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Abstract— This paper investigates the use of wireless sensor
networks for estimating the location of an event that emits a
signal which propagates over a large region. In this context, we
assume that the sensors make binary observations and report
the event if the measured signal at their location is above a
threshold; otherwise they remain silent. Based on the sensor
binary beliefs we use 4 different estimators to localize the
event: CE (Centroid Estimator), ML (Maximum Likelihood),
SNAP (Subtract on Negative Add on Positive) and AP (Add
on Positive). The main contribution of this paper is the fault
tolerance analysis of the proposed estimators. Furthermore,
the analysis shows that SNAP is the most fault tolerant of
all estimators considered.

I. INTRODUCTION

Localization of the event position has been extensively

studied in the last 20 years using arrays of sensors for radar,

sonar and acoustic target tracking applications (see [1], [2],

[3] and references therein). A variety of techniques have

been proposed to solve the localization problem that can

be classified into 3 main categories: 1. DOA (Direction of

Arrival) 2. TDOA (Time Difference of Arrival) 3. Energy-

based. More recently, the use of a WSN (Wireless Sensor

Network) has been proposed to deal with a number of

environmental monitoring and tracking applications includ-

ing acoustic source localization, toxic source identification,

early detection of fires and so on [4], [5], [6]. This new

promising technology also comes with unique challenges

and constraints that have not been adequately addressed

by the existing methods: energy efficiency, network latency

and fault tolerance (see Collaborative Signal Information

Processing in [7]).

Sensor nodes are expected to be low-cost, simple devices

with limited resources (processing capabilities, memory, and

power). In this context, we decided to only consider esti-

mators that use binary data to localize the event. Binary is

the “easiest” problem a sensor node can solve by simply

comparing its measurement to a predefined threshold. Binary

decisions are also less sensitive to calibration mismatches

and varying sensor sensitivities. Moreover, using binary ob-

servations limits the bandwidth usage and conserves energy;

only single-bit information needs to be transmitted from the
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sensor nodes with positive observations for estimating the

event location.

In this paper we specifically address Fault Tolerance. The

simple nature of sensor nodes makes them extremely vulner-

able to faults. These faults can occur for a variety of reasons:

noise, energy depletion, environmental harsh conditions of

operation, software problems. These have been reported in

real experiments and can result in erroneous, unexpected

behavior (Byzantine faults). For example, the authors in

[8] report situations where a node would constantly detect

“false events” when its program board was overheated, or

scenarios in which nodes were programmed undetectably

in an incorrect manner which yielded Byzantine behavior.

Another source of faults is the network unreliability that can

result in a high percentage of dropped packets. These can

be attributed to the uncertain nature of the communication

medium, as well as collisions due to the dense deployment

of the sensor networks. Robustness to all kinds of faults is

essential for any estimation algorithm, so it can tolerate a

number of misbehaving nodes and a percentage of dropped

packets in the network. Fault tolerance has been studied

for event detection using sensor networks (see [9]). It has

been shown that a majority voting rule for detection provides

the desired robust behavior to a large percentage of faults.

For estimation, however, this problem has not received the

necessary attention.

The main contribution of this paper is the fault tolerance

analysis of 4 different estimators that only use binary data

from the sensor nodes to localize the event: CE (Centroid

Estimator), ML (Maximum Likelihood), SNAP (Subtract

on Negative Add on Positive) and AP (Add on Positive).

Specifically, we show that SNAP (and its variant AP) demon-

strates the desired robust behavior in the presence of a large

percentage of faults.

The paper is organized as follows. First, in Section II,

we present the model we have adopted and the underlying

assumptions. Then, in Section III, we provide the details of

the 4 different estimation algorithms. Section IV shows the

fault tolerance analysis of the proposed estimators. Section V

presents several simulation results. Finally, this paper con-

cludes with Section VI.
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II. MODEL

For the sensor network that estimates the position of an

event we are going to make the following assumptions:

1) A set of N sensor nodes is uniformly spread over a

rectangular field of area A. The nodes are assumed

stationary. The position of each node is denoted by

(xn, yn), n = 1, · · · , N and it is assumed that it is

known through the use of a combination of GPS and

localization algorithms.

2) A single source of the event is located according to a

uniform distribution at a position (xs, ys) inside A.

3) The source emits a continuous signal that propagates

uniformly in all directions and there are no environ-

mental changes throughout the propagation.

4) The event has been correctly detected by the net-

work. We assume that the sensor nodes have been

programmed with a common threshold T and they

become alarmed when their measurement exceeds this

threshold.

5) Only the alarmed sensors send a packet to the base

station (sink); the rest remain silent.

6) The network does not drop packets.

Assumptions 1, 2 and 5 are quite common and reasonable

for sensor networks. Assumption 3 defines a propagation

model that may be accurate for sources that emit sound

or electromagnetic waves, but it is not very accurate for

problems where an actual substance is released in the en-

vironment (for example in problems of environmental pollu-

tion). Regarding Assumption 4, readers are referred to [10]

or [11], where the detection problem in the context of WSN is

addressed. Finally, Assumption 6 may be a little restrictive in

the context of “unreliable” WSN. This assumption is relaxed

in Section V, where we show that with the exception of ML,

all other algorithms considered exhibit robust behavior even

when the network drops a significant number of packets (e.g.,

due to noise or collisions).

For this paper, we assume that the measured signal at the

source is c and as we move away from the source, the signal

is attenuated inversely proportional to the distance from the

source raised to some power α ∈ R
+ which depends on the

environment. As a result, the t-th sample measurement of

any sensor n located at (xn, yn) is given by

zn,t = sn + wn,t, (1)

for n = 1, · · · , N , t = 1, · · · ,M , where

sn =
c

1 + rα
n

, (2)

while rn is the radial distance from the source, i.e.,

rn =
√

(xn − xs)2 + (yn − ys)2 (3)

For the purposes of this paper wn,t is additive white Gaussian

noise, i.e. wn,t ∼ N(0, σ2
w) for n = 1, · · · , N and t =

1, · · · ,M .

Given the threshold T for any t, we define:

• Alarmed Sensor: Any sensor with zn,t ≥ T (positive

observation).

• Non-Alarmed Sensor: Any sensor with zn,t < T (neg-

ative observation).

Next, we define the Region of Influence (ROI), as the area

around the source location inside which a sensor node will

be alarmed with high probability. For the model of (2) the

ROI is a disc centered at the source location (see Fig. 1).

Finally, to define the Fault Model that we adopt in this

paper we assume that the sensor nodes that exhibit erroneous

behavior are randomly chosen and their original belief is

simply reversed as shown in the example of Fig. 1. When

applying the fault model, some sensor nodes that fall outside

the ROI become alarmed as a result of a fault and are shown

as false positives. Similarly, sensors that fall inside the ROI

become non-alarmed as a result of a fault and are shown as

false negatives.

ROI Rc

S

Fig. 1. A field with 200 randomly placed sensor nodes and a source
placed at position (25,25). Alarmed sensors are indicated on the plot with
red circles inside the disc around the source (ROI). 50 of the sensor nodes
exhibit faulty behavior and are indicated on the plot as false positives (red
squares outside disc) and false negatives (black squares inside disc).

III. BINARY ESTIMATORS

We investigate 4 different estimators for localizing the

event using only binary data: CE, ML, SNAP and AP. Below

we provide the details of each of these algorithms.

A. Centroid Estimator (CE)

The centroid of a finite set of points can be computed as

the arithmetic mean of each coordinate of the points. Let

(xn, yn), n = 1, · · · , P (P ≤ N ) denote the positions of all

alarmed sensor nodes. Then, the event location estimated by

CE is the centroid of these positions:

θ̂CE = [x̂s, ŷs] =

[

1

P

P
∑

n=1

xn,
1

P

P
∑

n=1

yn

]

(4)
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B. Maximum Likelihood

We define the indicator function for n = 1, · · · , N and

t = 1, · · · ,M :

In,t =

{

0, if zn,t < T

1, if zn,t ≥ T
(5)

thus, the sensor data can be represented as I =
{In,t : n = 1, · · · , N, t = 1, · · · , M}. The goal is to esti-

mate the source location θ = [xs, ys] using the collected

data I.

The Maximum Likelihood Estimator has the form:

θ̂ML = max
θ

log p(I | θ) (6)

where the log-likelihood function is given by:

log p(I | θ) =
N

∑

n=1

M
∑

t=1

In,t × log

[

Q

(

T − sn(θ)

σw

)]

+(1 − In,t) × log

[

1 − Q

(

T − sn(θ)

σw

)]

(7)

where Q(x) = 1√
2π

∫ ∞

x
e−

t
2

2 dt is the complementary distri-

bution function of the standard Gaussian distribution. Also,

sn(θ) is the signal that would have been measured by sensor

n if the source was at location θ and there was no noise

(given by (2)). The derivation details for the case where

σ2
w = 1,∀n, ∀t can be found in [12]. Assuming an arbitrary

σ2
w is a natural extension of this work.

For the purposes of this paper we use a discrete version

of the algorithm described above. Specifically, we divide the

area in G × G equal size grid-cells and evaluate the log-

likelihood function G2 times using (7) assuming the source is

located at the center of each cell (i, j). The maximum of the

resulting matrix points to the event location. From now on,

for the rest of the paper we will refer to this discrete version

of the algorithm as simply ML (Maximum Likelihood).

C. SNAP (Subtract on Negative Add on Positive)

The SNAP algorithm can be described in 4 steps: 1.

Grid Formation 2. Region of Coverage 3. Likelihood Matrix

4. Maximization. Next, we provide the main idea of the

algorithm by explaining the various steps:

1) Grid Formation: The entire area is divided into a

grid. The number of cells is a tradeoff between estimation

accuracy and complexity. Each sensor node is associated with

a cell (i, j) based on its position (depending on the resolution

a cell may contain multiple sensors or no sensors at all).

2) Region of Coverage (ROC): For each sensor node

we define a neighborhood of cells around the sensor node

location that we call the Region of Coverage. Inside the cells

of its ROC, each sensor node outputs a value based on its

binary observation (+1 on positive observation and -1 on

negative). For the model in (2), it can be shown that setting

ROC ≡ ROI produces the best estimation results when

using SNAP. For the purposes of this paper, the ROC of

a sensor n is approximated by a square region around the

center of the cell (i, j) as shown in Fig. 2.

+1+1+1+1+1

+1+1+1+1+1

+1+1+1+1+1

+1+1+1+1+1

+1+1+1+1+1

-1-1-1-1-1

-1-1-1-1-1

-1-1-1-1-1

-1-1-1-1-1

-1-1-1-1-1

Alarmed Sensor n Non-alarmed Sensor n

Fig. 2. Region of Coverage (ROC)

3) Likelihood Matrix L: For each cell of the area grid we

calculate the likelihood of a source occurring in the particular

cell by summing the ROC of the respective sensor nodes. In

other words, we add on positive observations and subtract

on negative. Thus, the elements of the likelihood matrix are

obtained by

L(i, j) =
N

∑

n=1

M
∑

t=1

bn,t(i, j), for i, j = 1, · · · , G, (8)

where,

bn,t(i, j) =







+1, if zn,t ≥ T AND (i, j) ∈ ROCn

−1, if zn,t < T AND (i, j) ∈ ROCn

0, otherwise
(9)

and ROCn represents the region of coverage of sensor node

n. Fig. 3 shows an example of the resulting likelihood matrix

after adding and subtracting the contributions of 8 sensors

using SNAP.

-1-1-1-1-1

-1-1-1-1-1

-10000+1

-1000-10-1-1-1

-1-1-1-2-1+1+10+10-1-1

-1000+1+3+2+1+10-1-1

-10-1-10+2+1+1+10-1-1

-10-1-1-1+1-1-1-1-1-2-1

-10-1-1-1+1-1000-1

+10000-2-1-1-1-1

-1-1-1-1-1

-1-1-1-1-1

-10000+1

-1000-10-1-1-1

-1-1-1-2-1+1+10+10-1-1

-1000+1+3+2+1+10-1-1

-10-1-10+2+1+1+10-1-1

-10-1-1-1+1-1-1-1-1-2-1

-10-1-1-1+1-1000-1

+10000-2-1-1-1-1

Event

Fig. 3. L resulting from SNAP with 8 sensor nodes, 3 of which are alarmed
and are shown in solid color. The event is correctly localized in the grid
cell with the maximum value +3.

4) Maximization: The maximum of this likelihood matrix

points to the estimated event location. If more than one

elements of the L matrix have the same maximum value, the

estimated event position is the centroid of the corresponding

cell centers.
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D. Add on Positive (AP)

This algorithm is similar to SNAP in the sense that we

define a “likelihood matrix” but in this matrix we only add

+1 contributions from the alarmed sensors inside the ROI of

the source. The purpose of this algorithm is to demonstrate

the value of using the negative information from non-alarmed

sensors when using SNAP.

IV. FAULT TOLERANCE

In this section we investigate the behavior of the proposed

estimators in the presence of faults. We start with a test case.

A. Test case

Consider the 1-D scenario displayed in Fig. 4 where the

line is divided into 20 equal cells. The event is located at

position (xs = 9.5) and we try to estimate its position using

4 sensor nodes which are located as shown in Fig. 4(a). Two

of the sensor nodes fall inside the source ROI (which for this

example it is assumed that it spans 9 cells) and are alarmed

(xn = 5.5, 13.5), the other two fall outside and are non-

alarmed (xn = 4.5, 14.5). According to the SNAP algorithm

described in Section III-C, the alarmed sensor nodes provide

+1 contribution in the cells inside their ROC (it is assumed

that ROC=ROI), while the non-alarmed sensors provide −1
contribution. The sum of the contributions in each cell i gives

the likelihood L(i) of the source occurring in that cell and

is plotted over the corresponding cells in Fig. 4(a) above

the sensor locations. The maximum of this likelihood plot

occurs in the cell where the source is located. In fact, in

the absence of faults all 4 estimation algorithms correctly

estimate the event position.

Now consider a fifth sensor node which is faulty and

behaves according to the fault model described in Section II

(i.e., it is non-alarmed when positioned inside the source ROI

and alarmed everywhere else). Fig. 4(b) shows the estimated

source location using the 4 different algorithms, as we vary

the position of the faulty sensor node. From the plot, it is

evident that only SNAP displays a fault tolerant behavior for

all positions of the faulty sensor node; from Fig. 4(a) it is

clear that the maximum of L(i) cannot change no matter

where we place the faulty sensor node. ML fails to estimate

the source location when the faulty sensor node is close to the

event (false negative), while both CE and AP fail to estimate

the event location when the faulty sensor node is far away

(false positive). Next, we present some further insight in the

operation of each algorithm in the presence of a fault.

B. CE

CE as seen by the previous example, is especially sensitive

to the presence of false positives that can appear at random

locations away from the source because of noise or malfunc-

tion due to overheating. Since the algorithm essentially treats

all alarmed sensor nodes with equal weight, as seen by (4),

it is especially sensitive to false positives that occur far away

from the true event location. These can result in large errors

when calculating the centroid of the alarmed sensor nodes’

positions.

C. ML

ML is extremely sensitive to false negatives. Even a

single faulty sensor node inside the ROI of the source

can completely throw off the estimation results. This is a

direct result of the construction of the likelihood matrix

of ML using (7). Note that for source positions θ close

to the sensor, the term Q
(

T−sn(θ)
σw

)

→ 1 and as a result

log
[

1 − Q
(

T−sn(θ)
σw

)]

→ −∞. If for some reason (e.g.,

due to a fault), a sensor fails to detect an event that is very

close to it (false negative), then (1− In,t) = 1 and as result

the faulty sensor has a very large negative contribution to

the likelihood function at all points near itself which (by

assumption) is also the point where the source is located. On

the other hand, a healthy sensor near the source contributes

only In,t × log Q
(

T−sn(θ)
σw

)

→ 0 which is not sufficiently

large to counteract the negative contribution of the faulty

sensor. In fact, since the negative contribution of the faulty

sensor is unbounded, even several well behaving sensors

cannot correct the error.

D. SNAP

The fault tolerant behavior of SNAP results from 2 main

observations: First, to construct the likelihood function at a

source location θ it uses only “local” information in the sense

that it uses only the data from the sensors that are inside the

ROI of θ. Therefore, false positives away from the source

location have no influence on the estimation results. Second,

and most important, it bounds the “damage” that a faulty

sensor can cause to the likelihood function by allowing a

sensor to subtract at most one from the corresponding cells

in the likelihood matrix. Furthermore, unlike ML, a single

healthy sensor close to the source can correct the error in

the likelihood function caused by the faulty sensor.

E. AP

As a variant of SNAP, AP inherits the fault tolerant behav-

ior of SNAP, however, because it “ignores” the information

provided by non-alarmed sensors its overall performance (in

terms of estimation accuracy) is inferior to the performance

of SNAP. At this point it is worth pointing out the results

of Fig. 4(b) are a little “unfair” for AP since the one

dimensional example has only 4 well behaving sensors. As

indicated in the simulation results, for a more realistic two-

dimensional case, AP outperforms both the ML and CE for

a fairly large range of faulty sensors.

V. RESULTS

For all subsequent experiments we use a square 100×100
sensor field with 200 sensor nodes where the sensor readings

are given by:

zn,t =
c

r2
n

+ wn,t (10)

for n = 1, · · · , N , t = 1, · · · ,M . Furthermore, we assume

wn,t to be white Gaussian noise N(0, 1), M = 1, c = 3000,

and T = 5. Finally, the RMS error reported is the average

over 500 Monte-Carlo simulations. For all experiments we

use Matlab.
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Fig. 4. 1-D example with 5 sensor nodes, one of which is faulty. The source
is correctly estimated using SNAP for all positions of the faulty sensor node.
ML fails to estimate the source position when the faulty sensor node is close
to the source (false negative). CE fails to estimate the source position when
faulty sensor is far away (false positive).

A. Fault Tolerance

For the fault tolerance analysis we use the fault model in

Section II. The faulty sensor nodes are chosen randomly at

the beginning of each experiment and their original beliefs

are simply reversed (see Fig. 1). Fig. 5 displays the estima-

tion error as a function of the number of faulty sensors in the

field. In the absence of faults, both ML and SNAP display

the best performance compared to the other estimators (CE

and AP). The same cannot be stated, however, as we start

introducing faulty sensor nodes. In fact both CE and ML are

very sensitive to sensor faults and lose accuracy continuously

as the number of faults increase. This is especially evident

for ML. SNAP however, as it can be observed from these

plots, displays a fault tolerant behavior and loses very little

in accuracy even when 50 out of the 200 sensor nodes exhibit

erroneous behavior. In fact, its fault tolerance improves when

we increase the percentage of alarmed sensor nodes in the

field. The intelligent construction of the likelihood function

makes individual sensor faults unimportant in estimating

the correct result. Finally, AP displays similar fault tolerant

behavior to SNAP but the estimation error is larger than

SNAP to begin with (even in the absence of faults). Note

however, that for a range of faulty sensors from 10 to 80,

AP exhibits better performance than the ML and CE.

B. Dropped Packets

In this section we relax the assumption that the network

does not drop any packets and investigate the performance of

the four algorithms if packet drops are allowed. Recall that

for the network we investigate, alarmed sensors send a packet

to the sink while non-alarmed sensors remain silent. Thus,

0 10 20 30 40 50 60 70 80 90 100
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Number of faulty sensor nodes
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o

r

SNAP
CE
ML
AP

Fig. 5. Estimator performance vs. number of faulty sensor nodes

if the sink does not receive a packet from a node, it assumes

that the node is in the non-alarmed state. Therefore, to

investigate the effect of dropped packets we change the fault

model to allow only alarmed sensors to randomly flip their

state (false negatives) with probability Pd which corresponds

to the probability of dropping a packet.

In Fig. 6 we investigate the performance of the estimators

in the presence of false negatives. ML, as expected from

the analysis in Section IV, loses accuracy immediately in

the presence of false negatives. SNAP is the best estimator

for values of Pd ≤ 0.3. For higher percentages of dropped

packets, CE becomes the best option. This is due to the

increasing number of false negatives that “exterminate” the

small number of correctly alarmed sensor nodes left in the

field when using SNAP. AP does not have this problem,

so it displays a similar robust behavior to false negatives

as CE. For the CE and AP, even one correctly alarmed

sensor can localize the source at its own location since both

algorithms completely neglect the non-alarmed sensor nodes

in computing the event location.

C. Board Overheating

For symmetry, in this section we also investigate the effect

of the board overheating which, as reported in [8], caused

the nodes to report false events. In Fig. 7 we investigate the

performance of the estimators in the presence of false posi-

tives. We simulate the presence of false positives by varying

the probability Po that a non-alarmed sensor node produces

a positive observation. CE displays the worst performance

in the presence of false positives; this is expected from the

analysis in Section IV. SNAP on the other hand, displays the

most robust behavior in the presence of these overheating

faults. The importance of the non-alarmed sensor nodes for

SNAP in correcting false positives, is also evident by looking

at the large difference in performance between SNAP and AP.

ML steadily loses performance, and for values of Po ≥ 0.4
it becomes even worse than AP.
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Fig. 6. Estimator performance vs. probability of dropped packets Pd
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Fig. 7. Estimator performance vs. probability of overheating Po

VI. CONCLUSIONS

This paper investigates the fault tolerance of 4 different

estimators that can be applied for localizing an event in a

sensor network given only binary data from the sensor nodes:

CE (Centroid Estimator), ML (Maximum Likelihood), SNAP

(Subtract on Negative Add on Positive) and AP (Add on

Positive). Out of the four, SNAP has a superior performance

in terms of estimation accuracy in the presence of faults.
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