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Abstract— Empirical linear dynamic models have been iden-
tified from ambulatory data from two type 1 diabetes subjects
in order to determine approximately how far into the future
the models could be expected to make reasonably accurate
predictions. For a prediction horizon of 30 minutes, FIT values
(related to R2 values) of the model predictions for validation
data were 46% for one subject and 60% for the other subject.
These FIT values correspond to root mean square errors of 14
and 24 mg/dL, respectively. Longer prediction horizons resulted
in substantially worse predictions for these ambulatory subject
data.

I. INTRODUCTION

Type 1 diabetes mellitus (T1DM) is an autoimmune dis-
ease characterized by a negligible production of endogenous
insulin from the pancreatic β-cells. This insufficient insulin
production results in inadequate regulation of glucose con-
centration. Both high and low blood glucose levels (hyper-
glycemia and hypoglycemia, respectively) are deleterious to
one’s health. Sustained hyperglycemia is associated with a
significant increase in the chances of developing long-term
complications such as microvascular disease [1] (e.g., eye,
kidney, and nerve disease) and cardiovascular disease. Acute
hypoglycemia, on the other hand, can cause immediate health
threats such as seizures and coma.

T1DM subjects can significantly reduce their risk of com-
plications due to both hyperglycemia and hypoglycemia by
regulating their blood glucose more effectively [2]. Concep-
tually, an artificial β-cell would achieve improved glycemic
control automatically. This biomedical device would consist
of a continuous subcutaneous glucose monitor, a controller,
and a continuous subcutaneous insulin infusion (CSII) pump
[3]. The controller would automatically adjust the insulin
dose in order to regulate glucose levels based on current and
past glucose and insulin infusion information, and deliver
this dose via the CSII pump. Although some types of con-
trollers would not require a model of the subject’s glucose-
insulin dynamics (e.g., a proportional-integral-derivative, or
PID controller), model-based controllers are well suited for
this application given their ability to explicitly handle input
constraints (e.g., the insulin delivery rate is bounded by zero
and a maximum value, and its absolute rate of change is also
bounded).
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The performance of a model-based controller is related
to the predictive capability of the model [4]. In general,
predictive models involve an inherent trade-off between the
accuracy of the predictions and the length of the prediction
horizon. The longer the prediction horizon, the more useful
the prediction is to a model-based controller, but the less
accurate it tends to be. This paper investigates the relation-
ship between model prediction accuracy and the length of
the prediction horizon.

II. PREDICTIVE MODELS FOR T1DM SUBJECT
DATA

Although there have been myriad simulation studies ex-
ploring the prediction of future glucose trends, only a few
have utilized actual T1DM subject data. Furthermore, direct
comparisons among these studies are difficult to make be-
cause they often used different sampling intervals, prediction
horizons, and/or metrics to quantify prediction accuracy.
Bellazzi et al. [5] used non-uniformly and sparsely sam-
pled T1DM subject data collected in ambulatory conditions,
linearly interpolated at 2-h intervals, to identify low-order
autoregressive exogenous input (ARX) models whose inputs
included meals (a binary variable indicating the presence
or absence of a meal) and a filtered insulin input. They
investigated 1-step, 2-step, and 3-step (i.e., 2-h, 4-h, and 6-h)
prediction horizons. The authors summarize their modeling
results by reporting 1-step ahead prediction metrics for the
best-case subject, the worst-case subject, and the mean case
of their 60-subject data bank. The mean prediction errors
were 2 mg/dL for the best-case subject, 35 mg/dL for
the worst-case subject, and 19 ± 8 mg/dL for the mean
subject. The marked difference between the results for the
best- and worst-case subjects illustrates a fundamental and
significant inter-subject variability. The authors concede that
these results are at least somewhat positively biased due to
the linear interpolation.

Bremer and Gough [6] used 10-min data from ambulatory
T1DM patients to identify autoregressive (AR) models. They
explored 1-step, 2-step, and 3-step (i.e., 10-min, 20-min,
and 30-min) prediction horizons, and report that the 1-step
predictions are accurate and that “for certain data, 20-min or
30-min predictions may also be acceptable.” They provided
no quantification of their predictions of T1DM subject data.

Hovorka et al. [7] performed experiments in 10 T1DM
patients under clinical conditions, using their own physio-
logical model to make predictions of 15-min glucose data
up to 4 steps (i.e., 60 min) into the future. The glucose
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was measured intravenously, but delayed by 30 min to
mimic subcutaneous measurement. The model parameters
were recursively estimated using a sophisticated Bayesian
method. The predictions of the resulting models had root
mean square error (RMSE) values of 8.6, 13.0, and 17.3
mg/dL for 2-step, 3-step, and 4-step (i.e., 30-min, 45-min,
and 60-min) predictions, respectively.

Sparacino et al. [8] collected 48 h of continuous (3-
min) glucose data from 28 ambulatory T1DM subjects. In
their retrospective analysis, they recursively identified simple
polynomial and AR models from these time-series data. They
investigated prediction horizons of 10 and 15 steps (i.e., 30
and 45 min). Their best models had RMSE values of 18 and
32 mg/dL for the 30-min and 45-min prediction horizons,
respectively.

Reifman et al. [9] developed AR models from continuous
glucose data from nine T1DM subjects. The dataset for
each subject spanned approximately five days, during which
the subjects were “confined to the investigational site” and
“limited to mild physical activity.” For models identified
from individual patients, RMSE values of 30-min and 60-
min predictions of validation data ranged from 18–30 mg/dL
and 25–41 mg/dL, respectively. For models identified from
other subjects, mean RMSE values of 30-min and 60-min
predictions of validation data ranged from 21–31 mg/dL and
28–42 mg/dL, respectively.

III. METHODS
A. Subject and Simulated Data

For each of two T1DM subjects (denoted by A and B)
in ambulatory conditions, two datasets were collected that
spanned multiple days and consisted of continuous (5-min)
glucose measurements, insulin pump records, and subject-
reported estimates of the times and carbohydrate (CHO) con-
tent of meals. An inherent characteristic of these ambulatory
data was the absence of any reliable or quantitative measure
of other factors that greatly affect glucose concentration, such
as exercise and stress. Thus, as a “reality check,” a nonlinear
physiological model [7,10] of type 1 diabetes was used to
generate more deterministic datasets corresponding to each
of the four subject datasets. These simulated datasets were
generated by using the actual inputs (i.e., insulin infusion
rates and subject-reported meals) as the inputs to the model.
Thus, these simulated datasets are “more deterministic”
in the sense that neither exercise-related nor stress-related
disturbances, measured or unmeasured, influence the glucose
concentration.

The model was roughly tuned for each dataset by using
the subject’s weight as a model parameter and adjusting
the insulin sensitivity parameters in the model such that
the inputs resulted in (approximately) the corresponding
experimental mean glucose concentration. Also, white noise
was added to the simulated glucose concentration with zero
mean and a standard deviation of 3.3 mg/dL. Table I sum-
marizes the datasets investigated in this paper. Fig. 1 shows
a representative subject dataset (B1) with its corresponding
simulated dataset (B1S). For certain sections of the dataset,

TABLE I
DESCRIPTION OF DATASETS

Number Mean Standard
Type Dataset of Glucose Deviation

Samples (mg/dL) (mg/dL)
A1 1195 85.5 26.0

SUBJECT A2 801 106.1 32.8
DATA B1 1375 146.3 62.0

B2 1000 151.1 50.0
A1S 1195 88.0 46.0

SIMULATED A2S 801 103.6 46.0
DATA B1S 1375 149.4 70.6

B2S 1000 150.0 81.1

e.g. samples ∼550–700, the model mimics the data very
well. However, this is not usually the case. Fig. 1 illustrates
that there is much unexplained variability in the ambulatory
subject data.

Each dataset was then divided in half. The first half (the
calibration portion of the data, or “Cal”) was used for model
identification; the second half (the validation portion of the
data, or “Val”) for model validation.
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Fig. 1. Datasets B1 and B1S shown with the insulin and meal inputs.

B. Empirical Models and Identification Techniques

Three types of empirical dynamic models were identified
from the datasets: autoregressive (AR), autoregressive ex-
ogenous input (ARX), and autoregressive moving average
exogenous input (ARMAX). The latter is the most complex
of the three types of models, and is described by

A(q−1)G(t) = Bi(q−1)ui(t)
+Bm(q−1)um(t) + C(q−1)e(t), (1)

where G is the output (i.e., glucose concentration) and ui

and um are the inputs (i.e., insulin infusion rate and meal
CHO, respectively). A, Bi, Bm, and C are polynomials in
the backward shift operator q−1, i.e., q−1x(t) ≡ x(t − 1).
White-noise disturbances are represented by e.

The AR and ARX models are special cases of the AR-
MAX model obtained by specifying Bi = Bm = 0 and
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C = 1 for AR models, and C = 1 for ARX models. Note that
AR models do not model the effect of the inputs; they simply
describe the dependence of future outputs on past outputs.
For this paper, third-order models were identified; thus, the
AR, ARX, and ARMAX models had 3, 9, and 12 parameters,
respectively. Other model orders were investigated and gave
similar results.

A typical model identification procedure consists of es-
timating model parameters such that the 1-step ahead pre-
diction errors are minimized, or, more precisely, such that
the sum of the squares of the 1-step ahead prediction errors
is minimized [11]. This least-squares solution is available
in closed form for AR and ARX models, and thus a global
minimum is guaranteed. However, because the 1-step ahead
predictions of ARMAX models depend on past prediction
errors (which depend on the model parameters to be esti-
mated), a closed-form solution is not available [12]. In this
case, a more computationally intensive iterative prediction
error method is employed to search for a local minimum
in the parameter space. Thus, the global minimum is not
guaranteed.

For model predictive control purposes, the sum of the
squares of the 1-step ahead prediction errors is perhaps
the wrong criterion to minimize. Compared to the sampling
interval of continuous glucose monitors (e.g., 5 min), the
glucose-insulin dynamics in type 1 diabetes are significantly
slower. This caveat motivates the investigation of estimating
model parameters based on optimizing prediction errors with
a longer prediction horizon (PH), such as 3 or 6 steps (i.e.,
15 or 30 min). In this case the least-squares solution to the
AR and ARX problems, as well as the ARMAX problem,
requires an iterative prediction error method for the same
reason as the 1-step ahead ARMAX problem [11–13]. Thus,
the multi-step ahead least-squares prediction error criterion
to minimize is

JLS =
N∑

t=1

[
G(t + p)− Ĝ(t + p|t)

]2

, (2)

where G(t+p) is the measured glucose concentration at time
t + p, Ĝ(t + p|t) is the predicted glucose concentration at
time t + p based on information up to time t, and p is the
prediction horizon (in steps). In this paper, values of p = 3
and p = 6 are investigated in addition to the standard case
p = 1.

The identification problem represented by the minimiza-
tion of JLS in (2) is a nonlinear least-squares problem.
Given initial values for the model parameters, this problem
can be solved readily using, for example, a Gauss-Newton
method. The initial values of the parameters were taken to
be the corresponding values obtained from the standard 1-
step ahead optimization. A brief comment on the effect of
the initial values follows in the Results section.

C. Prediction Accuracy

The metric used to quantify the accuracy of model pre-
dictions in this paper is the FIT value,

FIT =

(
1− ‖G− Ĝ‖

‖G− Ḡ‖

)
× 100%, (3)

where G is the vector of measured glucose values, Ĝ is the
vector of the corresponding glucose predictions, Ḡ is the
vector of mean measured values, and the indicated norms are
Euclidean. Thus, the FIT value is a measure of how much
variability in the data is explained by the model predictions.
When appropriate, the RMSE is also reported to facilitate
comparison with previous studies.

IV. RESULTS

Modeling results for the AR and ARX models for the
simulated data are reported in Tables II and III, respectively.
In general, the predictions do not significantly vary with
either the calibration PH p or the type of model. The pre-
dictions do vary substantially, however, with the validation
PH, the portion of the data used for the validation, and the
virtual subject. Predictions deteriorate as the validation PH
is extended to 24 steps (120 min), especially for subject for
AS, whose FIT values for the validation portion of either
dataset are either very low or negative.

The validation portions of the datasets usually show lower
FIT values than the corresponding calibration portions. This
trend is true in general for identification problems, but not
always. Dataset B2S, for example, shows higher FIT values
for the validation portion than for the calibration portion.
This result is counterintuitive but possible if, for example,
the validation data exhibit a higher degree of linearity than
the calibration data.

The predictions vary perhaps most markedly with the
virtual subject. Combining the AR and ARX results, the
ranges (low−high) of FIT values for the validation sections
using 6-step, 12-step, and 24-step (i.e., 30-min, 60-min, and
120-min) predictions are, respectively,
• Subject AS: 54%− 68%, 20%− 41%, and −28%− 8%
• Subject BS: 75%− 86%, 55%− 77%, and 27%− 59%.
Tables II and III can be further summarized in terms of

the modeling improvements obtained by using more sophis-
ticated identification techniques. For instance, compared to
AR models, ARX models result in improvements of 12-step
(60-min) ahead predictions of validation data of 6.3± 4.8%
(FIT values, mean ± standard deviation). Optimizing model
parameters using p = 6 resulted in improvements of 12-step
ahead predictions of validation data of 5.4±2.9% compared
to p = 1 (the standard least-squares solution) and 2.5±1.8%
compared to p = 3.

Fig. 2 shows how the ARX model predictions of the
validation sections vary with the validation PH. The FIT
values decline with increasing PH, the curves for subject
AS having a much more severe slope than for BS. The two
curves for each subject group together closely.
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TABLE II
AR RESULTS (FIT VALUES, %) FOR THE SIMULATED DATASETS.

HIGHLIGHTED VALUES REPRESENT CALIBRATION FITS.

Validation PH (Steps)
Dataset/ 1 3 6 12 24
Modela Cal Val Cal Val Cal Val Cal Val Cal Val

1 88 89 84 79 76 64 60 38 32 2
A1S 3 88 89 84 81 77 66 61 39 33 4

6 87 90 84 82 77 67 61 41 34 5
1 88 85 81 74 68 54 43 20 5 -28

A2S 3 87 84 81 76 70 57 46 23 8 -24
6 87 84 81 76 71 59 48 27 11 -20
1 93 92 88 86 78 75 60 55 35 27

B1S 3 93 92 88 86 79 76 63 57 37 30
6 93 92 88 85 80 76 63 58 38 31
1 92 94 86 89 76 80 56 64 27 41

B2S 3 92 94 87 90 78 82 59 66 30 43
6 91 94 87 89 78 82 60 67 32 44

a The model is identified from (the calibration portion of) the listed dataset,
optimizing the p-step ahead predictions, where p = 1, 3, or 6.

TABLE III
ARX RESULTS (FIT VALUES, %) FOR THE SIMULATED DATASETS.

HIGHLIGHTED VALUES REPRESENT CALIBRATION FITS.

Validation PH (Steps)
Dataset/ 1 3 6 12 24
Modela Cal Val Cal Val Cal Val Cal Val Cal Val

1 88 89 84 80 77 65 61 38 34 5
A1S 3 88 89 84 81 77 66 61 39 34 5

6 87 90 84 82 78 68 62 41 36 8
1 88 85 81 75 69 56 45 23 9 -22

A2S 3 87 84 82 77 72 60 50 27 15 -17
6 86 84 81 78 73 63 55 33 23 -7
1 93 92 88 88 80 81 64 66 40 41

B1S 3 93 92 89 88 83 82 69 70 47 48
6 93 92 88 88 83 82 73 72 54 54
1 92 94 87 90 78 82 60 69 32 49

B2S 3 92 94 88 91 81 85 64 73 37 54
6 91 94 88 90 81 86 67 77 42 59

a The model is identified from (the calibration portion of) the listed dataset,
optimizing the p-step ahead predictions, where p = 1, 3, or 6.
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Fig. 2. FIT values for validation portions of the simulated datasets for
ARX models.

TABLE IV
AR RESULTS (FIT VALUES, %) FOR THE SUBJECT DATASETS.

HIGHLIGHTED VALUES REPRESENT CALIBRATION FITS.

Validation PH (Steps)
Dataset/ 1 3 6 12 24
Modela Cal Val Cal Val Cal Val Cal Val Cal Val

1 84 85 64 65 45 41 20 8 -3 -15
A1 3 84 85 64 65 45 42 21 9 -2 -14

6 84 85 64 66 45 43 21 11 0 -11
1 81 87 59 69 39 47 13 16 -7 -12

A2 3 81 87 59 69 39 47 13 17 -6 -11
6 81 88 58 70 40 49 14 17 -6 -10
1 86 91 69 77 50 59 26 36 2 17

B1 3 86 91 69 77 50 59 26 36 3 17
6 86 91 69 77 50 59 26 36 3 16
1 91 92 77 75 59 55 30 29 4 2

B2 3 91 92 77 76 59 55 30 30 4 3
6 90 91 77 75 60 55 31 30 6 4

a The model is identified from (the calibration portion of) the listed dataset,
optimizing the p-step ahead predictions, where p = 1, 3, or 6.

Modeling results for the AR and ARX models using the
subject data are listed in Tables IV and V, respectively. As
for the simulated data, the prediction accuracy is largely
insensitive to the calibration PH or the type of model (AR
versus ARX). The prediction accuracy does vary substan-
tially, however, with the validation PH, the portion of the
data used in the validation, and the T1DM subject. Again,
as for the simulated data, the model predictions deteriorate
as the validation PH is extended to 24 steps, especially for
subject A, whose FIT values for the validation portions are
either very low or negative.

Again, the prediction accuracy varies significantly with
the subject, although to a lesser extent. Combining the AR
and ARX results, the ranges (low−high) of FIT values for
the validation sections using 6-step, 12-step, and 24-step
predictions are, respectively,
• Subject A: 41%− 51%, 7%− 24%, and −17%− 4%
• Subject B: 55%− 62%, 29%− 41%, and 2%− 17%.
Neither the increased complexity of the ARX models

compared to the AR models, nor the extension of the cali-
bration PH resulted in statistically significant improvements
in predictions of validation data (for each comparison, the
standard deviation was greater than the mean improvement).

Fig. 3 shows how the ARX model predictions of the
validation sections vary with the validation PH. The FIT
values are significantly lower than the corresponding values
for the simulated data (see Fig. 2). Again, the two curves for
each subject group together closely.

Tables VI and VII show the results for the simulated and
subject data, respectively, using ARMAX models. Only the
1-step ahead predictions were optimized in identifying the
ARMAX models.

For the simulated data, the increased complexity of the
ARMAX models results in significantly improved model
predictions compared to the AR and ARX models. The 12-
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TABLE V
ARX RESULTS (FIT VALUES, %) FOR THE SUBJECT DATASETS.

HIGHLIGHTED VALUES REPRESENT CALIBRATION FITS.

Validation PH (Steps)
Dataset/ 1 3 6 12 24
Modela Cal Val Cal Val Cal Val Cal Val Cal Val

1 84 85 66 64 47 41 24 7 1 -17
A1 3 84 85 66 65 48 42 25 9 3 -14

6 84 85 66 65 48 43 26 10 4 -13
1 81 87 59 71 40 51 16 24 -2 -4

A2 3 81 83 60 66 41 44 17 18 2 -11
6 81 83 59 65 41 41 19 13 4 -16
1 86 91 70 77 51 59 26 36 2 17

B1 3 86 91 71 77 52 60 28 37 4 17
6 86 90 70 77 53 60 30 38 5 17
1 91 92 78 78 61 61 33 40 6 12

B2 3 90 91 78 78 62 62 35 41 8 11
6 90 91 78 78 63 62 36 41 7 9

a The model is identified from (the calibration portion of) the listed dataset,
optimizing the p-step ahead predictions, where p = 1, 3, or 6.
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Fig. 3. FIT values for validation portions of the subject datasets for ARX
models.

step ahead predictions of validation data for the ARMAX
models were 24.5 ± 8.9% (FIT values, mean ± standard
deviation) higher than those of the AR models, and 18.2 ±
8.9% higher than those of the ARX models.

For the subject data, the predictions for the ARMAX
models were not statistically different than those of the AR
and ARX models (again, the standard deviation was greater
than the mean improvement for each comparison).

Table VIII illustrates the differences in 6-step and 12-step
validation results due to the type of model used for each
subject. For the virtual subjects AS and BS, improvement is
obtained in the predictions as the model complexity increases
from AR to ARX to ARMAX. This trend is not observed
in the T1DM subjects; in fact, the ARX models explain the
most variability in the validation data for both prediction
horizons.

The RMSE values listed in Table VIII are comparable and
in some cases superior to those obtained in previous studies
[8,9] that used ambulatory T1DM subject data.

Figs. 4 and 5 show representative 6-step and 12-step
ahead validation results for the ARX models for datasets
B2S and B2, respectively. The process dynamics immediately

TABLE VI
ARMAX RESULTS (FIT VALUES, %) FOR THE SIMULATED DATASETS.

HIGHLIGHTED VALUES REPRESENT CALIBRATION FITS.

Validation PH (Steps)
Dataset/ 1 3 6 12 24
Modela Cal Val Cal Val Cal Val Cal Val Cal Val

A1S 90 89 89 85 86 76 78 57 59 37
A2S 90 87 88 84 85 76 77 57 58 24
B1S 95 94 94 93 92 92 89 88 79 79
B2S 94 95 92 93 88 90 76 80 45 56

a The model is identified from (the calibration portion of) the listed dataset,
optimizing the 1-step ahead predictions.

TABLE VII
ARMAX RESULTS (FIT VALUES, %) FOR THE SUBJECT DATASETS.

HIGHLIGHTED VALUES REPRESENT CALIBRATION FITS.

Validation PH (Steps)
Dataset/ 1 3 6 12 24
Modela Cal Val Cal Val Cal Val Cal Val Cal Val

A1 84 86 67 66 49 44 28 10 4 -21
A2 81 85 59 60 40 29 17 -8 6 -46
B1 86 91 71 78 53 60 28 34 -6 3
B2 91 92 79 78 64 61 37 36 3 -8

a The model is identified from (the calibration portion of) the listed dataset,
optimizing the 1-step ahead predictions.

following a meal are often captured reasonably well, but
the model predictions show a strong “shadow” effect which
becomes more pronounced with increasing PH.
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Fig. 4. Representative ARX validation results for Subject BS. The dataset
shown is the validation portion of dataset B2S.

The effects of the initial parameter values in the nonlinear
least-squares optimizations were investigated by performing
optimizations using sets of initial parameter values signif-
icantly different from those obtained from the 1-step opti-
mizations. These perturbations in initial values had little or
no effect on the resulting model or its prediction capability.

V. DISCUSSION

For the simulated data, the best modeling results were
achieved with ARMAX models. Average FIT values for
30-min predictions of validation simulated data were 76%
and 91% for virtual subjects AS and BS, respectively. The
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TABLE VIII
MEAN VALIDATION RESULTS FOR EACH SUBJECT-MODEL IDENTIFIED

OPTIMIZING THE 1-STEP PREDICTIONS.

FIT (%) RMSE (mg/dL)
PH (Steps) PH (Steps)

Subjecta Model 6 12 6 12
AR 59 29 18 31

AS ARX 60 31 17 30
ARMAX 76 57 11 19
AR 78 59 18 32

BS ARX 82 67 16 28
ARMAX 91 84 7 11
AR 44 12 14 22

A ARX 46 16 14 21
ARMAX 36 1 16 25
AR 57 33 25 38

B ARX 60 38 24 36
ARMAX 60 35 24 37

a “Subjects” AS and BS are virtual subjects whose data was simulated using
the physiological model.
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Fig. 5. Representative ARX validation results for Subject B. The dataset
shown is the validation portion of dataset B2.

best modeling results for the subject data were significantly
worse than for the simulated data, and were achieved with
ARX models. Average FIT values for 30-min predictions
of validation subject data were 46% and 60% for subjects A
and B, respectively.

This disparity between the modeling results for the sim-
ulated and subject data may be due in part to the nature of
the ambulatory subject data, which are often characterized by
unexplained excursions. These excursions are evidenced by
comparisons with the corresponding simulated data, obtained
from the deterministic physiological model.

For both subject and simulated data, prediction accuracy
deteriorates quickly as the prediction horizon is extended.
For reasonably reliable predictions, the maximum horizon in
this study was 60 min. However, predictions over horizons
of only 15–30 min may well be suitable for model-based
control.

Identifying dynamic models based on optimizing the p-
step ahead predictions, p > 1, resulted in only a marginal
improvement, if any, in the predictive quality of the models.
This modest improvement is most likely not worth the
increased computational load, compared to a standard 1-
step least-squares identification method. This conclusion is

especially pertinent to recursive estimation schemes in which
model parameters are updated on-line at each sampling
instant.

As the complexity of the models increases, i.e., AR to
ARX to ARMAX, little improvement is effected in their
capabilities to predict the subject data. Thus, AR or ARX
models are recommended for use with ambulatory subject
data. ARX models are especially attractive given their po-
tential to be incorporated into a model-based controller.
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