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Abstract— The paper studies the problem of simultaneous
design of reliable filter and fault detector for a class of
linear continuous-time systems with bounded disturbances and
nonzero constant reference inputs. An H∞ filter and two
detection weighting matrices are designed simultaneously. The
filter is designed for both fault free and faulty cases, and by
manipulating the steady-state values of the filter states and
the measured outputs with the detection weighting matrices,
a residual is then generated, through which the sensor out-
age faults can be detected effectively. A convergent iterative
algorithm based on linear matrix inequality (LMI) is given to
obtain the solutions. A numerical example is given to illustrate
the effectiveness of the proposed methods.

I. INTRODUCTION

During the last decades, the H∞ filtering approach, has

received considerable attention recently due to its wide

applicability when robustness is imposed, where the main

objective is to minimize the H∞ norm from the process

noise to the estimation error [1]-[3], and in [4]-[6], the

parameter dependent Lyapunov method is adopted which

reduces conservatism in some extent.

Note that all the above filtering approaches are based on

the assumption that the sensors can provide uninterrupted

signal measurement. In practice, however, contingent failures

are possible for all sensors in a system, which may result in

a large degree of filter performance degradation and, more

importantly, possible hazard. In [7]-[9], reliable filters have

been designed considering both the normal and sensor faulty

cases, however, the sensor faults have not been detected in

the process of filtering.

In this paper, in addition to designing a reliable H∞

filter against sensor outage faults, a detection scheme is

also designed simultaneously to detect sensor outage faults.

Different from classical detection methods as stated in [10]-

[14], the residual in this work is generated through manip-

ulating the steady-state values of the filter states and the
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measured outputs with two weighting matrices, which is used

to detect sensor outage faults. Based on an analysis of the

simultaneous reliable filtering and fault detection problem,

some performance indexes are derived. These indexes reflect

the design constraints on the transfer functions from noises

and constant reference inputs to the state estimation error and

the residual signals for both normal and faulty cases. Further,

the GKYP lemma proposed recently in [15], is also used in

this paper to give solutions to some of the indexes. At last,

an iterative LMI approach is given to solve the simultaneous

reliable H∞ filtering and fault detection problem.

Notation: For a matrix A, AT , A∗, A⊥ denote its trans-

pose, complex conjugate transpose and orthogonal comple-

ment, respectively. The Hermitian part of a square matrix

M is denoted by He(M) := M + M∗. The symbol Hn

stands for the set of n×n Hermitian matrices. σmax(G) and

σmin(G) denote maximum and minimum singular values of

the transfer matrix G, respectively.

II. PROBLEM FORMULATION

A. System model

Consider a stable linear time-invariant system with known

reference input described by

ẋ(t) = Ax(t) + Bw(t) + Brr0

y(t) = Cx(t) + Dw(t)

z(t) = Lx(t) (1)

where x(t) ∈ Rn is the state, w(t) ∈ Rnw is the bounded

disturbance input satisfying w(t)T w(t) ≤ w̄2, r0 ∈ Rp is

a known constant reference input, y(t) ∈ Rm denotes the

measured output, z(t) ∈ Rq is the vector to be measured.

All matrices are of compatible dimensions. We assume that

matrix L and Br are known and that the time-invariant

parameters gathered in the matrix M̄ =

[

A B

C D

]

are

unknown but belong to a given convex bounded polyhedral

domain Dc. That is each uncertain matrix in this domain

may be written as an unknown convex combination of Np

given extreme matrices M̄1, M̄2, . . . , M̄Np
such that

Dc := {M̄(λ) : M̄(λ) =
∑Np

l=1 λlM̄l, λl ≥ 0,
∑Np

l=1 λl =
1}

The filter is of the form:

˙̂x(t) = Af x̂(t) + Bfy(t)

ẑ(t) = Cf x̂(t) (2)

where the vector x̂(t) is the filter state vector, Af , Bf ,

and Cf are real matrices of appropriate dimensions to be
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determined. The order of the filter nf is restricted to be

equal to the system n.

The dynamics of (1) and (2) can be rewritten as the following

augmented system:

ξ̇(t) = Āξ(t) + B̄w(t) + B̄r (3)

e(t) = C̄ξ(t) (4)

where e(t) = z(t) − ẑ(t) is the estimation error, ξ(t) =
[

x(t)T x̂(t)T
]T

, B̄r =

[

Brr0

0

]

, and

[

Ā B̄

C̄ 0

]

=





A 0 B

BfC Af BfD

L −Cf 0





Remark 1: The reference input r0 described in (1) is a

known constant, which is general in practice [16].

B. Fault model

In this paper, the following type sensor fault model is

adopted.

Definition 1 (Sensor outage fault): when sensor outage

faults occur, the sensor signals of systems are given by

ysi(t) = Fiy(t), i = 1, . . . , Ns (5)

where F
,
i s are diagonal matrices defined as

Fi = diag
[

Fi1 Fi2 . . . Fim

]

(6)

where Fik = 1 if the kth sensor is fault free, and Fik = 0 if

the kth sensor is of outage.

Consider the ith faulty model, system (1) becomes

ẋ(t) = Ax(t) + Bw(t) + Brr0

y(t) = FiCx(t) + FiDw(t)

z(t) = Lx(t) (7)

and (3) becomes

ξ̇(t) = ĀFi
ξ(t) + B̄Fi

w(t) + B̄r (8)

e(t) = C̄Fi
ξ(t) (9)

where B̄r =

[

Brr0

0

]

, and

[

ĀFi
B̄Fi

C̄Fi
0

]

=





A 0 B

BfFiC Af BfFiD

L −Cf 0





Denote Gew(jω), Gewi
(jω) as the transfer functions from

noise inputs w(t) to estimation errors e(t) for fault free case

(3)-(4) and the ith faulty case (8)-(9), respectively. The H∞

filtering problem for systems with sensor outage faults is to

find a guaranteed estimation performance index γ > 0 and

γf > 0 such that

supσmax(Gew(jω)) < γ (10)

for fault free case, and

supσmax(Gewi
(jω)) < γf (11)

for the ith faulty case, where Gew(jω) = C̄(jωI −
Ā)−1B̄,Gewi

(jω) = C̄Fi
(jωI − ĀFi

)−1B̄Fi
.

Then, the reliable H∞ filtering problem can be formulated

as to design a filter (2) such that the augmented error system

(3)-(4) and (8)-(9) are both stable and satisfy performance

indexes (10)-(11).

In addition to designing a reliable filter, another task of

this work is to design a detector to detect the sensor outage

faults whenever they occur. To attain the detection task, the

following preliminaries are essential.

C. Preliminaries for fault detection

Solve differential equations (3) and (8) respectively, we

have

lim
t→∞

ξ(t) = −Ā−1B̄r +

∫ ∞

t0

eĀ(t−τ)B̄w(τ)dτ (12)

for fault free case, and

lim
t→∞

ξ(t) = −Ā−1
Fi

B̄rFi
+

∫ ∞

t0

eĀFi
(t−τ)B̄Fi

w(τ)dτ (13)

for the ith faulty case.

Design two weighting matrices V1 ∈ R1×m, V2 ∈ R1×n,

and define the residual r(t) as

r(t) = V1y(t) + V2x̂(t) (14)

which is used to detect the sensor outage faults.

Consider both the fault free and faulty cases, (14) becomes

r(t) = Cvξ(t) + Dww(t) (15)

for the fault free case, where Cv =
[

V1C V2

]

, Dw = V1D,

and

r(t) = CvFi
ξ(t) + DwFi

w(t) (16)

for the ith faulty case, where CvFi
=

[

V1FiC V2

]

, DwFi
=

V1FiD.

Notice that for the fault free system model

| lim
t→∞

r(t)| ≤ |CvĀ−1B̄r|

+ lim
t→∞

|Cv

∫ t

t0

eĀ(t−τ)B̄w(τ)dτ + Dw|

≤ |CvĀ−1B̄r| + ‖Grw‖peakw̄ (17)

and for the ith faulty case

| lim
t→∞

r(t)| ≥ |CvFi
Ā−1

Fi
B̄r|

− lim
t→∞

|CvFi

∫ t

t0

eĀFi
(t−τ)B̄Fi

w(τ)dτ + DwFi
|

≥ |CvFi
Ā−1

Fi
B̄r| − ‖Grwi

‖peakw̄ (18)

where ‖Grw‖peak and ‖Grwi
‖peak of (17) and (18) are

peak-to-peak gains of the transfer matrices from disturbance

w(t) to residual r(t) for both the fault free and faulty cases

[17] which should be minimized to attenuate the effects of

disturbances, and

Grw(jω) = Cv(jωI − Ā)−1B̄ + Dw,

Grwi
(jω) = CvFi

(jωI − ĀFi
)−1B̄Fi

+ DwFi
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The bounds of the peak-to-peak gains are formulated as

‖Grw(jω)‖peak < ζ (19)

‖Grwi
(jω)‖peak < ζf (20)

for both fault free and faulty cases.

To discriminate the fault free and faulty system models,

the following conditions should be satisfied

|CvĀ−1B̄r| + ‖Grw‖peakw̄ + ‖Grwi
‖peakw̄

< |CvFi
Ā−1

Fi
B̄r|, i = 1, . . . , Ns (21)

In order to satisfy condition (21), the following performance

indexes are to be satisfied

σmax(Gn(jω)) < β, for ω = 0 (22)

σmin(GrFi
(jω)) > βf , for ω = 0, i = 1, . . . , Ns (23)

‖Grw(jω)‖peak < ζ, (24)

‖Grwi
(jω)‖peak < ζf , i = 1, . . . , Ns (25)

where Gn(jω) = Cv(jωI − Ā)−1B̄r, GrFi
(jω) =

CvFi
(jωI − ĀFi

)−1B̄r.

D. Problem formulation

Summarize the statements stated in the last subsection,

the simultaneous design of reliable H∞ filter and fault

detector can be expressed as to design a reliable filter (2)

and weighting matrices V1, V2 through solving the following

optimization problem: Given proper scalars β, ζ, ζf , γ, γf

according to practical requirements, solve

max βf

s.t. (10) − (11), (22) − (25) (26)

In the following section, LMI conditions are presented for

conditions (10)-(11), (22)-(25), and the design task is illus-

trated in details.

III. SIMULTANEOUS DESIGN OF RELIABLE FILTER AND

FAULT DETECTOR

A. Conditions for fault free case

Firstly, consider the fault free system model, combining

(3)-(4) and (15), we have

ξ̇(t) = Āξ(t) + B̄w(t) + B̄r

e(t) = C̄ξ(t)

r(t) = Cvξ(t) + Dww(t) (27)

a) Conditions for performance indexes (22)

Firstly, the following Lemma 1 is given which is essential

for the main theorems of this paper.

Lemma 1: Given the same matrices Ā, B̄r, Cv , Dw as stated

in (27), the following statements are equivalent:

i) There exist matrix variables P1, Q1, Af , Bf , Cf , Df , V1,

V2, X =

[

X11 X12

⋆ X22

]

and positive scalar β such that





−Q1 P1 0
⋆ C∗

vCv C∗
vDw

⋆ ⋆ D∗
wDw − β2



 < He





−I

Ā∗

B̄∗



X





0
−I

0





∗

(28)

holds.

ii) There exist matrix variables Pa1, Qa1, Afe, Bfe, Cfe,

Dfe, V1, V2e, Xa =

[

Y −N

−N N

]

and positive scalar β such

that




−Qa1 Pa1 0
⋆ C∗

avCav C∗
avDw

⋆ ⋆ D∗
wDw − β2



 < He





−I

Ā∗
a

B̄∗
a



Xa





0
−I

0





∗

(29)

holds, where Āa =

[

A 0
BfeC Afe

]

, B̄a =

[

A

BfeC

]

, Cav =
[

V1C V2e

]

. Afe = (X∗
12)

−1X22AfX−1
22 X∗

12, Bfe =
−(X∗

12)
−1X22Bf , Cav =

[

V1C V2e

]

, V2e =
−V2X

−1
22 X∗

12.

Theorem 1: Consider the fault-free system model (27), let

real matrices Ā ∈ R
2n×2n, B̄r ∈ R

2n×1, Cv ∈ R
1×2n,

a symmetric matrix Π1 =

[

1 0
0 −β2

]

be given. Then, the

inequality condition

σmax(Gn(jω)) < β, for ω = 0 (30)

holds if there exist matrix variables Y, N,A,B, Hermitian

matrices P̄1l =

[

P1l P2l

⋆ P3l

]

, Q̄1l =

[

Q1l Q2l

⋆ Q3l

]

∈ Hn

satisfying Q̄1l > 0, and
















−Q1l −Q2l P1l − Y P2l + N 0 0
⋆ −Q3l P ∗

2l + N P3l − N 0 0
⋆ ⋆ Φ1l Φ2l Y Brr0 C∗

l V ∗
1

⋆ ⋆ ⋆ A + A∗ −NBrr0 V ∗
2

⋆ ⋆ ⋆ ⋆ −β2 D∗V ∗
1

⋆ ⋆ ⋆ ⋆ ⋆ −I

















< 0, l = 1, . . . , Np (31)

where Φ1l = Y Al−BCl +(Y Al−BCl)
∗,A = NAf ,Φ2l =

−A + (−NAl + BCl)
∗,B = NBf .

Proof: From Lemma 2 in Appendix, it can be con-

cluded that condition (45) is equivalent to (30). Let R =
[

0 −I 0
]

, applying Lemma 4 in Appendix, it can be seen

that performance index (30) is satisfied if




−Q̄1 P̄1 0
⋆ C∗

vCv C∗
vDw

⋆ ⋆ D∗
wDw − β2



 < He(





−I

Ā∗

B̄∗



X





0
−I

0





∗

)

(32)

holds, from Lemma 1, X can be chosen as X =
[

Y −N

−N N

]

without introducing any conservatism. After

some matrix manipulation and using Schur complement, (32)

becomes








−Q̄1 P̄1 − X 0 0
⋆ Ā∗X + XĀ XB̄ C∗

v

⋆ ⋆ −β2 D∗
w

⋆ ⋆ ⋆ −I









< 0 (33)

with P̄1 :=

[

P1 P2

⋆ P3

]

, Q̄1 :=

[

Q1 Q2

⋆ Q3

]

. Multiplying each

inequality in (31) by the uncertain parameter λl and then
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evaluating the sum from l = 1, . . . , Np produces (33) with

P1 =

Np
∑

l=1

λlP1l, P2 =

Np
∑

l=1

λlP2l, P3 =

Np
∑

l=1

λlP3l,

Q1 =

Np
∑

l=1

λlQ1l, Q2 =

Np
∑

l=1

λlQ2l, Q3 =

Np
∑

l=1

λlQ3l

Then we have that inequalities in (31) provide sufficient

conditions for performance index (30), which completes the

proof.

B. Conditions for faulty cases

Secondly, consider the ith faulty model, combining (8)-(9)

and (16), we have

ξ̇(t) = ĀFi
ξ(t) + B̄Fi

w(t) + B̄r

e(t) = C̄Fi
ξ(t)

r(t) = CvFi
ξ(t) + DwFi

w(t) (34)

a) Conditions for performance index (23)

Consider system model (34), the following Theorem 2 pro-

vides inequality conditions for performance index (23).

Theorem 2: Consider the ith faulty system model (34), let

real matrices ĀFi
∈ R2n×2n, B̄Fi

∈ R2n×1, CvFi
∈ R1×2n,

a symmetric matrix Π2 =

[

−1 0
0 β2

f

]

be given. Then, the

inequality condition

σmin(GrFi
(jω)) > βf , for ω = 0 (35)

holds, if there exist matrix variables Y, N,A,B, Hermitian

matrices P̄ i
1l =

[

P i
1l P i

2l

⋆ P i
3l

]

, Q̄i
1l =

[

Qi
1l Qi

2l

⋆ Qi
3l

]

∈ Hn

satisfying Q̄i
1l > 0, and













−Qi
1l −Qi

2l P i
1l − Y P i

2l + N −Y ℓ

⋆ −Qi
3l P i∗

2l + N P i
3l − N Nℓ

⋆ ⋆ Υi
1 Υi

2 Υi
4

⋆ ⋆ ⋆ Υi
3 Υi

5

⋆ ⋆ ⋆ ⋆ Υi
6













< 0, l = 1 . . . , Np (36)

Υi
1 =Y Al − BFiCl + (Y Al − BFiCl)

∗ − C∗

l FiV
∗

1 V10FiCl

− C∗

l FiV
∗

10V1FiCl + C∗

l FiV
∗

10V10FiCl,

Υi
2 = −A + (−NAl + BFiCl)

∗ − C∗

l FiV
∗

1 V20

− C∗

l FiV
∗

10V2 + C∗

l FiV
∗

10V20,

Υi
3 =A + A∗ − V ∗

2 V20 − V ∗

20V2 + V ∗

20V20,

Υi
4 =Y Brr0 + (ℓ∗Y Al − ℓ∗BFiCl)

∗

Υi
5 = − NBrr0 −A∗ℓ

Υi
6 =ℓ∗Y Brr0 + (ℓ∗Y Brr0)

∗ + β2
f

where A = NAf , B = NBf , and ℓ =
[

ℓ1 . . . ℓn

]T
∈

R
n×1 is a vector that should be determined beforehand.

Proof: Similar to Theorem 1, let R =

[

0 −I

[

−ℓ

0

]]

, it

can be concluded that performance index (35) is satisfied if

the following inequality is feasible

Ω − Θ∗Θ < 0 (37)

where Ω =









−Q̄i
1 P̄ i

1 − X −X

[

ℓ

0

]

⋆ XĀFi
+ Ā∗

Fi
X φ1

⋆ ⋆ φ2









, φ1 =

XB̄r +Ā∗

Fi
X

[

ℓ

0

]

, φ2 = B̄∗
rX

[

ℓ

0

]

+(B̄∗
rX

[

ℓ

0

]

)∗+β2
f ,Θ =

[

0 V1FiC V2 V1(I − Fi)fi

]

.

As is known to all, there exists Θ0 =
[

0 V10FiC V20 0
]

such that (Θ − Θ0)
∗(Θ − Θ0) ≥ 0

holds, it can be concluded that if

Ω − Θ∗Θ + (Θ − Θ0)
∗(Θ − Θ0) < 0 (38)

holds, (37) readily holds, and on the other hand if (37) holds,

there always exists Θ0 = Θ such that (38) becomes (37), so

we have that (38) is equivalent to (37).

Similar to Theorem 1, here X can be chosen as X =
[

Y −N

−N N

]

without introducing any conservatism. Since

inequalities in (36) are all linear dependent on P i
1l, P

i
2l, P

i
3l,

Qi
1l, Q

i
2l, Q

i
3l, Al, Bl, Cl, again, following the same lines of

that for Theorem 1, we have if each inequality condition in

(36) holds, (38) then holds, which completes the proof.

Remark 2: Vector ℓ in inequality (36) should be determined

beforehand which can be obtained through heuristic method.

An algorithm will be given later in this section to determine

the initial values V10, V20 of V1, V2. After ℓ, V10, V20 be

determined, inequality (36) becomes LMI.

b) Conditions for performance indexes (24)-(25) and (10)-

(11)

Lemma 5: Consider system (34), the peak-to-peak gain of

Grwi
(jω) is bounded by

‖Grwi
(jω)‖peak < ζf (39)

if there exist matrix variables 0 < N < Y , A,B, λf > 0, µf

and ζf such that the following inequalities hold




φi
3l φi

4l Y Bl − BFiDl

⋆ A + AT + λfN −NBl + BFiDl

⋆ ⋆ −µfI



 < 0,

l = 1, . . . , Np (40)









λfY −λfN 0 CT
l FiV

T
1

⋆ λfN 0 V T
2

⋆ ⋆ (
ζf

w
− µf )I DT

l FiV
T
1

⋆ ⋆ ⋆
ζf

w
I









> 0,

l = 1, . . . , Np (41)

where φi
3l = Y Al −BFiCl +(Y Al −BFiCl)

T +λfY, φi
4l =

−A + (−NAl + BFiCl)
T − λfN,A = NAf ,B = NBf

Proof: Considering the inequality conditions for the peak-

to-peak gain of a transfer matrix as stated in [17], let the

lyapunov variable matrix X be chosen as X =

[

Y −N

−N N

]

,

the conclusion is immediate.
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Lemma 6: Consider system (34), the inequality condition

σmax(Gewi
(jω)) < γf ,

holds, if there exist variables 0 < N < Y , A,B, satisfying
[

Y −N

⋆ N

]

> 0









φi
5l φi

6l Y Bl − BFiDl LT

⋆ A + AT −NBl + BFiDl −CT
f

⋆ ⋆ −γfI 0
⋆ ⋆ ⋆ −γfI









< 0,

l = 1, . . . , Np (42)

where φi
5l = Y Al − BFiCl + (Y Al − BFiCl)

T ,A =
NAf , φi

6l = −A + (−NAl + BFiCl)
T ,B = NBf .

Proof: Using the Bounded Real Lemma (BRL) and restrict-

ing X =

[

Y −N

−N N

]

, it is immediate.

Remark 3: Let Fi = I Lemma 5 and Lemma 6 viz., let

Fi = I of LMIs (40)-(41), and (42), then the LMI conditions

in Lemma 5 and Lemma 6 also provide sufficient conditions

for performance indexes (24) and (10), respectively.

C. Solutions

Till now, inequality conditions for performance indexes

(10)-(11) and (22)-(25) have been formulated in Theorems

1-2 and Lemmas 5-6, respectively. Summarily, we have the

following theorem.

Theorem 3: Consider system model (1), there exist a filter

(2) and weighting matrices V1, V2 such that the fault free

augmented system model (27) and the faulty augmented

model (34) satisfy performance indexes (10)-(11) and (22)-

(25) if inequality conditions (31), (36), and (40)-(42) for

i = 0, 1, . . . , Ns, l = 1, . . . , Np hold, where F0 = I .

Proof: Combining Theorems 1-2,and Lemmas 5-6, it is

immediate.

The following Algorithm 1 is proposed which gives an

integrated design process for the appropriate solutions of the

filter parameters Af , Bf , Cf and weights V1, V2.

Algorithm 1 Let ǫ0 be a given large enough constant

specifying a stop criterion of this algorithm.

• Step 1) Minimize a1γ + a2ζ + a3α + a4β with weights

a1, a2, a3, a4 ∈ R subject to LMI constraints (31), (40)-

(41), and (42) with Fi = I . The optimal solution is

denoted as V 0
1opt

, V 0
2opt

, and γopt, ζopt, αopt, βopt.

• Step 2) Choose γ > γopt, ζ > ζopt, α > αopt, β > βopt,

V 1
1 = V 0

1opt
, V 1

2 = V 0
2opt

. Given small enough scalars

γf , ζf , αf , maximize βf subject to LMI constraints

(31), (36), and (40)-(42) for i = 0, 1, . . . , Ns, l =
1, . . . , Np with F0 = I . Let V v

1 = V v−1
1opt

, V v
2 = V v−1

2opt
,

where V v−1
1opt

and V v−1
2opt

are the solutions of the (v−1)th
optimization.

If βv0 < ǫ0 for some V v0

1opt
, V v0

2opt
, denote V v0+1

1 =

V v0

1opt
, V v0+1

2 = V v0

2opt
and repeat the above optimiza-

tion, else continue.

• Step 3) When βv
f ≥ ǫ0 for any v in Step 2), stop.

After weighting matrices V1, V2 are determined, the resid-

ual r(t) is obtained as

r(t) = V1y(t) + V2x̂(t)

Consider the fault free case, the steady-state value of r(t)
satisfies

|r(t)| ≤ σmax(Gn(j0)) + ‖Grw‖peakw̄

where |r(t)| denotes the absolute value of r(t). Define the

threshold rth as

rth := sup |r(t)| = σmax(Gn(j0)) + ‖Grw(jω)‖peakw̄

the sensor outage faults can be detected according to the

following logic rule
{

|r(t)|steady ≤ rth no alarm
|r(t)|steady > rth alarm

(43)

where |r(t)|steady denotes the steady-state value of the

residual output.

IV. NUMERICAL EXAMPLE

This section gives a numerical example to illustrate the

effectiveness of our approach. Considering the following

system model

ẋ(t) =





0 1 0
−1 −2 0
0 0 −2 + ρ



x(t) +





0.1
0

0.2



w(t) +





1
0
0



 r0

y(t) =

[

1 0 1
1 1 0

]

x(t) +

[

0.1
0.1

]

w(t)

z(t) =
[

1 1 2
]

x(t) (44)

where |ρ| ≤ 0.2. Assume that the reference input r0 = 0.4,

the disturbance ‖w(t)‖ ≤ 0.3, and ‖w(t)‖ :=
√

w(t)T w(t).
The initial values of the weighting matrices V10, V20

are obtained through Step 1 in Algorithm 1 as V10 =
[

−1.0742 0.4370
]

, V20 =
[

0.9251 0.2656 1.9013
]

.

Applying Algorithm 1, finally, the filter parameters and the

weighting matrices are obtained as

Af =





−0.9202 −1.0884 5.6471
−0.1792 −0.8514 −0.8780
−0.4229 −0.0449 −2.8528



 ,

Bf =





0.8732 0.6728
−0.2500 −0.3228
0.1913 0.4360



 ,

Cf =
[

0.5424 0.4010 1.8906
]

,

V1 =
[

−1.1997 1.7089
]

,

V2 =
[

−0.0866 −0.7312 0.7336
]

with the performance index γ = 0.6, γf = 0.8, and β =
0.3, βf = 0.4050. Matrix ℓ is chosen beforehand as ℓ =
[

−0.6 0.2 0.1
]T

.

To illustrate the simulation results, assume that the dis-

turbance w(t) = 0.3sin(t). When sensor 1 is of outage at

t = 50s, the residual output is shown in Fig. 2(a), and if
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sensor 2 is of outage instead of sensor 1, the residual output

is shown in Fig. 2(b).

Through the threshold design approach proposed in Sec-

tion III, the threshold is determined as rth = 0.0680 which

is denoted by the dashed lines in Fig. 2(a, b). From Fig. 2(a,

b), it can easily be formulated that either sensor 1 or senor 2

is of outage, it can be detected according to logic rule (43).

0 50 100 150
0

0.2

0.4

0.6

0.8

1

(a)
0 50 100 150

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

Fig. 1. Residual outputs for different cases.

V. CONCLUSIONS

In this paper, the problem of simultaneous reliable H∞

filtering and fault detection problem for linear continuous-

time systems with bounded disturbances and nonzero con-

stant reference inputs has been investigated. The considered

system models are modeled via multiple modes, namely,

fault free case and faulty cases. The numerical example has

illustrated the effectiveness of the proposed approach.

VI. APPENDIX

Lemma 2: (Generalized KYP Lemma [15]) Given system

matrices (A,B, C, D), and a symmetric matrix Π, the fol-

lowing statements are equivalent:

i) The finite frequency inequality

[

G(jω)∗ I
]

Π

[

G(jω)
I

]

< 0, for all |ω| ≤ ̟ (45)

where G(jω) = C(jωI − A)−1B + D.

ii) There exist Hermitian matrices P, Q ∈ Hn satisfying

Q > 0, and

[

A B

I 0

]∗ [

−Q P

P ̟2Q

] [

A B

I 0

]

+

[

C D

0 I

]∗

Π

[

C D

0 I

]

< 0 (46)

Lemma 3: (Projection Lemma [18]) Let Γ,Λ,Θ be given.

There exists a matrix F satisfying ΓFΛ+(ΓFΛ)T +Θ < 0
if and only if the following two conditions hold

Γ⊥ΘΓ⊥
T

< 0, ΛT⊥

ΘΛT⊥
T

< 0

The following lemma provides an alternative condition to

(46) by introducing a multiplier R through the projection

lemma, which is similar to that of [19]. Firstly, define J ∈
R

(2n+nz), H̄ ∈ R(2n+nz)×(nw+nz), and L̄ ∈ R(2n+nz)×n as

J :=





I 0
0 I

0 0



 , H̄ :=





0 0
C∗ 0
D∗ I



 , L̄ :=





−I

A∗

B∗





Lemma 4: Let Hermitian matrix variables P, Q ∈ Hn and

Q > 0, R ∈ Rn×(2n+nz). Let NR be the null space of R.

The following statements are equivalent:

i) The condition in (46) holds and

N∗

R(J

[

−Q P

P ̟2Q

]

J∗ + H̄ΠH̄∗)NR < 0 (47)

ii) There exists X ∈ Rn×n such that

J

[

−Q P

P ̟2Q

]

J∗ + H̄ΠH̄∗ < He(L̄XR) (48)

Proof. Notice that the null space of L̄ is

[

A∗ I 0
B∗ 0 I

]

, and

using Lemma 3, we have that ii) is equivalent to i).
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