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Abstract— Recently, passivity-based techniques to control the
transmit power of mobile nodes have been proposed to ensure
the input-output stability of cellular CDMA networks. An
inherent assumption in these solutions is that the transmit
power synthesized by the controller of choice does not exceed
an upper bound pmax, which has not been characterized. In
practice, an upper bound pmax is invariably imposed on the
instantaneous transmit power of the mobile user and may lead
to windup in the cellular network. We propose an antiwindup
mechanism.

Index Terms— robust stability, multipliers, sensor networks,
noncooperative game theory, power control

I. INTRODUCTION

Recently, [1] has developed passivity-based team-
optimized techniques to minimize the transmit power in
multi-cell CDMA networks subject to the constraint that the
steady state signal-to-interference ratio (SIR) exceeds a pre-
designed threshold for each node. An unresolved technicality
is that an upper bound on pmax, required for the validity of
a key result, viz., [1, Lemma 2], has not been characterized.
In practice as well, an upper bound pmax is invariably set
on the instantaneous transmit power either by the cell phone
provider or by the cell phone user. As a result, the controller
output is subject to a saturation nonlinearity, and is therefore
liable to wind-up. In this paper, we describe a method to
synthesize an anti-windup controller to allocate the transmit
powers across the network so that the input-output stability
of the cellular network is maintained in the face of saturation
constraints on the mobile transmit power.

For simplicity, we shall consider a single cell network. The
system description is as follows (see Fig. 1). The base station
receives data from N children over time-varying wireless
channels. The uplink transmit power for the i-th mobile node
is pi ∈ [0, pmax]. The corresponding signal received at the
base station is xi = hipi where hi ∈ (0, 1) is the slowly
time-varying channel gain. The SIR of mobile i at the base
station is thus given by

γi =
Lhipi∑

j,j 6=i

hjpj + σ2
,
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Fig. 1. (i): Cellular network has one base station per cell; a mobile node
transmits data to only one base station. (ii) The Nyquist plot of a Zames-
Falb multiplier m(·) = δ(·) + h(·). [2] uses the Zames-Falb multipliers to
improve the performance of the system shown in (iii).

where L > 1 is the spreading gain of the network and
σ2 > 0 is the variance of the background noise. The cost
function Ci(pi) of the i-th mobile is strictly convex and
continuously differentiable, and can be represented as the
difference between a strictly convex pricing function of the
transmit power pi (e.g., the battery consumption) and a
strictly concave utility function denoting the willingness of
the mobile i to increase γi. The optimization problem can
now be stated as follows:

min
p

N∑
i=1

Ci(pi) s. t. γi ≥ γi, 0 ≤ pi ≤ pmax ∀i, (1)

where p
.= [p1 p2 . . . pN ]T , γi is the target SIR for the

mobile i, and pmax is chosen sufficiently high so that pi(t) ≤
pmax ∀t. Let

A
.=


h1 −h2

γ1
L . . . −hN γ1

L

−h1
γ2
L h2 . . . −hN γ2

L
...

... . . .
...

−h1
γN

L −h2
γN

L . . . hN

 (2)

b
.= [γ1

σ2

L
. . . γN

σ2

L
]T (3)

Ω .= {p ∈ RN : Ap ≥ b, pi ∈ [0, p∗] ∀i}.

Then, the optimization problem given by (1) is recast as

min
p

N∑
i=1

Ci(pi) subject to p ∈ Ω. (4)
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[1] has derived a decentralized solution p∗ to the above
optimization problem, and has used well known passivity
theory results to prove the global asymptotic stability of the
resulting network. Such controllers are liable to windup if an
upper bound pmax is pre-specified on the transmit power. In
this paper, we assume that the mobiles have no access to each
other’s state. We propose a decentralized scheme in which
the mobiles themselves synthesize the required stabilizing
anti-windup controller. We also facilitate the largest possible
class of dynamic nonlinear controllers that ensures the strict
passivity of the base station if it chooses to implement a
certain feedback structure, viz., a convolution operator acting
on a repeated memoryless monotone nonlinearity.

II. NOTATION AND BACKGROUND RESULTS

A. Notation and Definitions

Our notation mostly follows [3], [4], [5], and [6]. The
causal truncation PT of a function f is defined as PT f(t) =
f(t) for all t ≤ T and zero otherwise. The extended space
L2e comprises all functions f having the property that the
causal truncation PT f ∈ L2 for all finitely valued T . We
say that the projection (f(x))+x is active if it is zero-valued,
and inactive otherwise. We denote i-th row of a matrix A
as rowi(A). A feedback system ẋ = f(x, u), y = h(x) is
said to be passive if there exists a continuously differentiable
positive semi-definite function, i.e. a storage function, V (x)
such that

V̇ =
∂V

∂x
f(x, u) ≤ uTh(x) ∀x, u.

The system y = h(t, u) is passive if uT y ≥ 0 ∀u.
A multiplier is a convolution operator such as, e.g., the
Popov multipliers, the Zames-Falb multipliers, and the RC
multipliers [7], [8], [9].

Definition 1: [monotone nonlinearity]
The class NM of monotone nonlinearities consists of all
memoryless mappings N : Rn 7→ Rn such that:

1) N is the gradient of a convex real-valued function; and
2) there exists C ∈ R+ s.t. ‖N(x)‖ ≤ C‖x‖ ∀x ∈ L2.

The class N .= {N ∈ NM |N(0) = 0} and the class Nodd
.=

{N ∈ N|N(x) = −N(−x) ∀x}. �
Definition 2: [Zames-Falb multipliers]

MZF of Zames-Falb multipliers denotes the class of con-
volution operators, either continuous-time or discrete-time,
such that the impulse response of an M ∈ MZF is of the
form

m(·) = g δ(·) + h(·) with ‖h‖1 < g,

where g, h(·) ∈ R. �
Remark 1: A multiplier preserves positivity of a NM

nonlinearity if and only if it is in MZF [9], [5]. �

B. Background Results

Lemma 1: (Lemma 3.1 of [1])
If Ω is nonempty, the optimization problem given by (3) has
a unique global minimum. �
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Fig. 2. Block-diagram decomposition of the passivity-based power alloca-
tion mechanism presented in [1] and [2]. Exogenous inputs u1 and u2 are
set to 0 and b respectively, where the choice of b is as per the base station
administrator. The feedback nonlinearity f(·) is repeated monotone single-
input single-output (SISO). [2] synthesizes a dynamic feedback nonlinearity
at the base station by multiplying the output of f(·) by a Zames-Falb
multiplier M(s).

Lemma 2: (Lemma 3.2 of [1])
If θ .=

∑
j

γj/(γj+L) < 1 and if pmax is chosen sufficiently

large, then Ω is nonempty and every p satisfying Ap ≥ b
satisfies p > 0. Furthermore, Ω is empty if θ ≥ 1. �

The above two results have been used by [1] to synthesize
the decentralized power control algorithms as follows. If
θ < 1, Lemma 2 establishes an optimal solution p∗ to the op-
timization problem given by (3). Furthermore, it establishes
that p∗ is componentwise positive if pmax is large enough.
It may be seen that p∗ minimizes the Lagrangian

L(p, λ) .=
∑
i

Ci(pi)− λT (Ap− b). (5)

Since A is full-rank, λ is unique. Let q .= ATλ, r
.=

diag(pi)q. Then, (5) is recast as

L(p, λ) .=
∑
i

(Ci(pi)− ri)− λT b, (6)

with p∗ satisfying dC(p)
dp |p=p∗ − q = 0. Define the convex

user and network problems as

user i: min
ri

Ci(ri/qi)− ri, ri ≥ 0 (7)

network: min
p

∑
i

−ri log(pi), p ∈ Ω. (8)

[1] shows that there exist p, q, r with ri = piqi such that ri
solves the user i problem and p solves the network problem
so that p is the unique solution to the optimization problem
given by (3). As shown in [1], a primal update algorithm is
as follows:

q = AT f(Ap), (9)

Σi : ṗi = −ki
(
dCi
dpi
− qi

)
with ki > 0, (10)
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Fig. 3. (i): A prerequisite for the stability results established in [1] is that
controller output yc does not exceed pmax, which is left uncharacterized.
In practice, an upper bound pmax is invariably imposed on yc. The shaded
block represents a saturation nonlinearity that captures this constraint. (ii)
A block diagram representation of the single cell after incorporating our
proposed two degrees-of-freedom anti-windup controller.

where f(Ap) .= [ψ1(row1(Ap)) . . . ψK(rowK(Ap))]T , and
the user-specific ψi(ζ) is memoryless monotone continuous
and zero-valued if its argument is negative-valued. Let us
refer to this feedback system as S1. A block diagram
representation of S1 is shown in Fig. 2(i). The question
of interest to [2] and [1] is as follows: how should a user
choose K and f so that S1 is input-output stable? In brief,
the passivity based solution to the input-output stability
problem, as derived by [2], is as follows. Let S2 denote
the system obtained from S1 by inserting a Zames-Falb
multiplier at the output of f(·). Then, the passivity theorem
readily establishes the following result.

Theorem 1: Consider S2 with M ∈ MZF . Then, S2 is
input-output stable at the Nash equilibrium p∗. �

An unresolved technicality is that an upper bound on
pmax, required for the validity of Lemma 2, is not specified
in the literature thus far. In practice as well, an upper bound
pmax is invariably set on the instantaneous transmit power
either by the cell phone provider or by the cell phone user.
As a result, the output up of the plant G is subject to a
saturation nonlinearity (see Fig. 3 (i)), and is therefore liable
to wind-up. The connection between saturation and wind-
up is well discussed in [10], [11], [12], and [13]. We now
describe a method to synthesize an anti-windup controller,
shown in Fig. 3(ii), to allocate the transmit powers across
the network so that the input-output stability of the cellular
network is maintained in the face of saturation constraints
on the mobile transmit power.

III. STABILIZING ANTI-WINDUP CONTROLLER

We now present a method to synthesize a stabilizing anti-
windup controller. The structure of a two degrees-of-freedom
anti-windup controller, as considered in [14], [15], and [16],
is shown in Fig. 3(ii). We shall consider a special case
thereof, as shown in Fig. 4(i). The objective behind including
the pre-filter W1(s) is to ensure that the transfer function
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Fig. 4. (i): Block-diagram decomposition of our passivity-based power
allocation solution incorporating an anti-windup controller. Exogenous
inputs u1 and u2 are set to 0 and b respectively, where the choice of
b is as per the base station administrator. The feedback nonlinearity f(·)
is repeated monotone single-input single-output (SISO). We synthesize a
dynamic feedback nonlinearity at the base station by multiplying the output
of f(·) with a multiplier from the class MRS . (ii): We build on the class
MRS of multipliers to establish the input-output stability of the shown
feedback interconnection, which is a recast form of the system shown in
(i).

from the reference signal u1 to the controlled output y1
matches the desired model, if any, exactly at the steady-state.
Output of the controller implemented at every mobile node
is subject to the saturation nonlinearity sat(·) as follows. Let
(yc)i and (up)i denote the input and the output, respectively,
for the i-th controller saturation nonlinearity. Then,

(up)i
.=

 pmin if (yc)i < pmin,
(yc)i if pmin < (yc)i < pmax,
pmax else.

Pulling out this multi-input multi-output (MIMO) satura-
tion nonlinearity and the base station nonlinearity f(·), the
system shown in Fig. 4(i) can be recast as the feedback
interconnection, shown in Fig. 4(ii), of the linear time-
invariant T (s) and the nonlinearity Φ .= diag(sat(·), f(·)),
where

T (s) .=
[
T11(s) T12(s)
A 0

]
,

T11(s) .= −Λ(s)K2(s),
T12(s) .= −Λ(s)K1(s)W1(s)ATM(s),

Λ(s) .= W2(s) [I +K2(s)W2(s)]−1
.

Following [6], stability of such a feedback system can be
ascertained using the composite integral quadratic constraint
(IQC) for Φ. Let us now introduce the notion of a repeated
monotone nonlinearity.

Definition 3: [repeated SISO monotone]
The class of repeated SISO monotone nonlinearities is the
subclass NRS of N with element N ∈ NRS of the form

N(ζ) .= [φ(ζ1) φ(ζ2) . . . φ(ζp)]T ∀ζ ∈ Rp (11)
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where φ ∈ N , φ SISO. A shorthand notation for (11) is
N = diag(φ). The class NRS

odd is defined by replacing N in
the definition of NRS by Nodd. �

Observe that the MIMO saturation nonlinearity belongs to
NRS , as does the base station nonlinearity f . We shall now
note down background results needed to derive the required
composite IQC.

Definition 4: [sector]
We say that H is a sector [k1, k2] operator if it holds that
〈Hx− k1x,Hx− k2x〉 ≥ 0 for all finite energy x. �

Definition 5: [similarly ordered, unbiased]
The sequences {x} and {y} of real scalars are said to be
similarly ordered if x(k) < x(l) implies y(k) ≤ y(l) for all
k, l ∈ Z. They are said to be unbiased if x(k)y(k) ≥ 0 ∀k.
They are said to be similarly ordered and symmetric if they
are unbiased and, in addition, the sequences {|x|} and {|y|}
are similarly ordered. �

Definition 6: [associated matrix, kernel]
Given a bounded possibly time varying linear operator M :
`p2 → `p2, z = My is given as

z(k) .=
∞∑

l=−∞

mk,l y(l) ∀k ∈ Z,

where mk,l ∈ Rp×p ∀k, l; the associated matrix M̃ of M
is defined as

M̃
.=



. . . . . . . . . . . . . . . . . . . . .

. . . m−1,−1 m−1,0 m−1,1 m−1,2
. . . . . .

. . . m0,−1 m0,0 m0,1 m0,2
. . . . . .

. . . m1,−1 m1,0 m1,1 m1,2 m1,3
. . .

. . . m2,−1 m2,0 m2,1 m2,2 m2,3
. . .

. . . . . . . . . . . . . . . . . . . . .


.

The symbol mij , i, j ∈ Z denotes the (i, j)-th scalar element
of the matrix M̃ ; for example, m00 denotes the upper left
entry in the p × p matrix m0,0 and m−p,0 denotes the
upper left entry in the p × p matrix m−1,0. If mk,l =
mk+n,l+n ∀k, l, n ∈ Z then M̃ is said to be block Toeplitz
and M is said to be a time invariant operator or, alternatively,
a convolution operator. For a bounded possibly time varying
continuous time linear operator M : L2 → L2

z(t) =
∫ ∞
−∞

m(t, τ)y(τ) dτ ∀t ∈ R.

the kernel m(t, τ) ∈ Rp×p is the counterpart of mk,l. In the
continuous time case, M is called a time invariant operator
or, alternatively, a convolution operator if m(t, τ) = m(t+
ν, τ + ν) ∀t, τ, ν ∈ R. For a convolution operator M , a
shorthand notation for m(t, τ) and mi,j is m(t − τ) and
m(i − j), respectively with m(t) and m(k) denoting the
respective impulse response. �

Definition 7: [hyperdominance, dominance]
An operator M : `2 → `2 is said to be doubly dominant if

the elements mij of its associated matrix have the following
properties.

mii ≥
∞∑

j=−∞,j 6=i

|mij |, mii ≥
∞∑

j=−∞,j 6=i

|mji| ∀i

If, in addition, it also holds that

mij ≤ 0, ∀i 6= j

then M said to be doubly hyperdominant. For an operator
M : L2 → L2, these notions are defined in terms of its kernel
in an analogous manner with integrals suitably replacing
sums. �

Definition 8: [multipliers]
MRS

odd denotes the class of MIMO convolution operators,
either continuous or discrete, such that the impulse response
of an M ∈MRS

odd is of the form

m = g δ − h (12)

where g, h(·) ∈ Rp×p satisfy

gii ≥
n∑

i=1,i6=j

|gij |+
n∑
i=1

‖hij‖1 ∀i = 1, 2, . . . , n (13)

gii ≥
n∑

j=1,j 6=i

|gij |+
n∑
j=1

‖hij‖1 ∀i = 1, 2, . . . , n. (14)

The subclass MRS is obtained by further stipulating

gij ≤ 0 ∀i 6= j, hij(·) ≥ 0 ∀i, j. (15)

Under the restriction

g, h are Hermitian matrices, (16)

the subclass MD (MD
odd) is derived from MRS (MRS

odd).
�

Lemma 3: [5, Willems]
Let M : `2 → `2 be a bounded linear operator.
Then, 〈x,My〉 is nonnegative for all similarly ordered un-
biased (similarly ordered symmetric unbiased) sequences
{x}, {y} ∈ `2 if and only if M is doubly hyperdominant
(doubly dominant). �

Theorem 2: [17, Kulkarni-Safonov]
A bounded linear operator M mapping `p2 into `p2 [or L2

into L2] preserves positivity of every N ∈ NRS (N ∈
NRS
odd) if and only if its associated matrix [kernel] is doubly

hyperdominant (doubly dominant). Furthermore, a bounded
convolution operator M mapping L2 into L2, or mapping `p2
into `p2, preserves positivity of every N ∈ NRS (N ∈ NRS

odd)
if and only if M ∈MRS (M ∈MRS

odd). �
Now, note that the feedback nonlinearity f(·) in the system

S2 is a NRS nonlinearity. Then, it follows that Theorem 1
and Theorem 2 together prove the following result.

Theorem 3: Consider S2 with M ∈ MRS . Then, S2 is
input-output stable at the Nash equilibrium p∗. �

Theorem 3 shows that the network can be input-output
stable at the Nash equilibrium p∗ even when we allow the
inputs and the outputs of the dynamic nonlinearity at the
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Fig. 5. Our proposed transmit power control scheme to ensure the input-
output stability of a single cell network. A dynamic nonlinear controller
is implemented at the base station. A dynamic nonlinear controller is
implemented at each mobile. The nonlinearity at each mobile stems from
the saturation limits encountered in practice. We assume that the mobiles
have no access to each other’s states and facilitate the largest possible class
of the triplet (M1,M2,W1) that ensures the input-output stability of the
closed-loop system at the Nash equilibrium.

base station to be correlated provided that the multiplier M
operating on the output of the repeated scalar nonlinearity
f(·) belongs to the class MRS . Note that the multipliers
in MRS are full-block while the multipliers considered in
Theorem 1 are repeated scalars. Theorem 3 furnishes the
largest possible class of nonlinear dynamic controllers for
the base station that ensures the input-output stability of the
network at the Nash equilibrium.

Using these results, we shall now synthesize the required
anti-windup control. A block diagram of the closed-loop
system comprising the base station and the mobile users
implementing our proposed solution is shown in Fig. 5
wherein we have applied the loop-shift transformation (see
[4] and [7]) to transform a repeated sector (0, 1] saturation
nonlinearity into a repeated sector (0,∞] nonlinearity Ξ. Let
us denote the class of such systems as S3. The task on-hand
is to choose (M1,M2,W1) so that the closed-loop system is
input-output stable. We assume that the mobile users do not
have access to each other’s states and yet need to implement
a decentralized transmit power controller. Therefore, M1 and
W1 must be diagonal. Then, the passivity theorem yields the
required result as follows.

Theorem 4: Consider the class S4 derived from S3 by
constraining M1,M2, and W1 as follows. M1 is a diagonal
Zames-Falb multiplier, W1 is a diagonal passive linear time-
invariant operator, and M2 ∈MRS . Then, S4 is input-output
stable. �

Proof: We will prove that the mapping from y2 to
Ap is strictly passive. Then, the passivity theorem (see [4,
Chapter 6]) can readily be used to prove the input-output
stability after observing that Theorem 3 has established that
the mapping from uf to y2 is strictly passive. Note that
Ξ ∈ NRS . By Theorem 2, a diagonal Zames-Falb multiplier
preserves its positivity. Therefore, M1Ξ is strictly passive.

By assumption, W1 is passive. Therefore, by the passivity
theorem, the mapping from ẽ1 to y1 is strictly passive.
Therefore, since A is a constant matrix, the mapping from
y2 to Ap is passive. Note that f ∈ NRS with the graph of
the repeating scalar nonlinearity confined to sector (0,∞].
Hence, by Theorem 3, the mapping from uf to y2 is strictly
passive. Hence, by the passivity theorem, S4 is input-output
stable. QED. �

IV. DISCUSSION

We have followed the Zames-Falb multiplier based ap-
proach to synthesize the anti-windup mechanism as opposed
to, say, the piecewise quadratic Lyapunov function based
approach adopted in [14] because the regions over which
the underlying system is affine grows exponentially with
the number of mobile users. It is known that the Zames-
Falb multipliers do not preserve the incremental positivity
of memoryless monotone nonlinearities (see [18]). This
technicality implies that if the set points (such as b, pmin, and
pmax) are varied arbitrarily, the deviations in y1 and y2 are
no longer guaranteed to be small in the systems belonging
to the set {S2,S3,S4}. However, if the set-point varies only
by a constant term, the Zames-Falb multipliers do indeed
preserve the incremental positivity of memoryless monotone
nonlinearities (see [18]). As a result, the condition on pmax
in Lemma 2 does not have serious consequences on the input-
output stability provided that pmax is a constant. A number
of interesting problems arise if the matrix A is time-varying,
and are the focus of our current research.

V. CONCLUSION

We have built on the passivity-based techniques proposed
by [1] and [2] to control the transmit power of mobile nodes
in single cell CDMA networks. We have proposed a solution
to ensure the input-output stability of the network in the face
of transmit power constraints. Our solution uses the Zames-
Falb multipliers (see [8], [9], [17]) to ensure passivity of
the subsystems at the base station and the mobiles. Then, a
straightforward application of the passivity theorem realizes
a class of dynamic nonlinear controllers that guarantees the
required input-output stability.
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