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Abstract— This work addresses the attitude control of a
satellite by applying MIMO quantitative feedback approach.
The objective is to design a set of proper controllers in presence
of unknown disturbances and parametric uncertainties for a
nonlinear MIMO system. The physical model of satellite utilizes
three reaction wheels as actuators. The controller goal is to
change the rotational speed of reaction wheels to adjust the
satellite in desired course. First, the mathematical model of
satellite and its actuators using angular kinematics and kinetic
equations is developed. Quantitative feedback theory is then
applied to synthesize a set of linear controllers that deals with
both nonlinearities in the equations and unknown parameters
or disturbance sources. By using basically non-interacting
desired outputs and extracting sets of linear time invariant
equivalent (LTIE) plants, the controllers set is designed for
nine SISO systems. Simulation of closed loop system shows
that all desired specifications of closed loop (tracking, stability,
disturbance rejection) are robustly satisfied.

I. INTRODUCTION

Satellite attitude control has been an active research topic
for quite sometime. The nonlinear nature of satellite model
itself, coupled with the uncertainties both in parameters and
disturbances, makes the attitude control problem attractive
and challenging. Numerous control design methods have
been investigated to achieve control system performance
and/or robustness. Recent works on satellite control include
linear and nonlinear H∞ control [1-3], fuzzy-neuro control [4-
5], LQR/LRT [6-8], and adaptive control [9] among others. A
good review of many control approaches for attitude control
is provided in [10].

The use of a reaction wheel as an actuator in satellite con-
trol has gained popularity lately [11-13]; some advantages
of this type of actuator configuration over others are shown
in [12]. A reaction wheel is a device that applies torque
to satellite at the control command resulting in changed
angular momentum (or angular velocity) of the satellite.
However, the presence of disturbances and uncertainties in
reaction wheel itself can significantly deteriorate control
performance and must be compensated for in the control
design [14]. In addition, the nature of torques or forces acting
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on satellite in general are not thoroughly known and the
derived equations may include uncertainties (either modeled
or un-modeled), thus making the satellite attitude control
arduous. In these circumstances, robust control theory offers
an attractive solution for control design.
To robustly control nonlinear and uncertain systems, quan-
titative feedback control theory (QFT) has emerged as an
effective synthesis tool with advantages over other control
schemes [15-18] and thus provides a basis for solving the
current problem. This work addresses the attitude control of
a satellite utilizing three reaction wheels while incorporating
uncertainties in the parameters and disturbances. The study
synthesizes a control system that stabilizes the satellite in
its orbit and orients the satellite in any desired spatial
direction relative to the reference frame. The use of three
reaction wheels is novel in satellite attitude control that
facilitates flexibility in orientation of the satellite and can be
duly compared against a single reaction wheel for improved
performance.

The structure of paper is as follows. Section II describes
the problem formulation and system modeling. Section III
describes the controller design based on QFT control law
for desired closed loop system specifications. The simulation
results are presented in section IV.

II. GOVERNING EQUATIONS

The governing equations of satellite attitude are expressed
by angular kinetic and angular kinematics equations. Angular
kinetic equations (or Euler equations) express the rate of
change in angular velocities due to external torques or
disturbances. The angular kinematics equations specify the
relationship between absolute angular velocity of the satellite
and its orientation in the space [19].

Fig. 1. Satellite schematic with reaction wheels
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Let the components of angular velocity in body coordinate
XYZ be given by (ω1,ω2,ω3) as shown in Fig. 1. Using
Euler angles to specify angular kinematics, the satellite
attitude model is determined as:

ψ̇ = (ω2 sinφ +ω3 cosφ)secθ

θ̇ = ω2 cosφ −ω3 sinφ

φ̇ = ω1 + ψ̇ sinθ = ω1 +(ω2 sinφ +ω3 cosφ) tanθ

(1)
Here (ψ,θ ,φ) are the Euler angles that determine the satel-
lite position relative to the reference frame here chosen as
Earth.
The angular kinetic equations consist of governing equations
of the total system that include equations of satellite with the
reaction wheels and equations of satellite actuators alone (the
reaction wheels) , which are expressed as

−→
M =

−̇→
H G (2)

−→
T =

−→
H W (3)

Here
−→
H G describes the angular momentum of the total

system (satellite and reaction wheels) about the satellite
center of mass and

−→
H W represents the angular momentum

of the reaction wheels relative to the satellite body. The term−→
H W is a representation of the known or unknown torques on
satellite and

−→
T is the torque of motor acting on the reaction

wheels.
The angular kinetic equations of the system are determined

by using total angular momentum with (2) to obtain(
Ia +2It +2ma2 + Ixx

)
ω̇1−ma2

ω̇2 + IaΩ̇1 + IaΩ3ω2 +(
Izz− Iyy +2ma2)

ω2ω3− IaΩ2ω3 +ma2
ω1ω3 = M1 (4a)(

Ia +2It +2ma2 + Iyy
)

ω̇2−ma2
ω̇1 + IaΩ̇2− IaΩ3ω1 +(

Ixx− Izz−2ma2)
ω1ω3−ma2

ω2ω3 + IaΩ1ω3 = M2 (4b)(
Ia +2It +4ma2 + Izz

)
ω̇3 + IaΩ̇3 + IaΩ2ω1− IaΩ1ω2 +

(Iyy− Ixx)ω1ω2 +ma2 (
ω

2
2 −ω

2
1
)

= M3 (4c)

In (4), (M1,M2,M3) are unknown disturbance torques acting
on the body of the satellite. The principal moments of inertia
of the satellite in XY Z direction are given by (Ixx, Iyy, Izz) re-
spectively whereas (Ia, It) are axial and transversal moments
of inertia of the reaction wheels. The angular velocity of
the ith reaction wheel relative to satellite is given by Ωi,
(i = 1,2,3) and the term ma2 expresses the concentrated
inertial moment of the reaction wheel due to the satellite
center of mass. Similarly, by applying angular momentum
on (3), the governing equations of the actuators are obtained
as

Ia
(
ω̇1 + Ω̇1

)
= u1

Ia
(
ω̇2 + Ω̇2

)
= u2

Ia
(
ω̇3 + Ω̇3

)
= u3

(5)

In (5), ui (i = 1,2,3) is the torque applied from the ith motor
of the reaction wheel (where the friction force effects in
motor are neglected).
In essence, the governing equations of system are presented
by (1), (4), and (5), which indicate that the coupled system
is highly nonlinear and uncertain, and has three inputs and

TABLE I
PHYSICAL PROPERTIES OF TOTAL SYSTEM (ALL IN Kgm2)

Ixx Iyy Izz Ia It ma2

1000 700 400 2 1 1

three outputs. The inputs to the system are torques exerted by
reaction wheels (or electric current) and the system outputs
are the desired Euler angles.
Spatial torques generated from known or unknown sources
such as solar wind pressure, meteoroid impact, and earth
oblateness cannot be exactly determined. These values are
introduced as disturbances in the closed loop system, and
the controller must be able to reject them in addition to the
satellite tracking. The physical parameters of the satellite and
reaction wheels are given in Table I.

III. CONTROLLER DESIGN

A. Closed Loop Requirements

Satellite control system requires designing of robust con-
trollers that should meet the following closed loop system
specifications:

• The closed loop must be stable for the desired input
range and unknown limited disturbances’ set.

• The closed loop system must satisfy the tracking bounds
that were initially specified for designing the controller.

• The closed loop system should be able to reject all the
known and unknown disturbances acting on the system.

The following assumptions are made for the controller de-
sign.

• The three reaction wheels used for attitudecontrol are
identical and their rotation directions are coincidentwith
the principal axes of the satellite.

• The unbalancing effects in reaction wheels are ignored.
• The un-modeled dynamic effects at high frequency are

neglected and/or the satellite is considered rigid.

The closed loop specifications suggest that the satellite
control system should change angular velocity of the reaction
wheels relative to satellite body to aptly respond to the
disturbance effects thus adjusting satellite orientation to
desired inputs. This implies that the angular velocities of
the reaction wheels must be changed continuously to meet
the desired closed loop performance specifications.

B. LTIE Plants using QFT

For the nonlinear set of governing equations, the QFT re-
quires deriving a set of linear time invariant (LTIE) plants for
the desired input range that captures the dynamic behavior
of the original nonlinear system [20]. Here it is assumed
that the system inputs are step functions for each angle and
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desired outputs for closed loop systems are specified as

yii(t) = m(1−λe−σt − (B−λ )e−τt +(B−1)e−γt)

y ji(t) =
1
60

mt3e−αt

yki(t) = −y ji(t)
(6)

where

B ,
γ(σ + τ)− τ2

(τ− γ)(γ−σ)

λ ,
−γτ

(σ − τ)(γ−σ)

(7)

and
1≤ (σ ,τ,γ,α)≤ 3

−0.6 rad ≤ m≤ 0.6 rad (8)

In (6), yii is the ith, (i = 1− 3) desired output for the
closed loop corresponding to the ith step input of amplitude
m, y ji and yki are the jth and kth outputs (i 6= j 6= k)
corresponding to the ith input. The index (1−3) corresponds
to (ψ,θ , and φ) respectively and σ , τ , γ and α represent
the range of system eigenvalues. This approach is termed
as basically non-interacting [21]. Hence, the set of desired
outputs corresponding to ψ are (y11,y21,y31), for θ are
(y12,y22,y32) and for φ are (y13,y23,y33) respectively.

In order to find sets of LTIE transfer function matrices
that are equivalent to the original nonlinear plant, it is
required to know the outputs of the system and controller
inputs. The outputs are chosen as desired outputs (6-8) which
are then substituted in system equations (1), (4) and (5)
to solve for the controller inputs to the system by inverse
solving differential equations. Consequently, for the set of
outputs of (y11,y21,y31), the controller inputs are obtained
as (u11,u21,u31). Similar procedure for (y12,y22,y32), and
(y13,y23,y33) results in the controller inputs (u12,u22,u32)
and (u13,u23,u33) respectively. Now, the columns of two
matrices [U(s)] and [Y(s)] are formed that are the Laplace
transforms of the control signals and the desired outputs
respectively. The Laplace transform of the control signal is
obtained numerically as in [22-23].

The LTIE plants are expressed as

PLT IE = [Y(s)]3×3 [U(s)]−1
3×3 (9)

For the selected range of parameters (8), using above
approach, 800 sets of LTIE plants were extracted that fully
capture the nonlinear system dynamic behavior for the spec-
ified step input range.

C. MIMO Controller and Prefilter

After obtaining the LTIE sets, we want to design a
diagonal controller matrix [G(s)]3×3 and a prefilter matrix
[F(s)]3×3 that satisfy the closed loop specifications for all the
acquired LTIE plants. Using MIMO QFT design approach
[23], we convert our system into a set of nine SISO plants as
in Fig. 2. In Fig. 2, G1, G2 and G3 are the diagonal elements
of the controller matrix G(s) and Fi j are the elements of the
prefilter matrix F(s) where elements of inverse PLT IE are

Fig. 2. The equivalent 9 SISO plants for the 3×3 MIMO Plant

expressed as 1/Qi j. The disturbance di j is defined in (10)
along with the closed loop transfer function for each SISO
system Ti j

Ti j =
Fi jGiQi j +di jQi j

1+GiQii
, i, j = 1,2,3

di j = −
n

∑
u=1

Tu j

Qiu
, u 6= i

(10)

The time domain design specifications for each controller and
prefilter are first converted into frequency domain and are
then translated into performance bounds in Nichols charts,
as shown here only for the case of G1 and F1 (only one
shown due to space constraints).

1) The output of closed loop transfer functions T11, T21
and T31 for step input range ∈ [−0.6,0.6] rad must lie
within the originally specified desired outputs in (6-8).
This performance restriction results in tracking bounds
(11) and disturbance rejection bounds (12) in Nichols
charts as

a11 ≤
∣∣∣∣ F1G1Q11

1+G1Q11

∣∣∣∣ ≤ b11 (11)

0 ≤
∣∣∣∣ d21

1+G1Q11

∣∣∣∣ ≤ b21

0 ≤
∣∣∣∣ d31

1+G1Q11

∣∣∣∣ ≤ b31

(12)

2) T11, T21, and T31 must be stable, thus resulting in
stability bounds in Nichols charts as,∣∣∣∣ G1Q11

1+G1Q11

∣∣∣∣ ≤ 1.2 (13)

All bounds for the first row plotted at various frequencies
are shown in Fig. 3.
Now the loop shaping using MATLAB QFT Toolbox is
conducted manually to acquire the controller structure that
satisfies the performance bounds at each frequency. For
instance, the nominal loop shape of one of the 1/Q11 sets
is shown in Fig. 4. Following are the obtained diagonal
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Fig. 3. Stability, tracking and disturbance rejection bounds for the first
closed loop row.

 

 
Phase (degrees) 

 

Fig. 4. The Loop shaping for the nominal plant of the first row.

controller G and prefilter transfer functions F respectively.

G1 =
−3477

( s
0.1

+1
)( s

24.68
+1

)
( s

1.726
+1

)(
s2

2132 +
0.82s
213

+1
)

G2 =
−4377

( s
0.15

+1
)( s

16.74
+1

)
( s

1.0
+1

)(
s2

1612 +
2×0.28s

161
+1

)

G3 =
−3662

( s
0.7139

+1
)( s

11.78
+1

)
( s

2.94
+1

)(
s2

48.42 +
s

48.4
+1

)

(14)

and

F11(s) =
1( s

0.983
+1

)( s
2.24

+1
)( s

4.34
+1

)
F22(s) =

1( s
0.4652

+1
)(

s2

1.7882 +
2×0.707s

1.788
+1

)

F33(s) =
1( s

0.806
+1

)(
s2

4
+0.707s+1

)
(15)

IV. SIMULATION OF CLOSED LOOP RESPONSE

The closed loop system is simulated in both the fre-
quency and time domains. The designed LTIE plants, con-
troller set and pre-filters are implemented in the SIMULINK
workspace. The extremes values for closed loop transfer
functions Tii are compared with the tolerance bounds and
with the maximum value of non-interacting loop in Fig.
4, that show satisfactory results with some very small and
insignificant violations in the non-interacting loop. The step
responses for all Euler angles in time domain are shown in
Fig. (5-7). It is seen that the MIMO controllers are able

 

 
Time (sec) 

ψ (rad) x 10
-5  θ (rad) x 10

-5  φ (rad)

Fig. 5. Closed loop system step response of system for (ψ,0,0) input.

to achieve the steady state response relatively quickly. The
time response shows that the system is stable in range of
desired inputs and also satisfies the tracking and upper bound
specifications. While designing the controller, the range of
desired inputs was chosen between −0.6 to +0.6 rad (8),
but the system actually showed stability for a broader range.
It was observed to be stable in a range of [−0.9 +0.9] rad
and went unstable beyond this range (not shown). The over
designed controller was not unexpected since it is inherent
in the QFT theory. The effects of low frequency disturbances
were also simulated and it was observed that in the closed
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Fig. 6. Closed loop system step response of system for (0,θ ,0) input.
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Fig. 7. Closed loop system step response of system for (0,0,φ) input.

loop response all disturbances from 0 up and including upper
frequency of 5 rad/sec were attenuated successfully (not
shown).

V. CONCLUSION

The attitude control of a satellite by three reaction wheels
using QFT is presented. The nonlinear dynamic model of
plant with uncertain inputs was first converted into a set of
800 LTIE plants that fully capture the dynamics of original
nonlinear system. Then, the performance specifications of
controllers were derived and translated into Nichols charts.
Loop shaping was then applied to obtain a diagonal set of
controllers along with pre-filters for the nine SISO systems.
The results of closed loop response show that the controller
set satisfies the closed loop specifications for MIMO system
such as tracking, stability and disturbance rejection at each
input frequency. The response is observed to lie within the
desired bounds. Also the closed loop system is able to
reject noise at frequencies higher than 300 rad/sec. Also, if

required, the limitation of low frequency noise problem can
be addressed by changing the desired specifications of the
closed loop and hence the procedure of designing controller
can be repeated.
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