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Abstract— This paper discusses the infinite horizon stochastic
Nash games with state-dependent noise. After establishing the
asymptotic structure along with the positive semidefiniteness
for the solutions of the cross-coupled stochastic algebraic
Riccati equation (CSARE), recursive algorithm for solving the
CSARE is derived. As a result, it is shown that the proposed
algorithm attains linear convergence and the reduced-order
computations for sufficiently small parameter ε. As another
important feature, the high-order approximate strategy that
is based on the iterative solutions is proposed. Using such
strategy, the degradation of the cost functional is established.
Moreover, it is shown that the exponentially mean-square stable
is guaranteed. Finally, in order to demonstrate the efficiency of
the proposed algorithm, numerical example is given.

I. INTRODUCTION

The stochastic control problems governed by Itô’s differ-

ential equation have become a popular research topic in a

past decade. It is demonstrated that such system appears

in the flexible structure comprising a mass-spring system

[1]. Recently, stochastic H∞ control problem with state-

and control dependent noise was considered [1], [2]. It has

attracted much attention and has been widely applied to

various fields. Particularly, the stochastic H2/H∞ control

with state-dependent noise has been addressed [3]. Although

this approach is based on two-players Nash game, uniqueness

of the solution has not been investigated. It is well-known

that it is very hard to find the condition of such uniqueness.

Recently, linear quadratic Nash games and their appli-

cations have been widely investigated in many literatures.

Particularly, the linear quadratic Nash games and related

topics for weakly coupled large-scale systems have been

discussed in [6], [7], [8], [9]. These results are based on

the deterministic systems. Very recently, the stochastic Nash

games for weakly-coupled large scale systems have been

tackled [10]. Specifically, the uniqueness of the solution has

been proved in the field of the stochastic systems for the

first time. However, the considered algorithms for solving the

cross-coupled stochastic algebraic Riccati equation (CSARE)

consist of Newton’s method and two fixed-point iteration.

Therefore, many tedious algebra and the CPU time are

needed. Moreover, the eligible proof of the exponentially

mean-square stable under the proposed strategy has not been

considered.
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In this paper, the stochastic Nash games governed by

Itô differential equations with state-dependent noise are

discussed. Specifically, for solving CSARE, this paper fo-

cuses on the development of a new numerical algorithm in

which fast convergence and less procedure are both attained.

First, the uniqueness and boundedness of the solution to

the CSARE and their asymptotic structure are investigated.

Second, the recursive algorithm for solving the CSARE is

given. Since the proposed numerical computation is based on

recursive algorithm [6], linear convergence and the reduced-

order computation are both guaranteed for sufficiently small

parameter ε. It should be noted that since the stochastic Nash

games have not been addressed in [6], the considered cross-

coupled algebraic Riccati equation is quite different. Thus,

a new recursive algorithm should be formulated. Moreover,

the reduction of the CPU time and the direct algebraic

manipulation with reduced-order dimension can be attained

by computing the new recursive algorithm as compared

with [10]. As another important features, the high-order

approximate strategy that is based on the iterative solutions is

proposed. As a result, the degradation of the cost functional

using the proposed strategy set is shown. Furthermore, it

is rigorously shown for the first time that the closed loop

stochastic systems with the proposed high-order strategy

are the exponentially mean-square stable. Finally, in order

to demonstrate the efficiency of the proposed algorithm, a

numerical example is included.

Notation: The notations used in this paper are fairly standard.

Superscript T denotes the matrix transpose. In denotes an

n×n identity matrix. block diag denotes a block diagonal

matrix. || · || denotes the Euclidean norm of a matrix. E
denotes the expectation. ⊗ denotes the Kronecker product.

vecM denotes the column vector of matrix M . λ(M) denotes

the eigenvalue of a matrix M .

II. STOCHASTIC NASH GAMES

Consider linear time-invariant weakly-coupled large-scale

systems.

dx(t) = [Aεx(t) + B1εu1(t) + B2εu2(t)]dt

+A1εx(t)dw(t), x(0) = x0, (1)

where

x(t) :=

[

x1(t)
x2(t)

]

,

Aε :=

[

A11 εA12

εA21 A22

]

, A1ε :=

[

A111 εA112

εA121 A122

]

,

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrC06.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 5016



B1ε :=

[

B11

εB21

]

, B2ε :=

[

εB12

B22

]

.

xi(t) ∈ Rni, i = 1, 2 represent the i-th state vectors.

ui(t) ∈ Rmi , i = 1, 2 represent the i-th control inputs.

w(t) ∈ R is a one-dimensional standard Wiener process

defined in the filtered probability space [1], [2], [3], [4]. Here,

ε denotes a relatively small positive coupling parameter that

relates the linear system with the other subsystems.

The cost function for each strategy subset is defined by

Ji(u1, u2, x(0))

= E

∫ ∞

0

[

xT (t)Qiεx(t) + uT
i (t)Riiui(t)

]

dt, (2)

where i = 1, 2, Qiε = QT
iε ≥ 0,

Q1ε =

[

Q111 εQ112

εQT
112 εQ122

]

, Q2ε =

[

εQ211 εQ212

εQT
212 Q222

]

,

Rii = RT
ii > 0 ∈ Rmi×mi .

It should be noted that in this study, the strategies ui(t) :=
Fiεx(t) are restricted as the linear feedback strategies [5].

As an essential assumption, stabilizability is introduced

[3], [4].

Definition 1: The stochastically controlled system gov-

erned by the Itô’s equation dx = (Fx + Gu)dt + G1xdw1,

x(0) = x0 is called stabilizable in the mean-square sense

if there exists a feedback law u = Kx such that for

any x0, the closed-loop system dx = (F + GK)xdt +
G1xdw1, x(0) = x0 is asymptotically mean-square stable,

i.e., limt→∞ ExT (t)x(t) = 0, where K is a constant matrix.

For the matrices Aε, Bjε, j = 1, ... , N and A1ε, the set

FN is defined as FN :=

{

(F1ε, ... , FNε) | The closed-loop

system dx(t) = [Aε +
∑N

p=1 BpεFpε]x(t)dt+A1εx(t)dw(t)

is asymptotically mean-square stable.

}

.

The stochastic Nash equilibrium strategy pair (u∗
1, u∗

2),
u∗

i (t) := F ∗
iεx(t) is defined such that it satisfies the following

conditions [10].

J1(F
∗
1εx, F ∗

2εx, x(0)) ≤ J1(F1εx, F ∗
2εx, x(0)), (3a)

J2(F
∗
1εx, F ∗

2εx, x(0)) ≤ J2(F
∗
1εx, F2εx, x(0)), (3b)

for all x(0) and for all (F1ε, F2ε) that satisfy (F ∗
1ε, F2ε) ∈

F2, (F1ε, F ∗
2ε) ∈ F2, and (F ∗

1ε, F ∗
2ε) ∈ F2.

The stochastic Nash games are given below [10].

Lemma 1: Suppose real symmetric matrices Piε exist.

Gi(ε, P1ε, P2ε)

= Piε (Aε − SjεPjε) + (Aε − SjεPjε)
T

Piε + AT
1εPiεA1ε

−PiεSiεPiε + Qiε = 0, (4)

where i, j = 1, 2, i �= j, Siε := BiεR
−1
ii BT

iε.

The strategy set (F ∗
1ε, F ∗

2ε) is defined by

u∗
i (t) := F ∗

iεx(t) = −R−1
ii BT

iεPiεx(t), i = 1, 2. (5)

Then, (F ∗
1ε, F ∗

2ε) ∈ F2 and this strategy set denote stochas-

tic Nash equilibrium. Furthermore, Ji(F
∗
1ε, F ∗

2ε, x(0)) =
xT (0)Piεx(0).

III. ASYMPTOTIC STRUCTURE OF CSARE

Firstly, in order to obtain the strategy set based on nu-

merical solutions, the asymptotic structure of CSARE (4) is

established. Since Aε, A1ε, Siε and Qiε include the term of

the parameter ε, the solution Piε of CSARE (4)-if it exists-

should contain the parameter ε. By considering this fact, the

solution Piε of CSARE (4) is assumed to have the following

structure.

P1ε =

[

P111 εP112

εP T
112 εP122

]

, P2ε =

[

εP211 εP212

εP T
212 P222

]

. (6)

Substituting the matrices Aε, A1ε, Siε, Qiε and Piε into

CSARE (4), letting ε = 0, and partitioning CSARE (4), the

following reduced-order stochastic algebraic Riccati equation

(SARE) is obtained, where P̄iii, i = 1, 2 is the 0-order

solutions of CSARE (4) as ε = 0.

P̄iiiAii + AT
iiP̄iii + AT

1iiP̄iiiA1ii

−P̄iiiSiiiPiii + Qiii = 0, (7a)

P̄ijj(Ajj − SjjjP̄jjj) + (Ajj − SjjjP̄jjj)
T P̄ijj

+AT
1jjP̄ijjA1jj + Qijj = 0, (7b)

P̄112(A11 − S111P̄111) + (A22 − S222P̄222)
T P̄112

+AT
122P̄112A122 + P̄111A12

+AT
111P̄111A112 − P̄111S212P̄222 + Q112 = 0, (7c)

P̄212(A11 − S111P̄111) + (A22 − S222P̄222)
T P̄212

+AT
122P̄212A122 + AT

21P̄222

+AT
121P̄222A122 − P̄111S112P̄222 + Q212 = 0, (7d)

where Siii := BiiR
−1
ii BT

ii , Sijj := BjjR
−1
ii BT

jj , S112 :=

B11R
−1
11 BT

21, S212 := B12R
−1
11 BT

22, i, j = 1, 2, i �= j.

The Nash equilibrium strategies for the stochastic large-

scale systems will be studied under the following basic

assumption.

Assumption 1: (Aii, Bii) is stabilizable, (
√

Qiii, Aii) is

observable.

Assumption 2:

inf
Kii

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ ∞

0

exp[(Aii − BiiKii)
T t]AT

1iiA1ii

exp[(Aii − BiiKii)t]dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< 1. (8)

Assumption 3: The matrices T11, T12 and T22 are nonsin-

gular, where Dii := Aii − SiiiP̄iii, i = 1, 2,

T11 := In1
⊗ DT

11 + DT
11 ⊗ In1

+ AT
111 ⊗ AT

111,

T12 := In2
⊗ DT

11 + DT
22 ⊗ In1

+ AT
122 ⊗ AT

111,

T22 := In2
⊗ DT

22 + DT
22 ⊗ In2

+ AT
122 ⊗ AT

122.
It should be noted that Assumptions 1 and 2 are standard

[6]. On the other hand, Assumption 3 seems to be conser-

vative. However, in order to guarantee the uniqueness of the

5017



stochastic algebraic Lyapunov equation (7), this assumption

should be needed.

If the above assumption holds, there exists the unique

positive definite stabilizing solution P̄iii > 0 of SARE (7a)

such that Dii is stable.

The asymptotic expansion of CSARE (4) for ε = 0 is

described by the following theorem.

Theorem 1: Under Assumptions 1-3, there exists a small

constant σ∗ such that for all ε ∈ (0, σ∗), CSARE (4) admits

a positive semidefinite solution P ∗
iε that can be expressed as

Piε := P ∗
iε = P̄i + O(ε), (9)

where

P̄1 =block diag
(

P̄111 0
)

,

P̄2 =block diag
(

0 P̄222

)

.

Proof: This can be proved by performing the implicit

function theorem on CSARE (4). It should be noted that

the present proof is discussed in detail as compared with

the existing one [10]. To do so, it is sufficient to show that

the corresponding Jacobian is nonsingular at ε = 0. The

derivative of the function Gi(ε, P1ε, P2ε) at matrix Piε is

given by

JP

=















∂[vecG1]
T

∂vecP111

∂[vecG1]
T

∂vecP112

· · · ∂[vecG1]
T

∂vecP222

∂[vecG2]
T

∂vecP111

∂[vecG2]
T

∂vecP112
· · · ∂[vecG2]

T

∂vecP222

...
...

. . .
...

∂[vecG6]
T

∂vecP111

∂[vecG6]
T

∂vecP112

· · · ∂[vecG6]
T

∂vecP222















=

















J11 0 0 0 0 0
* J22 0 0 0 *

0 0 J33 0 0 *

* 0 0 J44 0 0
* 0 0 0 J55 *

0 0 0 0 0 J66

















. (10)

where

J11 = J44 = T11, J22 = J55 = T12, J33 = J66 = T22,

Dii := Aii − SiiiP̄iii, i = 1, 2,

G1(ε, P1ε, P2ε) :=

[

G1 εG2

εGT
2 G3

]

= 0,

G2(ε, P1ε, P2ε) :=

[

G4 εG5

εGT
5 G6

]

= 0.

The Jacobian (10) can be expressed as

detJP =

6
∏

i=1

detJii. (11)

Obviously, Jii, i = 1, 2 are nonsingular under Assumption 3.

By the nonsingularity assumption of the matrix detJP �= 0,

i.e., JP is nonsingular at ε = 0. The conclusion of Theorem

1 is obtained directly by using the implicit function theorem.

IV. RECURSIVE ALGORITHM

In order to reduce the dimension of the calculation, a

new algorithm for solving CSARE (4) which is based on

the recursive algorithm is established.

It is assumed that the exact solutions can further decom-

pose into the parameter independent solution P̄ikl, kl =
11, 12, 22 and the error matrices Eikl. This is a standard

assumption in the theory of weakly-coupled systems [6].

Defining approximation errors as

Pi11 = P̄i11 + εEi11, Pi12 = P̄i12 + εEi12,

Pi22 = P̄i22 + εEi22, i = 1, 2. (12)

Substituting Eipq, pq = 11, 12, 22 of (12) into CSARE

(4) and using (7), the following expressions for the error

equations (13) are obtained.

Hi :=Eiii(Aii−SiiiP̄iii)+(Aii−SiiiP̄iii)
T Eiii

+AT
1iiEiiiA1ii+εhi =0, i = 1, 2, (13a)

H3 :=E122(A22−S222P̄222)+(A22−S222P̄222)
T E122

+AT
122E122A122

−E222S222P̄222−P̄222S222E222+εh3 =0, (13b)

H4 :=E211(A11−S111P̄111)+(A11−S111P̄111)
T E211

+AT
111E211A111

−E111S111P̄211−P̄211S111E111+εh4 =0, (13c)

H5 :=E212(A22−S222P̄222)+(A11−S111P̄111)
T E212

+AT
111E212A122+(A21−ST

112P̄111−S222P̄
T
212)

T E222

−E111(S112P̄222+S111P̄212)

+AT
121E222A122+εh5 =0, (13d)

H6 :=E112(A22−S222P̄222)+(A11−S111P̄111)
T E112

+AT
111E112A122+E111(A12−S111P̄112−S212P̄222)

−(ST
212P̄111+S222P̄

T
112)

T E222

+AT
111E111A112+εh6 =0, (13e)

where hi := hi(ε, E111, ... , E222), Hi :=
Hi(ε, E111, ... , E222), i = 1, ... , 6.

Hence, the following recursive algorithm for solving

CSARE (4) is given below.

E
(n+1)
111 (A11 − S111P̄111) + (A11 − S111P̄111)

T E
(n+1)
111

+AT
111E

(n+1)
111 A111

= −ε(P
(n)
112A21 + AT

21P
(n)T
112 )

+ε(P
(n)
111S212P

(n)T
212 + P

(n)
212ST

212P
(n)
111 + P

(n)
112S222P

(n)T
212

+P
(n)
212S222P

(n)T
112 ) + ε2(P

(n)
111S211P

(n)
211 + P

(n)
211S211P

(n)
111

+P
(n)
112ST

212P
(n)
211 + P

(n)
211S212P

(n)T
112 ) − ε(AT

121P
(n)T
112 A111

+AT
111P

(n)
112A121) − ε2AT

121P
(n)
122A121 + εE

(n)
111S111E

(n)
111

+ε(P
(n)
112ST

112P
(n)
111 + P

(n)
111S112P

(n)T
112 )

+ε3P
(n)
112S122P

(n)T
112 , (14a)

E
(n+1)
222 (A22 − S222P̄222) + (A22 − S222P̄222)

T E
(n+1)
222

+AT
122E

(n+1)
222 A122
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= −ε(P
(n)T
212 A12 + AT

12P
(n)
212)

+ε(P
(n)T
112 S111P

(n)
212 + P

(n)T
212 S111P

(n)
112 + P

(n)T
112 S112P

(n)
222

+P
(n)
222ST

112P
(n)
112) + ε2(P

(n)
122ST

112P
(n)
212 + P

(n)T
212 S112P

(n)
122

+P
(n)
122S122P

(n)
222 + P

(n)
222S122P

(n)
122) − ε(AT

122P
(n)T
212 A112

+AT
112P

(n)
212A122) − ε2AT

112P
(n)
211A112 + εE

(n)
222S222E

(n)
222

+ε(P
(n)
222ST

212P
(n)
212 + P

(n)T
212 S212P

(n)
222)

+ε3P
(n)T
212 S211P

(n)
212 , (14b)

E
(n+1)
122 (A22 − S222P̄222) + (A22 − S222P̄222)

T E
(n+1)
122

+AT
122E

(n+1)
122 A122

= E
(n+1)
222 S222P̄222 + P̄222S222E

(n+1)
222

+ε(E
(n)
122S222E

(n)
222 + E

(n)
222S222E

(n)
122)

−(P
(n)T
112 A12 + AT

12P
(n)
112)

+P
(n)T
112 S212P

(n)
222 + P

(n)
222ST

212P
(n)
112

+ε2(P
(n)T
112 S211P

(n)
212 + P

(n)T
212 S211P

(n)
112)

+ε(P
(n)
122ST

212P
(n)
212 + P

(n)T
212 S212P

(n)
122)

−(AT
112P

(n)
111A112 + AT

122P
(n)T
112 A112 + AT

112P
(n)
112A122)

+P
(n)T
112 S111P

(n)
112 + ε2P

(n)
122S122P

(n)
122

+ε(P
(n)
122ST

112P
(n)
112 + P

(n)T
112 S112P

(n)
122), (14c)

E
(n+1)
211 (A11 − S111P̄111) + (A11 − S111P̄111)

T E
(n+1)
211

+AT
111E

(n+1)
211 A111

= E
(n+1)
111 S111P̄211 + P̄211S111E

(n+1)
111

+ε(E
(n)
211S111E

(n)
111 + E

(n)
111S111E

(n)
211)

−(P
(n)
212A21 + AT

21P
(n)T
212 )

+P
(n)
212ST

112P
(n)
111 + P

(n)
111S112P

(n)T
212

+ε2(P
(n)
212S122P

(n)T
112 + P

(n)
112S122P

(n)T
212 )

+ε(P
(n)
211S112P

(n)T
112 + P

(n)
112ST

112P
(n)
211)

−(AT
121P

(n)
222A121 + AT

111P
(n)
212A121 + AT

121P
(n)T
212 A111)

+P
(n)
212S222P

(n)T
212 + ε2P

(n)
211S211P

(n)
211

+ε(P
(n)
212ST

212P
(n)
211 + P

(n)
211S212P

(n)T
212 ), (14d)

E
(n+1)
212 (A22 − S222P̄222) + (A11 − S111P̄111)

T E
(n+1)
212

+AT
111E

(n+1)
212 A122

= −(A21 − ST
112P̄111 − S222P̄

T
212)

T E
(n+1)
222

+E
(n+1)
111 (S112P̄222 + S111P̄212) − AT

121E
(n+1)
222 A122

+ε(E
(n)
111S112E

(n)
222 + E

(n)
111S111E

(n)
212 + E

(n)
212S222E

(n)
222)

−P
(n)
211A12 + ε(P

(n)
211S112P

(n)
122 + P

(n)
212ST

112P
(n)
112

+P
(n)
112ST

112P
(n)
212 + P

(n)
112S122P

(n)
222) + ε2P

(n)
212S122P

(n)
122

+P
(n)
211S111P

(n)
112 − εAT

121P
(n)T
212 A112 − AT

111P
(n)
211A112

+εP
(n)
212ST

212P
(n)
212 + P

(n)
211S212P

(n)
222

+ε2P
(n)
211S211P

(n)
212 , (14e)

E
(n+1)
112 (A22 − S222P̄222) + (A11 − S111P̄111)

T E
(n+1)
112

+AT
111E

(n+1)
112 A122

= −E
(n+1)
111 (A12 − S111P̄112 − S212P̄222)

+(ST
212P̄111 + S222P̄

T
112)

T E
(n+1)
222 − AT

111E
(n+1)
111 A112

+ε(E
(n)
111S212E

(n)
222 + E

(n)
112S222E

(n)
222 + E

(n)
111S111E

(n)
112)

−AT
21P

(n)
122 + ε(P

(n)
211S212P

(n)
122 + P

(n)
111S211P

(n)
212

+P
(n)
112ST

212P
(n)
212 + P

(n)
212ST

212P
(n)
112) + ε2P

(n)
211S211P

(n)
112

+P
(n)
212S222P

(n)
122 − εAT

121P
(n)T
112 A112 − AT

121P
(n)
122A122

+εP
(n)
112ST

112P
(n)
112 + P

(n)
111S112P

(n)
122

+ε2P
(n)
112S122P

(n)
122 , n = 0, 1, 2, ... , (14f)

where

P
(n)
i11 = P̄i11 + εE

(n)
i11 , P

(n)
i12 = P̄i12 + εE

(n)
i12 ,

P
(n)
i22 = P̄i22 + εE

(n)
i22 , E

(0)
i11 = E

(0)
i12 = E

(0)
i22 = 0, i = 1, 2.

The main result of this section is given below.

Theorem 2: Under Assumptions 1-3, the iterative algo-

rithm (14) converges to the exact solutions Eipq, i = 1, 2,

pq = 11, 12, 22 of the equation (13) with the linear rate of

convergence. That is, the following relations hold.

||Eipq − E
(n)
ipq || = O(εn),

n = 1, 2, ... , i = 1, 2, pq = 11, 12, 22. (15)

The following lemma will play an important role in

establishing (15).

Lemma 2: If dz(t) = Az(t)dt +
∑N

p=1 Apz(t)dwp(t)

is exponentially mean-square stable and Q = QT ,

zT (0)Pz(0) =
∫ ∞

0
zT (t)Qz(t)dt, where P satisfies the

stochastic algebraic Lyapunov equation (SALE) AT P +
PA +

∑N
p=1 AT

p PAp + Q = 0.

Proof: As a starting point it needs to show the existence

of the unique and bounded solutions Eipq of (13) instead of

Pipq of (4) in neighborhood of ε = 0. To prove that by

the implicit function theorem, it is enough to show that the

corresponding Jacobian JE of (13) is nonsingular at ε = 0.

The Jacobian is given by

JE =















∂[vecH1]
T

∂vecE111

∂[vecH1]
T

∂vecE112
· · · ∂[vecH1 ]T

∂vecE222

∂[vecH6]
T

∂vecE111

∂[vecH6]
T

∂vecE112
· · · ∂[vecH6 ]T

∂vecE222

...
...

. . .
...

∂[vecH2]
T

∂vecE111

∂[vecH2]
T

∂vecE112

· · · ∂[vecH2 ]T

∂vecE222















= JP .(16)

Taking into consideration the fact that JP is nonsingular at

ε = 0, JE is also nonsingular. Therefore, there exists a

unique and bounded solution of the error equations (13).

Secondly, the proof of (15) uses mathematical induction.

When n = 0 for the equations (14), the first order approxi-

mations E
(1)
ipq corresponding to the small parameter ε satisfy

the equations (13). It follows from these equations that

||Eipq − E
(1)
ipq|| = O(ε), i = 1, 2, pq = 11, 12, 22. (17)

When n = k, k ≥ 1, it is assumed that ||Eipq − E
(k)
ipq || =

O(εk). Subtracting (13) from (14) and using the assumption
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||Eipq − E
(k)
ipq || = O(εk), the following equations hold.

(E
(k+1)
iii − Eiii)(Aii − SiiiP̄iii)

+(Aii − SiiiP̄iii)
T (E

(k+1)
iii − Eiii)

+AT
1ii(E

(k+1)
iii − Eiii)A1ii = O(εk+1), i = 1, 2, (18a)

(E
(k+1)
122 − E122)(A22 − S222P̄222)

+(A22 − S222P̄222)
T (E

(k+1)
122 − E122)

+AT
122(E

(k+1)
122 − E122)A122

= (E
(k+1)
222 − E222)S222P̄222 + P̄222S222(E

(k+1)
222 − E222)

+O(εk+1), (18b)

(E
(k+1)
211 − E211)(A11 − S111P̄111)

+(A11 − S111P̄111)
T (E

(k+1)
211 − E211)

+AT
111(E

(k+1)
211 − E211)A111

= (E
(k+1)
111 − E111)S111P̄211 + P̄211S111(E

(k+1)
111 − E111)

+O(εk+1), (18c)

(E
(k+1)
212 − E212)(A22 − S222P̄222)

+(A11 − S111P̄111)
T (E

(k+1)
212 − E212)

+AT
111(E

(k+1)
212 − E212)A122

= −(A21 − ST
112P̄111 − S222P̄

T
212)

T (E
(k+1)
222 − E222)

+(E
(k+1)
111 − E111)(S112P̄222 + S111P̄212)

−AT
121(E

(k+1)
222 − E222)A122 + O(εk+1), (18d)

(E
(k+1)
112 − E112)(A22 − S222P̄222)

+(A11 − S111P̄111)
T (E

(k+1)
112 − E112)

+AT
111(E

(k+1)
112 − E112)A122

= −(E
(k+1)
111 − E111)(A12 − S111P̄112 − S212P̄222)

+(ST
212P̄111 + S222P̄

T
112)

T (E
(k+1)
222 − E222)

−AT
111(E

(k+1)
111 − E111)A112 + O(εk+1). (18e)

After the cancellation takes place, since Dii i = 1, 2 are

stable, the following results hold.

||Eipq−E
(k+1)
ipq ||=O(εk+1), i=1, 2, pq=11, 12, 22.(19)

Consequently, the equation (15) holds for all n ∈ N. This

completes the proof of Theorem 2 concerned with the fixed

point algorithm.

The required iterative count associated with the Newton’s

method with other two fixed point algorithms and the recur-

sive algorithm is compared. It is assumed that the required

operation count is O(k) by using the recursive algorithm

for rough estimate. In this case, it should be noted that the

required operation count of these fixed point algorithms are

also O(k), respectively. Then, the required operation count of

the Newton’s method with other two fixed point algorithms

is O(k2 log2 k). Therefore, the proposed recursive algorithm

drastically succeeds in reducing the operating count. As a

result, the CPU time can be reduced.

V. HIGH-ORDER APPROXIMATE STOCHASTIC

NASH STRATEGY

The design of high-order approximate stochastic Nash

strategies is considered. Such strategy is obtained by using

iterative solution (14).

u
(n)
i (t) = F

(n)
iε x(t) = −R−1

ii BT
iεP

(n)
iε x(t), (20)

n = 1, 2, ... , i = 1, 2,

where

P
(n)
1ε =

[

P
(n)
111 εP

(n)
112

εP
(n)T
112 εP

(n)
122

]

, P
(n)
2ε =

[

εP
(n)
211 εP

(n)
212

εP
(n)T
212 P

(n)
222

]

.

The degradation of the cost functional via new high-order

approximate stochastic Nash strategies (20) is given as

follows.

Theorem 3: Under Assumptions 1-3, the use of the high-

order approximate stochastic Nash strategies (20) results in

(21)

Ji(u
(n)
1 , u

(n)
2 , x(0)) = Ji(u

∗
1, u∗

2, x(0)) + O(εn+2)

n = 0, 1, ... , i = 1, 2. (21)

Proof: When u
(n)
i (t) is used, the equilibrium values of

the cost functional is given by (22).

Ji(u
(n)
1 , u

(n)
2 , x(0)) = xT (0)Ziεx(0), (22)

where Ziε is a positive semidefinite solution of the following

SALE

Ziε

(

Aε − S1εP
(n)
1ε − S2εP

(n)
2ε

)

+
(

Aε − S1εP
(n)
1ε − S2εP

(n)
2ε

)T

Ziε + AT
1εZiεA1ε

+P
(n)
iε SiεP

(n)
iε + Qiε = 0, i, j = 1, 2, i �= j. (23)

Subtracting (23) from (4), Vε = Ziε − Piε satisfies the

following SALE

Viε

(

Aε − S1εP
(n)
1ε − S2εP

(n)
2ε

)

+
(

Aε − S1εP
(n)
1ε − S2εP

(n)
2ε

)T

Viε + AT
1εViεA1ε

+PiεSjε

(

Pjε − P
(n)
jε

)

+
(

Pjε − P
(n)
jε

)

SjεPiε

+
(

P
(n)
iε − Piε

)

Siε

(

P
(n)
iε − Piε

)

= 0. (24)

By using the result of (15) and PiεSjε = O(ε), it is easy to

verify that

Viε

(

Aε − S1εP
(n)
1ε − S2εP

(n)
2ε

)

+
(

Aε − S1εP
(n)
1ε − S2εP

(n)
2ε

)T

Viε

+AT
1εViεA1ε + O(εn+2) = 0. (25)

Therefore, Viε = O(εn+2) because of Lemma 2. Hence,

since Viε = O(εn+2),

x(0)T Viεx(0)=x(0)TZiεx(0)−xT (0)Piεx(0)

=Ji(u
(n)
1 , u

(n)
2 , x(0))−Ji(u

∗
1, u∗

2, x(0))=O(εn+2) (26)
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results in (21).

In the rest of this section, an important implication is

given. If the parameter ε is unknown, then the following

corollary is easily seen in view of Theorem 3.

Corollary 1: Consider ε-independent approximate

stochastic Nash strategies

ū∗
i (t) = −R−1

ii BT
i P̄ix(t), i = 1, 2, (27)

where

B1 :=

[

B11

0

]

, B2 :=

[

0
B22

]

.

Under Assumptions 1-3, the use of ε-independent approxi-

mate stochastic Nash strategies (27) results in (28)

Ji(ū
∗
1, ū∗

2, x(0))=Ji(u
∗
1, u∗

2, x(0))+O(ε2),

i=1, 2. (28)

Proof: Since the result of Corollary 1 can be proved by

using a technique similar to that used in Theorem 3 under

the fact that P ∗
iε − P̄i = O(ε), the proof is omitted.

The following result establishes the mean-square stable for

the closed-loop systems with the proposed strategies (20).

Theorem 4: Under Assumptions 1-3, there exists a small

constant σ and the positive scalar parameters α > 0
and β > 0 such that for all ε ∈ (0, σ), || exp[(Aε +
∑2

p=1 BpεF
(n)
pε )t]|| ≤ αe−βt. Moreover, if this condition

α2/β||A1ε||2 ≤ ω < 1 is met, the closed-loop stochastic

system is exponentially mean-square stable.

Proof: First, it is easy to verify that

Aε+

2
∑

p=1

BpεF
(n)
pε =block diag

(

D11 D22

)

+O(ε). (29)

Hence, using the stability assumption of Dii, it can be shown

that there exists a small constant σ and the positive scalar

parameters α > 0 and β > 0 such that for all ε ∈ (0, σ),

|| exp[(Aε+
∑2

p=1 BpεF
(n)
pε )t]|| ≤ αe−βt. Let us consider the

closed-loop stochastic system (30).

dx(t) =

[

Aε +
2

∑

p=1

BpεF
(n)
pε

]

x(t)dt + A1εx(t)dw(t). (30)

The representation of the solution of equation (30) is given

as

x(t) = exp

[

[

Aε +
2

∑

p=1

BpεF
(n)
pε

]

(t − s)

]

x(0)

+

∫ t

s

exp

[

[

Aε +

2
∑

p=1

BpεF
(n)
pε

]

(t − τ )

]

×A1εx(τ )dw(τ). (31)

Using inequality (31) and considering the independence of

the Wiener processes w(t) yields

E||x(t)||2

≤ 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp

[

[

Aε +

2
∑

p=1

BpεF
(n)
pε

]

(t − s)

]
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

E||x(0)||2

+2

∫ t

s

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp

[

[

Aε +

2
∑

p=1

BpεF
(n)
pε

]

(t − τ )

]
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

×||A1ε||2E||x(τ )||2dτ. (32)

Thus, the conditions || exp[(Aε +
∑2

p=1 BpεF
(n)
pε )t]|| ≤

αe−βt, ∃ α, β > 0 and α2/β|A1ε||2 ≤ ω imply that

e2β(t−s)E||x(t)||2

≤ 2α2E||x(0)||2 + 2βω

∫ t

s

e2β(τ−s)E||x(τ )||2dτ. (33)

From the Bellman-Gronwall inequality [11], it follows that

E||x(t)||2 ≤ 2α2E||x(0)||2e2β(ω−1)(t−s). (34)

Since ω has been selected such that ω < 1, then equation

(30) is exponentially mean-square stable.

It should be noted that the use of ε-independent approxi-

mate stochastic Nash strategies (27) has the similar result of

Theorem 4.

VI. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed al-

gorithm, a numerical example is given. The system matrices

have been chosen randomly in the interval [0, 1] with four-

dimensional coefficient matrix.

The small parameter is chosen as ε = 0.01. It is verified

that the solution of the CSARE (4) converges to the exact

solution with accuracy of G < 10−9 after five iterations,

where the function G(ε) is defined as follows: G(ε) =
∑2

p=1 ||Gp(ε, P1ε, P2ε||. In order to verify the exactitude

of the solution, the remainder per iteration by substituting

Piε into the (4) is computed for various parameter ε. It

can be seen from Table I that the recursive algorithm (14)

generates the required optimal solution for small value of ε.

Moreover, using different values of ε in the same example,

it is easy to observe that the proposed algorithm has linear

convergence. Therefore, the resulting algorithm of this paper

is very reliable in the sense that the proposed algorithm has

the linear convergence. Furthermore, the resulting algorithm

of this paper is very useful in the sense that the required

computation work space is the same as the reduced-order

systems. In other words, even if the stochastic weakly-

coupled large-scale systems (1) are composed of two four-

dimensional subsystems, the required workspace is four.

Table II presents the results of the CPU time with regard

to the comparison between the Newton’s method [10] and

the proposed recursive algorithm. The CPU time represents

the average based on the computations of ten runs. It can

be observed from Table II that as compared to the Newton’s

method [10], the recursive algorithm (14) requires consid-

erably less CPU time. This is because the existing result
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TABLE I

ERROR PER ITERATIONS .

n ||G(1.0e − 02)|| ||G(1.0e − 03)|| ||G(1.0e − 04)|| ||G(1.0e − 05)||
0 1.6579e − 003 1.6593e − 005 1.6595e − 007 1.6594e − 009
1 8.1016e − 005 8.1583e − 008 8.1118e − 011 3.8485e − 013
2 1.8251e − 006 1.7730e − 010
3 6.4043e − 008
4 1.4268e − 009
5 3.7959e − 010

TABLE II

CPU TIME [SEC]

ε Newton’s Method [10] Recursive Algorithm

1.0e − 02 6.4360e − 001 4.9700e − 002
1.0e − 03 2.2660e − 001 1.2400e − 002

TABLE III

DEGRADATION OF COST.

ε J1(u∗

1
(t), u∗

2
(t)) J2(u

∗

1
(t), u∗

2
(t)) J1(ū

∗

1
(t), ū∗

2
(t)) J2(ū∗

1
(t), ū∗

2
(t)) ψ1 ψ2

10−2 4.5318 2.0430 4.5326 2.0431 7.7041 5.0126e − 1
10−3 4.4023 1.8951 4.4024 1.8951 6.9374 2.5624e − 1

10−4 4.3898 1.8806 4.3898 1.8806 6.8633 3.3259e − 1
10−5 4.3886 1.8792 4.3886 1.8792 6.8607 3.4009e − 1

[10] consists of the Newton’s method and another two fixed

point algorithms. Therefore, the reduction of the CPU can

be attained by using the recursive algorithm.

Finally, the cost degradation of (28) is verified. The

values of the optimal cost performance and ε-independent

approximate stochastic Nash strategies (27) for various ε
are given in Table III, where ψi := |Ji(ū

∗
1(t), ū∗

2(t)) −
Ji(u

∗
1(t), u∗

2(t))|/ε2, i = 1, 2. It is easy to verify that

for each parameter ε, |Ji(ū
∗
1, ū∗

2) − Ji(u
∗
1, u∗

2)| = O(ε2)
because of φi < ∞. Therefore, the new result for the loss

of performance which is indicated by (28) is correct.

Since it seems that the proposed algorithm and the existing

one of [10] both run very quickly, it may be hard to see why

the high-order algorithm is needed. In this case, it should

be noted that the dimension of the simulation data is quite

small. If the large-scale dimension is treated, it can be seen

that the proposed algorithm still attains the fast convergence.

VII. CONCLUSIONS

Infinite-horizon stochastic Nash games have been dis-

cussed. First, recursive algorithm for solving the CSARE that

arose in the stochastic Nash games for weakly coupled large-

scale systems has been studied. By using this algorithm, it

has been shown that both linear convergence and reduced-

order computations can be attained. Thus, the proposed

algorithm is expected to be very useful and reliable for a

sufficiently small value of ε. As another important feature,

it has been shown that a high-order approximate strategy

attained better cost performance. In fact, the cost degradation

for using the proposed approximate strategy has been proved.

Additionally, the mean-square stable of the stochastic Nash

strategies has been proved. Finally, numerical example has

yielded excellent results using which linear convergence has

been verified and the proposed algorithm has succeeded in

reducing the CPU time.
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