=

∂s

∂y2
= s.

Also, one can obtain the same PDEs for s from (24b). Hence,

we solve the scalar TSF (4). Lie bracket conditions (21) are
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satisfied and the state transformation is computed by solving

(23).

IV. ERROR DYNAMICS STABILITY

Assuming the existence of a TOF and considering the

standard Luenberger observer in TOF coordinates and the

new times

dẑ

dτ
= Aẑ + γ(y) + L(y − Cẑ), (25)

we have the LTI error dynamics

dz̃

dτ
= (A − LC)z̃,

which is globally exponentially stable (GES). The error

dynamics of the ith subsystem in the original time is a LTV

system:

˙̃zi = si(Ai − LiCi)z̃i. (26)

We study the error dynamics stability of (26) by examining

the stability of the LTV system

ė = α(t)Ace, α(t) > 0, ∀t ∈ [t0,∞), (27)

where e = (e1, . . . , en)T , and Ac ∈ R
n×n is Hurwitz. Since

the observer gain allows for arbitrary eigenvalue assignment,

we further assume Ac is diagonalizable. We first give the

stability result of (27) when n = 1.

Proposition 4.1: Given a 1-dimensional system

ẋ = −σα(t)x, x0 = x(t0), σ > 0, α(t) > 0, ∀t ∈ [t0,∞),
(28)

its equilibrium point x = 0 is GES if and only if there exist

positive constants t0, T0, and ǫ > 0 such that

∫ t+T0

t

α(ξ)dξ ≥ ǫ, ∀t ≥ t0. (29)

Proof: The solution of the LTV system (28) is

x(t) = exp

(

−σ

∫ t

t0

α(ξ)dξ

)

x(t0). (30)

⇒: From (29) we have

(
(t − t0)

T0
− 1

)

ǫ ≤

∫ t

t0

α(ξ)dξ.

Substituting the above equation into (30) we know

c1e
−m(t−t0)|x(t0)| ≤ |x(t)| ≤ c2e

−l(t−t0)|x(t0)|, (31)

where c1, m are some positive constants, and c2 =
exp(σǫ/T0), l = σǫ/T0. Hence, the equilibrium point x = 0
is GES and the sufficiency of condition (29) is shown.

⇐: Since the origin x = 0 is GES, the system trajectory

satisfies (31) where c1, c2, m, l are some positive constants.

Using (30), we have

∫ t

t0

α(ξ)dξ ≥ c3(t − t0) − c4, ∀t ≥ t0,

where c3, c4 are some appropriate positive constants. Letting

T0 > c4/c3 and ǫ = c3T0 − c4 > 0, and computing the

integral from t to t + T0, we have

∫ t+T0

t

α(ξ)dξ ≥ ǫ, ∀t ≥ t0.

Thus the necessity of condition (29) is proven.

Proposition 4.2: The equilibrium point e = 0 of the

LTV system (27) is GES if and only if there exist positive

constants t0, T0, and ǫ > 0 such that (29) holds.

Proof: Since Ac is assumed diagonalizable into

Ad = Diag{σ1, · · · , σn} by a linear transformation ē =
(ē1, . . . , ēn)T = He, the system (27) is transformed into

n decoupled scalar systems

˙̄ei = −σiα(t)ēi, 1 ≤ i ≤ n

whose equilibrium points ēi = 0 are GES. According to

Proposition 4.1, (29) is necessary and sufficient to ensure

ei = 0 is GES.

Finally, we state the theorem without proof for the stability

of error dynamics (26), 1 ≤ i ≤ p.

Theorem 4.3: Assume system (1) is globally transformed

to a TOF (6). Given the observer (25) with A−LC Hurwitz,

the zero solution of the error dynamics in the original time

(26), 1 ≤ i ≤ p, is GES if and only if there exist positive

constants t0, T0, and ǫ > 0 such that (29) holds with α(ξ) =
si(y(ξ)).

Remark 4.4: A non-vanishing positive TSF is required

to preserve the error dynamics stability in the sense of

Lyapunov. For a linear time varying system

ẋ = A(t)x, x(t0) = x0,

x = 0 is a GUAS equilibrium point if and only if x = 0 is

an GES equilibrium point. Hence, GUAS is guaranteed by

(29).

V. CONCLUSION

Time scaling of a multi-output observer form (TOF) for

uncontrolled nonlinear continuous-time systems is consid-

ered in this note. Two cases of TOF are discussed and

necessary and sufficient conditions for the existence of these

TOF are provided. Since time scaling transformation affects

the error dynamics stability, the necessary and sufficient

condition on TSFs to preserve the GES of the error dynamics

are presented.
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