
  

  

 Abstract – A control-based analysis and characterization 
of a free-piston Stirling engine is presented, and proposed as a 
lightweight power supply for untethered robots. Typically, 
such devices are designed from the point of view of a 
thermodynamic cycle in terms of traditional thermodynamic 
equations of state. Such equations of state are independent of 
time and therefore lend little insight when dynamic elements 
are incorporated into the design. The approach presented here 
is from a system dynamics and control perspective. Equations 
of state are replaced by dynamic system modeling elements. 
Utilizing these dynamic elements, control concepts are applied 
to evaluate a given configuration and ensure an unstable 
oscillatory response and therefore transform heat into useful 
work. A simulation of a commercially available free-piston 
engine is presented, and standard control design tools are 
applied to its linearized model. The results show promising 
potential in utilizing small-scale free-piston Stirling engines as 
portable power supply for robotic systems. 
 

NOMENCLATURE 

A  displacer area 
rA  displacer rod area  

b  damping coefficient between displacer rod and 
piston 

db  damping coefficient between displacer and wall 

pb  damping coefficient between piston and wall 
g  acceleration of gravity 

dk  spring constant for displacer 

pk  spring constant for piston 

dl  equilibrium length of displacer spring 

pl  equilibrium length of piston spring 

dm  mass of displacer 

pm  mass of piston 
P  pressure in working gas 

atmP  atmospheric pressure 

0P  initial pressure in working gas 

hT  temperature in hot side 

kT  temperature in cold side 

hV  volume in hot side 

0hV  initial volume in hot side 

kV  volume in cold side 
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0kV  initial volume in cold side 

rV  volume in regenerator 
x  displacer position 
x&  displacer velocity 
x&&  displacer acceleration 
y  piston position 
y&  piston velocity 
y&&  piston acceleration 

 

I.  INTRODUCTION 

The need for an effective portable power supply for 
human-scale robots has increasingly become a matter of 
interest in robotics research. Current prototypes of humanoid 
robots, such as the Honda P3, Honda ASIMO and the Sony 
QRIO, show significant limitations in the duration of their 
power sources in between charges (the operation time of the 
humanoid-size Honda P3, for instance, is only 25 minutes). 
This limitation becomes a strong motivation for the 
development and implementation of a more energy dense 
source of power. Put simply, state-of-the-art batteries are too 
heavy for the amount of energy they store, and electric 
motors are too heavy for the mechanical power they can 
deliver, in order to present a combined power supply and 
actuation system that can deliver human-scale mechanical 
work in a human-scale self contained robot package. The 
motivation details are discussed more thoroughly in [1]. 

 
Stirling engines are typically regarded for their high 

efficiency, since they are theoretically capable of achieving 
the Carnot thermodynamic efficiency given by 
( ) hotcoldhot TTT /− . Despite this fact, Stirling engines have 
found few applications mainly due to the low power density 
of current engine designs. This is in part due to the relatively 
large piston and displacer masses, and thus low operational 
frequency of the engine. Reduction of piston and displacer 
masses to increase the frequency and thus power output of 
an engine often results in recognized scaling problems 
where friction and leakage dominate and lead to a non-
functioning engine. One potential solution to this problem of 
scaling is to replace traditional pistons involving frictional 
seals with an alternative such as elastic diaphragms. To 
bring about such a change, new design tools are needed to 
understand, or even exploit, the combined stiffness and 
inertia effects such an element would have on the operation 
of a free piston Stirling engine. 
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Figure 1: Schematic diagram of the displacer piston. Movement of the 
displacer shuttles compressible fluid between hot and cold sides of the 
engine with a resulting change in pressure. The regenerator stores and 
retrieves heat energy. With negligible flow restriction through the 
regenerator, there are no pressure forces on the displacer. 

 
A brief primer on Stirling engines, and their free-piston 

variant, is in order. The basic operational principle of a 
Stirling engine comes down to the displacer chamber. As 
shown in Figure 1, the displacer chamber is subjected to a 
heat source on one end (heater), and a heat sink on the 
opposite end (cooler). The movement of the displacer 
shuttles compressible fluid between the hot space and the 
cold space. For example, as the displacer moves to the right, 
it moves gas from the cold side to the hot side where it 
absorbs heat resulting in an increase in gas temperature and 
pressure. As the displacer is moved in the opposite direction, 
the gas temperature is decreased thus decreasing the 
pressure. It is important to note that because of the flow-path 
connection between the two sides, there is no pressure 
difference across the displacer and therefore no pressure 
induced forces on the displacer. Without appreciable sliding 
friction or flow restrictions, it takes only the work required 
to move the displacer’s inertia to change the pressure. If the 
displacer is additionally connected to a conservative forcing 
source, such as a spring, it theoretically takes no net work to 
vary the pressure. 

 
Ultimately, useful work is extracted from the varying 

pressure of the displacer chamber by linking the cold side 
(usually) to a power piston chamber. Stirling engines 
typically utilize a regenerator to increase their efficiency. 
The regenerator section is packed with a material of high 
thermal conductivity (additionally promoted with a high 
surface area), high thermal capacitance, and presenting little 
flow restriction – usually a “steel wool” or metal screen 
material. The job of the regenerator is to remove and store 
heat energy from the gas as it moves through the regenerator 
section from the hot side to the cold side, and consequently 
return this heat energy to the gas as it moves back into the 
hot side. This energy storage mechanism allows the 
temperature of the gas to vary without rejecting as much 

heat energy to the outside environment, and hence improves 
the thermal efficiency of the engine. 

 
Not shown in Figure 1 is how the power piston, or 

simply “piston”, is linked to the displacer. As previously 
noted, no forces (or small forces) are imposed on the 
displacer. For the displacer to move, and hence vary the 
pressure forces on the piston in order to extract work from 
the engine, the displacer must be linked, either kinematically 
or dynamically, to the motion of the piston. Free-piston 
Stirling engines provide a dynamic as opposed to kinematic 
link. 

 
While Stirling engines have been studied exhaustively 

in the past, the predominant approaches to their design have 
been based on thermo-fluidic analysis tools, such as the 
Carnot theorem and the second law of thermodynamics. 
Additionally, the implementation of free-piston Stirling 
engines has been mostly limited to standard piston / cylinder 
devices, which typically have to provide adequate sealing 
between the piston and the displacer rod, and between the 
piston and the cylinder wall. Figure 2 shows a photo and 
schematic of the Sunpower B-10B free-piston Stirling 
engine demonstrator, developed by Sunpower Inc. This 
device weighs just under a kilogram and produces a nominal 
power of 1 Watt. A simple thermodynamic analysis of this 
type of device is offered in [2], and relies mostly on 
equations of state and intuitive notions of gas dynamics. 
This engine configuration was invented by William Beale in 
the 1970s and set the standard for future devices. 
 

 
Figure 2: Picture and schematic of Sunpower B-10B free-piston 

Stirling demonstrator 
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Even though thermodynamic methods and intuitive 
design techniques have been vital for the development of 
Stirling engines, little work has been done on applying 
dynamic and control methods to investigate their stability 
and frequency characteristics. The work by Redlich and 
Berchowitz [4] is one of only a handful of papers that 
utilizes control theory concepts to analyze the linearized 
dynamics of such engines. Although the paper presents an 
analysis of free-piston Stirling engines that agree well with 
their experimental operation, the control concepts presented 
are not used to suggest a design procedure for including new 
combinations of either traditional or new Stirling engine 
elements (such as diaphragms). More generally, the 
literature regarding the analysis of such engines typically 
contains little constructive design insight. It is recognized 
that the design of such engines is more of an art than a 
constructive well-understood process [5]. 

 
This paper presents a control-based approach to “digest” 

the complex dynamics of Stirling engines within a design 
context. The operation of a free-piston stirling engine is 
viewed as a feedback system with a physical control law 
dependent on system parameters and an overall control gain 
related to the temperature difference across the engine. Free-
piston Stirling engines are therefore viewed simply as a 
group of dynamic elements in a feedback configuration such 
that linear control techniques can be applied to optimize 
their performance. Standard control tools such as root locus, 
frequency response (Bode plots) and the Nyquist stability 
criterion are utilized to gain fundamental insight regarding 
the dynamic behavior of the system and how the variation of 
system parameters (through design) affects the overall 
dynamics. This approach will show that an unstable 
oscillatory response is desired in a linear sense in order to 
produce power in the true device. Unique notions such as 
“instability margins” and “instability robustness” will be 
presented and examined. Additionally, with this approach, it 
is shown that matching the power output of the device with 
any given load, such as a hydraulic or pneumatic pump or an 
electrical alternator, becomes a trivial matter which is 
subsumed as simply including more dynamics in the loop. 
With proper tuning and scaling, it is envisioned that such 
free-piston Stirling engines will have much higher power 
densities and be well suited as portable power supplies for 
applications such as untethered robotic devices.  

 
II.  METHODOLOGY 

For the scope of this paper, the proposed methodology 
is to develop a dynamic model of the free-piston Stirling 
engine shown in Figure 2, and offer a control-based 
characterization of it. An experimental run of the device will 
be compared to the characteristics predicted by the linear 
control systems analysis. 

 
The equations of motion of the system shown in Figure 

2 are given by: 
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 Considering 0=x  and 0=y  to be at the point of 
vertical static equilibrium (when the engine is not yet 
running), the following relationships can be derived from 
Equations (1) and (2): 
 ratmrddd APAPgmlk −+= 0  (3) 
 ( ) ( )ratmrppp AAPAAPgmlk −−−+= 0  (4) 
Equations (3) and (4) show the equilibrium lengths of the 
springs due to gravity and the pressure difference across the 
elements. This pressure difference exists if the engine is pre-
pressurized prior to operation. 
 
 Adding zero to Equation (1) in the form of 

rr APAP 00 −+ , and substituting ddlk  by Equation (3),  the 
following expression is obtained: 
  ( ) ( )yxbxbxkAPPxm ddrd &&&&& −−−−−−= 0  (5) 
 
Similarly, adding ( ) ( )rr AAPAAP −−−+ 00  to Equation (2) 
and substituting pplk  by Equation (4), we obtain: 
 ( )( ) ( )xybybykAAPPym pprp &&&&& −−−−−−−= 0  (6) 
  
The next step is to incorporate the pressure dynamics into 
the model. The pressure in the working space fluctuates as 
the displacer shifts the working gas back and forth between 
the heater and cooler spaces. This fluctuation is given by the 
following commonly accepted isothermal model by Schmidt 
[6]: 
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For the device considered, cV , rV  and eV are small 
compared to kV  and hV , and Equation (7) can therefore be 
simplified as: 

  
1

ˆ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

h

h

k

k

T
V

T
VmRP  (8) 

In order to utilize this non-linear relationship within the 
context of linear control analysis applied to a system of 
linear dynamic equations, it must first be linearized. For 
convenience, this is done about the initial volumes 0kV  and 

0hV , which coincide with positions 0=x  and 0=y . The 
linearization is as follows: 
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Additionally, as can be seen from Figure 2, the volumes hV  
and kV  are linked to x and y  by the following 
relationships: 
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  AxVV hh −= 0  (10) 
  ( ) ( )yAAxAAVV rrkk −−−+= 0  (11) 
Evaluating the partial derivatives in Equation (9), and 
combining these with Equations (10) and (11), the following 
expression is obtained, 
 yAACxACACACPP rr )()( 22210 −++−=−  (12) 
where 1C  and 2C  are constants given by: 
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It is important to note that Equation (12) constitutes an input 
term to the coupled system dynamics of Equations (5) and 
(6). Further, this "input term" is a function of the states of 
the system. This interpretation will serve to cast the problem 
as a standard feedback control. 
 
 Now that we have the linearized system equations (5), 
(6), and (12), they can be represented in the Laplace domain 
as: 
  ( )[ ] ( ) bsYAPPXksbbsm rddd +−−=+++ 0

2  (14) 

   ( )[ ] ( )( ) bsXAAPPYksbbsm rppp +−−−=+++ 0
2  (15) 

 ( ) ( ) ( )YAACXACACACPP rr −++−=− 22210  (16) 
 

 
Figure 3: Block Diagram of Linearized System 

 
Figure 3 shows the feedback block diagram obtained from 
the system equations. The physical-feedback loop containing 
the transfer functions 1G  and 2G  completely characterizes 
the stability and frequency response of the system. Transfer 
functions 1H  and 2G  are causal feed-forward filters, and do 
not affect the closed-loop behavior of the system. The 
derivation of these causal transfer functions, 

( )
( ) ( )sG

PP
sY

1
0

=
−−

, ( )
( ) ( )sG
sY
PP

2
0 =

− , and 

( ) ( ) ( ) ( ) ( )sHsYsHPPsX 210 +−−=  from Equations (14), 
(15) and (16) is algebraically simple. However, due to their 
large size, they are not explicitly shown in this paper. Since 

1G  and 2G  can be expressed as the ratios of polynomials of 
s, 11 / DN  and 22 / DN , respectively, the closed-loop 
characteristic equation becomes 

  011 3
21

21 =+=+ kG
DD
NN  (17) 

where k  is a constant (or a group of constants) algebraically 
pulled out from 21GG , and can be considered a controller 
gain whose variance marks the trajectories of the root locus. 

The value of k  is important, since it contains important 
design parameters, and allows us to see the direct effect of 
the system parameters on the closed-loop dynamics. 
 

III.  CONTROL TOOLS 

 In order to assess Equation (17) analytically via the 
standard root locus technique, it is necessary that the 
parameters contained in k  are not present anywhere in 3G . 
In our case, we are particularly interested in looking at the 
trajectories as hT  (the temperature in the hot side) varies, as 
well as b  (the coefficient of viscous friction between the 
displacer and the piston) and pb  (the coefficient of viscous 
friction between the piston and the cylinder wall). These last 
two are particularly important because they are closely 
related to the power output of the device (if, for instance, 
coupled with a linear alternator). Because of the high 
complexity of this system, the parameters in question are 
deeply embedded in 3G  and/or do not appear linearly, and 
cannot be analytically factored out as a constant k . Instead, 
a computational algorithm iteratively calculates the closed-
loop poles as the desired parameter varies within a 
reasonable range, and these are plotted to generate the locus.  
 
 For the scope of this paper, the parameters used in all 
the calculations were measured from the Sunpower B-10B 
Stirling demonstrator (Figure 2). Some of the most 
important values to indicate are: 

 2cm 10=A  2cm 1.58 =rA  
m

sN 10 ⋅
=b  

 
m

sN 0.1 ⋅
=pb  g 75=dm  g 465=pm  

 
 Figure 4 shows the root locus of the system as hT  
increases. The square boxes indicate the position of the 
closed-loop poles under normal operating conditions. The 
normal operating value of hT  is about 600 K, and kT  is 
assumed to remain at room temperature. From Figure 4, it 
should be noted that the open-loop poles (where the 
trajectories originate for a theoretical value of 0=hT ) are 
all in the left-hand plane. As hT  increases past 360 K, a 
complex conjugate pair of closed-loop poles cross into the 
right-half-plane. For larger values of hT , it can be seen that 
these poles increase in frequency and remain in the right-
hand plane, which is desired. This agrees with the premise 
that from a controls perspective, a Stirling engine needs to 
remain unstable in order to operate. It should be emphasized 
that "unstable" in a linear sense represents an unbounded 
system energy that will represent power production in an 
actual physically bounded device. 
 Similarly, we can examine the effect of the closed-loop 
pole locations visualized on the root locus as the viscous 
friction is varied. Since the effect of b  and pb  on the locus 
are very similar, only one is shown here. Figure 5 shows the  
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Figure 4: Root Locus Trajectories for Varying Values of hT  

 
root locus as pb  increases. For low enough values of this 
friction, the system is unstable and will operate desirably to 
produce net output power. However, as pb  increases, the 
locus trajectories will eventually cross the imaginary axis 
and the system will stabilize and cease to work properly 
(cease to produce power).  
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Figure 5: Root Locus Trajectories For Varying Values of pb  

 
 It should be noted that the closed-loop pole locations for 
the parameter values measured and for 600=hT K are the 
same in both Figures 4 and 5. The magnitude of the 
imaginary component of the unstable poles indicates that the 
linear device operates with a frequency of 12.87 Hz. This 
very closely matches the experimentally measured frequency 
of 12.82 Hz. From a design perspective, this close match 
highlights the adequacy of applying linear control tools for 
the frequency analysis of free-piston Stirling engines. 
Maximizing this frequency while minimizing the moving 

piston and displacer masses is key for increasing the power 
density. However, down-scaling these devices has proven 
problematic given that losses such as viscous friction in the 
piston seals and leakage (blow-by) dominate at small scales. 
Since graphic control tools free us from an intuitive pictorial 
depiction of how these engines operate, it allows for a more 
fundamental design perspective, perhaps steering away from 
traditional sliding piston devices. 

 
 Examining the Bode and Nyquist plots we can confirm 
the instability of the system, and examine the gain and phase 
margins that ensure this instability. Figure 6 shows the Bode 
plots of the open-loop system. It shows a negative gain 
margin of 15.88 and a negative phase margin of 17 degrees. 
Even though the phase plot crosses the '–180' line twice, it is 
evident that the gain margin is given by the first crossing, 
since it's the only negative of the two. This will be verified 
in the Nyquist plot. 
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Figure 6: Open-Loop Bode Plots 

 
 The Nyquist plot of the system is shown in figure 7. 
Since the number of open-loop poles is zero, and there are 
two clock-wise encirclements about the j01+−  point, the 
Nyquist stability criterion confirms that there should be two 
unstable closed-loop poles. A unit circle was drawn around 
the origin in order to examine the gain and phase margins. 
Starting with the phase margin, the intersections between the 
trajectories and the unit circle occur at 17± degrees from the 
negative real axis. Since our system is unstable, we know 
the correct phase margin is the negative one. Similarly, the 
gain margin for an unstable system is determined by the real 
axis crossing outside the unit circle, which in this case 
happens at 88.15− dB. These values are in agreement with 
the Bode plots and root locus stability analysis. The concept 
of negative gain and phase margins, or 'instability' margins, 
though unusual, are simply the amount of gain or phase 
needed to make the system stable. The negative gain margin 
implies that a reduction of the overall gain of the system is 
needed to achieve stability. The negative phase margin 
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indicates the amount by which the phase would need to be 
reduced to achieve stability. In this sense, these margins 
indicate how robust the instability is. 
 

 
Figure 7: Open-Loop Nyquist Plot. 

 
IV.  DISCUSSION 

 Even though free-piston Stirling engines have been 
heavily studied over the past 40 years, the academic 
literature contains very little work on dynamics and control 
approaches to their study or design. The aim of this paper is 
to show that a simple linear control-based analysis can 
provide insightful information regarding fundamental 
operational characteristics of these engines, which could 
otherwise not be trivially obtained with typical 
thermodynamic approaches. The idea of designing for 
instability is also unusual, but it is shown that the control 
tools can be applied in the same way as in the standard case 
of stability design, to the extent of examining atypical 
notions such as instability margins, and instability 
robustness. Additionally, this approach allows a free-piston 
Stirling design to not rely so much on intuitive notions and 
fine tuning, but instead on a systems' level understanding as 
a whole. The linear control techniques shown here should 
suffice in determining whether or not the system parameters 
are adequate enough for it to run properly, and they can also 
serve as a strong troubleshooting tool. 
 
 Another important objective of this analysis was to 
show that free-piston Stirling engines can be viewed as a 
conglomerate of interacting dynamic elements, which can 
allow for some outside-the-box thinking. Regardless of the 
order or complexity of the system, these simple control tools 
can be used to 'digest' all the complicated dynamics in the 
system, and focus only on the dominant poles, which 
contain all the information regarding instability and 
frequency response. 
 
 In the linear sense, for a free-piston Stirling engine to be 
unstable means that its output power grows unbounded, by 

means of ever-increasing closed-loop physical feedback. In 
a real nonlinear device, however, this power is harnessed 
either purposefully or absorbed through collisions, and the 
shape of the response is bounded. Techniques for 
maximizing the power output and power transfer to a load 
are outside the scope of this paper, but well within the 
motivation and intent for future work. In actual design, 
impedance matching and application of the maximum power 
transfer theorem should be considered, as well as optimizing 
the power density of the device. As noted in the 
introduction, one of the largest shortcomings of Stirling 
technology to date has been its limited power density. 
 
 The authors envision that small-scale free-piston 
Stirling devices, given their outstanding theoretical energy 
and power densities, simplicity, quietness, and fuel 
flexibility pose as excellent candidates for portable power 
suppliers for untethered human-scale machines. In the 
framework of the analysis presented here, the load coupled 
to such device would present itself as merely an added 
dynamic element (or elements), such that operational 
optimization can be achieved in a similar way regardless of 
the nature of the load.  
 

V.  CONCLUSIONS 

 A control-based design approach of free-piston Stirling 
engines was presented, and introduced as potential small 
scale ( kW 1≤ ) portable power supply for untethered robots. 
The motivation is based on the current limitations of sources 
of power, such as batteries, as well as the growing search for 
alternative sources of energy. The approach taken is unusual 
in the sense that Stirling engines need to be in an unstable 
mode in order to run properly; the control techniques are 
applied in such a way that a robustly unstable oscillatory 
response is maintained. It was shown that these tools apply 
to instability control in a very similar way as with stability 
control, and standard concepts and tools such as root locus 
analysis, gain and phase margin and the Nyquist stability 
criterion are just as useful in designing a robustly unstable 
system as they are in designing a robustly stable system. 
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