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Abstract— This paper presents the central finite-dimensional
H∞ filters for linear systems with state delay, that are subopti-
mal for a given threshold γ with respect to a modified Bolza-
Meyer quadratic criterion including the attenuation control
term with the opposite sign. In contrast to the results previously
obtained for linear time delay systems, the paper reduces the
original H∞ filtering problems to H2 (optimal mean-square) fil-
tering problems, using the technique proposed in [1]. The paper
first presents the central suboptimal H∞ filter for linear systems
with state delay, based on the optimal H2 filter from [37], which
contains a finite number of the filtering equations for any fixed
filtering horizon, but this number grows unboundedly as time
goes to infinity. To overcome that difficulty, the alternative
central suboptimal H∞ filter is designed for linear systems
with state delay, which is based on the alternative optimal H2

filter from [38]. Numerical simulations are conducted to verify
performance of the designed central suboptimal filters for linear
systems with state delay against the central suboptimal H∞ filter
available for linear systems without delays.

I. INTRODUCTION

Over the past two decades, the considerable attention

has been paid to the H∞ estimation problems for linear

and nonlinear systems with and without time delays. The

seminal papers in H∞ control [1] and estimation [2], [3],

[4] established a background for consistent treatment of

filtering/controller problems in the H∞-framework. A large

number of results on this subject has been reported for

systems in the general situation, linear or nonlinear (see ([5]–

[13]). For the specific area of linear time-delay systems, the

H∞-filtering problem has also been extensively studied (see

[14]–[34]). The sufficient conditions for existence of an H∞

filter, where the filter gain matrices satisfy Riccati equations,

were obtained for linear systems with state delay in [35] and

with measurement delay in [36]. However, the criteria of

existence and suboptimality of solution for the central H∞

filtering problems based on the reduction of the original H∞

problem to the induced H2 one, similar to those obtained in

[1], [4] for linear systems without delay, remain yet unknown

for linear systems with time delays.

The authors thank The London Royal Society (RS) and the Mexican
National Science and Technology Council (CONACyT) for financial support
under an RS International Incoming Short Visits 2006/R4 Grant and
CONACyT Grants 55584 and 52953.

M. Basin and D. Calderon-Alvarez are with Department of Physical
and Mathematical Sciences, Autonomous University of Nuevo Leon, San
Nicolas de los Garza, Nuevo Leon, Mexico mbasin@fcfm.uanl.mx
dcalal@hotmail.com

P. Shi is with Department of Computing and Mathematical Sciences,
Faculty of Advanced Technology, University of Glamorgan, Pontypridd,
United Kingdom pshi@glam.ac.uk

J. Wang is with College of Automation Engineering, Nanjing
University of Aeronautics and Astronautics, Nanjing, 210016, China
wjf92422@126.com

This paper presents the central (see [1] for definition)

finite-dimensional H∞ filters for linear systems with state

delay, that are suboptimal for a given threshold γ with respect

to a modified Bolza-Meyer quadratic criterion including the

attenuation control term with the opposite sign. In contrast

to the results previously obtained for linear systems with

state [35] or measurement delay [36], the paper reduces

the original H∞ filtering problems to H2 (mean square)

filtering problems, using the technique proposed in [1]. To

the best authors’ knowledge, this is the first paper which

applies the reduction technique of [1] to classes of systems

other than conventional LTI plants. Indeed, application of the

reduction technique makes sense, since the optimal filtering

equations solving the H2 (mean square) filtering problems

have been obtained for linear systems with state [37], [38] or

measurement [39] delays. Designing the central suboptimal

H∞ filter for linear systems with state delay presents a

significant advantage in the filtering theory and practice,

since (1) it enables one to address filtering problems for

LTV time-delay systems, where the LMI technique is hardly

applicable, (2) the obtained H∞ filter is suboptimal, that

is, optimal for any fixed γ with respect to the H∞ noise

attenuation criterion, and (3) the obtained H∞ filter is finite-

dimensional and has the same structure of the estimate and

gain matrix equations as the corresponding optimal H2 filter.

It should be commented that the proposed design of the

central suboptimal H∞ filters for linear time-delay systems

with integral-quadratically bounded disturbances naturally

carries over from the design of the optimal H2 filters for lin-

ear time-delay systems with unbounded disturbances (white

noises). The entire design approach creates a complete filter-

ing algorithm of handling the linear time-delay systems with

unbounded or integral-quadratically bounded disturbances

optimally for all thresholds γ uniformly or for any fixed γ

separately. A similar algorithm for linear systems without

delay was developed in [1].

The paper first presents the central suboptimal H∞ filter for

linear systems with state delay, based on the optimal H2 filter

from [37], which contains a finite number of the filtering

equations for any fixed filtering horizon, but this number

grows unboundedly as time goes to infinity. To overcome

that difficulty, the alternative central suboptimal H∞ filter

is designed for linear systems with state delay, which is

based on the alternative optimal H2 filter from [38]. The

alternative filter contains only two differential equations for

determining the estimate and filter gain matrix, regardless of

the filtering horizon. Numerical simulations are conducted

to verify performance of the designed central suboptimal
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filters for linear systems with state delay against the central

suboptimal H∞ filter available for linear systems without

delays [4].

II. H∞ FILTERING PROBLEM STATEMENT

Consider the following continuous-time LTV system with

state delay:

S1 : ẋ(t) = A(t)x(t −h)+B(t)ω(t), (1)

y(t) = C(t)x(t)+D(t)ω(t), (2)

z(t) = L(t)x(t), (3)

x(θ) = ϕ(θ), ∀θ ∈ [t0 −h, t0] (4)

where x(t) ∈ R
n is the state vector, z(t) ∈ R

q is the sig-

nal to be estimated, y(t) ∈ R
m is the measured output,

ω(t) ∈ L
p

2 [0,∞) is the disturbance input. A(·), B(·), C(·),
D(·), and L(·) are known continuous functions. ϕ(θ) is an

unknown vector-valued continuous function defined on the

initial interval [t0 −h, t0]. The time delay h is known.

For the system (1)–(4), the following standard conditions

([4]) are assumed:

• the pair (A,B) is stabilizable; (C1)
• the pair (C,A) is detectable; (C2)
• D(t)BT (t) = 0 and D(t)DT (t) = Im. (C3)

Here, Im is the identity matrix of dimension m × m. As

usual, the first two conditions ensure that the estimation

error, provided by the designed H∞ filter, converge to zero

([40]). The last noise orthonormality condition is technical

and corresponds to the condition of independence of the

standard Wiener processes (Gaussian white noises) in the

stochastic filtering problems ([40]).

Now, consider a full-order H∞ filter in the following form

(S2):

S2 : ẋ f (t) = A(t)x f (t −h)+K f (t)[y(t)−C(t)x f (t)],(5)

z f (t) = L(t)x f (t), (6)

where x f (t) is the filter state. The gain matrix K f (t) is to be

determined.

Upon transforming the model (1)-(3) to include the states

of the filter, the following filtering error system is obtained

(S3):

S3 : ė(t) = A(t)e(t −h)+B(t)ω(t)−K f (t)ỹ(t), (7)

ỹ(t) = C(t)e(t)+D(t)ω(t), (8)

z̃(t) = L(t)e(t), (9)

where e(t) = x(t)−x f (t), ỹ(t) = y(t)−C(t)x f (t), and z̃(t) =
z(t)− z f (t).

Therefore, the problem to be addressed is as follows:

develop a robust H∞ filter of the form (5)-(6) for the LTV

system with state delay (S1), such that the following two

requirements are satisfied:

1) The resulting filtering error dynamics (S3) is robustly

asymptotically stable in the absence of disturbances,

ω(t) ≡ 0;

2) The filtering error dynamics (S3) ensures a noise

attenuation level γ in an H∞ sense. More specifically,

for all nonzero ω(t) ∈ L
p

2 [0,∞), the inequality

‖z̃(t)‖2
2 < γ2

{

‖ω(t)‖2
2 +‖ϕ(θ)‖2

2,R,[−h,0]

}

(10)

holds for H∞ filtering problem, where

‖ f (t)‖2
2 :=

∫ ∞
t0

f T (t) f (t)dt,

‖ϕ(θ)‖2
2,R,[t0−h,t0] =

∫ t0
t0−h ϕT (θ)Rϕ(θ)dθ , R is a pos-

itive definite symmetric matrix, and γ is a given real

positive scalar.

III. FINITE-DIMENSIONAL H∞ FILTER DESIGN

The proposed design of the central H∞ filter (see Theorem

4 in [1]) for LTV systems with state delay is based on

the general result (see Theorem 3 in [1]) reducing the H∞

controller problem to the corresponding H2 (i.e., optimal

linear-quadratic) controller problem. In this paper, only the

filtering part of this result, valid for the entire controller

problem, is used. Then, the optimal mean-square filter of the

Kalman-Bucy type for LTV systems with state delay ([37])

is employed to obtain the desired result, which is given by

the following theorem.

Theorem 1. The central H∞ filter for the unobserved

state (1) over the observations (2), ensuring the H∞ noise

attenuation condition (10) for the output estimate z f (t), is

given by the equations for the state estimate x f (t) and the

output estimate z f (t)

ẋ f (t) = A(t)x f (t −h)+P(t)CT (t)[y(t)−C(t)x f (t)],(11)

z f (t) = L(t)x f (t), (12)

with the initial condition x f (θ) = 0 for ∀θ ∈ [t0 −h, t0], the

equation for the filter gain matrix P(t)

dP(t) = (P1(t)A
T (t)+A(t)PT

1 (t)+B(t)BT (t)− (13)

P(t)[CT (t)C(t)− γ−2LT (t)L(t)]P(t))dt,

with the initial condition P(t0) = R−1, and the system of the

equations for the complementary matrices Pi(t), i ≥ 1,

dPi(t) = (A(t)Pi−1(t −h)+Pi+1(t)A
T (t − ih))dt+ (14)

(1/2)(B(t)BT (t − ih)+B(t − ih)BT (t))dt−

(1/2)(P(t)[CT (t)C(t − ih)− γ−2LT (t)L(t − ih)]P(t − ih)+

P(t − ih)[CT (t − ih)C(t)− γ−2LT (t − ih)L(t)]P(t))dt,

with the initial conditions Pi(θ) = 0,θ ∈ [t0 +(i−1)h, t0 + ih].
The number of equations in (14) is equal to the integer part

of the ratio T/h, where h is the state delay in (1) and T is

the current filtering horizon.

Proof. First of all, note that the filtering error system (7)-

(9) is already in the form used in Theorem 3 from [1]. Hence,

according to Theorem 3 from [1], the H-infinity filtering part

of this H∞ controller problem would be equivalent to the

H2 (i.e., optimal mean-square) filtering problem, where the

worst disturbance wworst(t) = γ−2BT (t)Q(t)e(t) is realized,

and Q(t) is the solution of the equation for the corresponding

H2 (optimal linear-quadratic) control gain. Therefore, the
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system, for which the equivalent H2 (optimal mean-square)

filtering problem is stated, takes the form

S4 : ė(t) = A(t)e(t −h)+ γ−2B(t)BT (t)Q(t)e(t) (15)

− K f (t)ỹ(t),

ỹ(t) = C(t)e(t)+ γ−2D(t)BT (t)Q(t)e(t), (16)

z̃(t) = L(t)e(t). (17)

As follows from Theorem 3 from [1] and Theorem 1 in

[37], the H2 (optimal mean-square) estimate equations for

the error states (15) and (17) are given by

S5 : ė f (t) = A(t)e f (t −h)−K f (t)ỹ(t) (18)

+ P(t)CT (t)[ỹ(t)−C(t)e f (t)],

z̃ f (t) = L(t)e f (t), (19)

where e f (t) and z̃ f (t) are the H2 (optimal mean-square)

estimates for e(t) and z̃(t), respectively. In the equation (18),

P(t) is the solution of the equation for the corresponding

H2 (optimal mean-square) filter gain, where, according to

Theorem 3 from [1], the observation matrix C(t) should be

changed to C(t)− γ−1L(t) (L(t) is the output matrix in (3)).

It should be noted that, in contrast to Theorem 3 from [1],

no correction matrix Z∞(t) = [In − γ−2P(t)Q(t)]−1 appears

in the last innovations term in the right-hand side of the

equation (18), since there is no need to make the correction

related to estimation of the worst disturbance wworst(t) in the

error equation (15). Indeed, as stated in ([4]), the desired

estimator must be unbiased, that is, z̃ f (t) = 0. Since the

output error z̃(t), satisfying (17), also stands in the criterion

(10) and should be minimized as much as possible, the worst

disturbance wworst(t) in the error equation (15) should be

plainly rejected and, therefore, does not need to be estimated.

Thus, the corresponding H2 (optimal mean-square) filter

gain would not include any correction matrix Z∞(t). The

same situation can be observed in Theorems 1–4 in [4].

However, if not the output error z̃(t) but the output z(t)
itself would stand in the criterion (10), the correction matrix

Z∞(t) = [In − γ−2P(t)Q(t)]−1 should be included.

Taking into account the unbiasedness of the estimator (18)-

(19), it can be readily concluded that the equality K f (t) =
P(t)CT (t) must hold for the gain matrix K f (t) in (5). Thus,

the filtering equations (5)-(6) take the final form (11)-(12),

with the initial condition x f (θ) = 0 for ∀θ ∈ [t0 − h, t0],
which corresponds to the central H∞ filter (see Theorem

4 in [1]). It is still necessary to indicate the equations

for the corresponding H2 (optimal mean-square) filter gain

matrix P(t). In accordance with Theorem 1 from [37], the

filter gain matrix P(t) is given by the equation (13), with

the initial condition P(t0) = R−1, which corresponds to the

central H∞ filter (see Theorems 3 and 4 in [4]). Note that

the observation matrix C(t) is changed to C(t)− γ−1L(t)
according to Theorem 3 from [1]. Then, in view of Theorem

1 from [37], the equations (14) for complementary matrices

Pi(t), i ≥ 1, should be added to obtain a closed system of the

filtering equations.

It should be noted that, for every fixed t, the number of

equations in (14), that should be taken into account to obtain

a closed system of the filtering equations, is not equal to

infinity, since the matrices A(t), B(t), C(t), D(t), and L(t) are

not defined for t < t0. Therefore, if the current time moment

t belongs to the semi-open interval (kh,(k+1)h], where h is

the delay value in the equation (1), the number of equations

in (14) is equal to k. ¥

A considerable advantage of the designed filter is a finite

number of the filtering equations for any fixed filtering

horizon, although the state space of the time-delay system

(1) is infinite-dimensional [41].

Remark 1. The convergence properties of the obtained

estimate (11) are given by the standard convergence theorem

(see, for example, [40]): if in the system (1),(2) the pair

(A(t)Ψ(t − h, t),B(t)) is uniformly completely controllable

and the pair (C(t),A(t)Ψ(t − h, t)) is uniformly completely

observable, where Ψ(t,τ) is the state transition matrix for

the equation (1) (see [41] for definition of matrix Ψ), and

the inequality CT (t)C(t)− γ−2LT (t)L(t) > 0 holds, then the

error of the obtained filter (11)–(14) is uniformly asymptot-

ically stable. As usual, the uniform complete controllability

condition is required for assuring non-negativeness of the

matrix P(t) (13) and may be omitted, if the matrix P(t) is

non-negative definite in view of its intrinsic properties.

Remark 2. The condition CT (t)C(t)− γ−2LT (t)L(t) > 0

assures boundedness of the filter gain matrix P(t) for any

finite t, and also as time goes to infinity. Apparently, if

CT (t)C(t) − γ−2LT (t)L(t) < 0, then the function P(t) di-

verges to infinity for a finite time and the designed filter does

not work. If the equality CT (t)C(t)−γ−2LT (t)L(t) = 0 holds,

then the estimation error is uniformly asymptotically stable,

if the state dynamics matrix A(t) itself is asymptotically

stable.

Remark 3. According to the comments in Subsection V.G

in [1], the obtained central H∞ filter (11)–(14) presents a

natural choice for H∞ filter design among all admissible H∞

filters satisfying the inequality (10) for a given threshold γ ,

since it does not involve any additional actuator loop (i.e.,

any additional external state variable) in constructing the

filter gain matrix. Moreover, the obtained central H∞ filter

(11)–(14) has the suboptimality property, i.e., it minimizes

the criterion

J = ‖z̃(t)‖2
2 − γ2

{

‖ω(t)‖2
2 +‖ϕ(θ)‖2

2,R,[−h,0]

}

for such positive γ > 0 that the inequality CT (t)C(t) −
γ−2LT (t)L(t) > 0 holds.

Remark 4. Following the discussion in Subsection V.G in

[1], note that the complementarity condition always holds

for the obtained H∞ filter (11)–(14), since the positive

definiteness of the initial condition matrix R implies the

positive definiteness of the filter gain matrix gain P(t) as

the solution of (13). Therefore, the stability failure is the

only reason why the obtained filter can stop working. Thus,

the stability margin γ =
√

‖LT (t)L(t)‖/‖CT (t)C(t)‖ also

defines the minimum possible value of γ , for which the H∞

condition (10) can still be satisfied.
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IV. ALTERNATIVE FINITE-DIMENSIONAL H∞ FILTER

Consider now another design for the central H∞ filter

for LTV systems with state delay, which is based on the

alternative H2 (optimal mean-square) filter obtained in [38].

In doing so, the system of the equations (13),(14) for

determining the filter gain matrix P(t), whose number grows

as the filtering horizon tends to infinity, is replaced by the

unique equation for P(t), which includes the state transition

matrix Ψ(t,τ) for the time-delay equation (1) (see [41] for

the definition). The result is given by the following theorem.

Theorem 2. The alternative ”central” H∞ filter for the

unobserved state (1) over the observations (2), ensuring the

H∞ noise attenuation condition (10) for the output estimate

z f (t), is given by the equations (11) for the state estimate

x f (t), the equation (12) for the output estimate z f (t), and the

equation for the filter gain matrix P(t).

dP(t) = A(t)(Ψ(t −h, t))P(t)+P(t)(Ψ(t −h, t))T AT (t)+

B(t)BT (t)−P(t)[CT (t)C(t)− γ−2LT (t)L(t)]P(t))dt. (20)

with the initial condition P(t0) = R−1.

Proof. In view of Theorem 1 in [38], the alternative

equation for determining the H2 (optimal mean-square) filter

gain matrix P(t) in the estimate equation (11) is given by

the equation (20), with the initial condition P(t0) = R−1,

which corresponds to the central H∞ filter (see Theorems

3 and 4 in [4]). The observation matrix C(t) is changed to

C(t)− γ−1L(t) according to Theorem 3 from [1].

As suggested in [38], for computational purposes, the

matrix Ψ(τ, t), τ ≤ t, can readily be calculated as a solution

of the matrix equation Ψ(τ, t)x1(t) = x1(τ), τ ≤ t, for any

t,τ ≥ t0, where x1(t) is the solution of the homogeneous

equation (1) ẋ1(t) = A(t)x1(t −h), with the initial condition

(4). A solution of the matrix equation for Ψ(τ, t) always

exists, if x1(t) is not the zero vector. Otherwise, if x1(t) is

the zero vector, the matrix Ψ(τ, t) could just be set to zero,

Ψ(τ, t) = 0, for any τ ≤ t, since x1(τ) would be equal to

zero as well, regardless of the value of Ψ(τ, t). The simplest

calculation method is to design Ψ(τ, t) as a diagonal matrix,

Ψi j(τ, t) = 0, if i 6= j, whose diagonal entries are defined

as Ψii(τ, t) = x1i
(τ)/x1i

(t), if x1i
(t) 6= 0, and Ψii(τ, t) = 0,

otherwise, if x1i
(t) = 0. ¥

Note the designed alternative filter contains only two

differential equations, the estimate equation (11) and the

gain matrix equation (20), regardless of the filtering horizon.

This presents a significant advantage in comparison to the

preceding filter (11)-(14) consisting of a variable number of

the gain matrix equations, which is specified by the ratio

between the current filtering horizon and the delay value in

the state equation and unboundedly grows as the filtering

horizon tends to infinity. This advantage seems to be even

more significant upon recalling that the state space of the

time-delay system (1) is infinite-dimensional [41].

Remark 5. Since the designed alternative H∞ filter

(11),(12),(20) is based on the H2 mean-square filter obtained

in [38], which is optimal with respect to a mean square

criterion, Remarks 1–4 remain true for the alternative filter

also.

V. EXAMPLE

This section presents an example of designing the central

H∞ filter for a linear state with delay over linear observations

and comparing it to the best H∞ filter available for a linear

state without delay, that is the filter obtained in Theorems 3

and 4 from [4].

Let the unmeasured state x(t) = [x1(t),x2(t)] ∈ R2 with

delay (a mechanical oscillator with a delayed force input) be

given by

ẋ1(t) = x2(t −5), (21)

ẋ2(t) = −x1(t −5)+w1(t),

with an unknown initial condition x(θ) = ϕ(θ), θ ∈ [−5,0],
the scalar observation process satisfy the equation

y(t) = x1(t)+w2(t), (22)

and the scalar output be represented as

z(t) = x1(t). (23)

Here, w(t) = [w1(t),w2(t)] is an L2
2 disturbance input. It can

be readily verified that the noise orthonormality condition

(see Section 2) holds for the system (21)–(23).

The filtering problem is to find the H∞ estimate for the

linear state with delay (21) over direct linear observations

(22), which satisfies the noise attenuation condition (10) for

a given γ , using the designed H∞ filter (11)-(14) or the

alternative H∞ filter (11),(20). The filtering horizon is set

to T = 10. Note that since 10 ∈ [1×5,2×5], where 5 is the

delay value in the state equation (21), the only first of the

equations (13), along with the equations (11)–(14), should

be employed.

The filtering equations (11),(13), and the first of the

equations (14) take the following particular form for the

system (21),(22)

ẋ f1(t) = x f2(t −5)+P11(t)[y(t)− x f1(t)], (24)

ẋ f2(t) = −x f1(t −5)+P12(t)[y(t)− x f1(t)],

with the initial condition x f (θ) = 0, θ ∈ [−5,0];

Ṗ11(t) = 2P112
(t)− (1− γ−2)P2

11(t), (25)

Ṗ12(t) = −P111
(t)+P122

(t)− (1− γ−2)P11(t)P12(t),

Ṗ22(t) = 1−2P121
(t)− (1− γ−2)P2

12(t),

with the initial condition P(0) = R−1; and

Ṗ111
(t) = P12(t −5)+P212

(t)− (1− γ−2)P11(t)P11(t −5),
(26)

Ṗ112
(t) = P22(t −5)−P211

(t)− (1/2)(1− γ−2)×

[P11(t)P12(t −5)+P12(t)P11(t −5)],

Ṗ121
(t) = −P11(t −5)+P222

(t)− (1/2)(1− γ−2)×

[P11(t)P12(t −5)+P12(t)P11(t −5)],
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Ṗ122
(t) = 1−P12(t −5)−P221

(t)− (1− γ−2)P12(t)P12(t −5),

with the initial condition P1(θ) = 0, θ ∈ [0,5]; finally,

P2(θ) = 0, θ ∈ [5,10).
The estimates obtained upon solving the equations (24)–

(26) are compared to the conventional H∞ filter estimates,

obtained in Theorems 3 and 4 from [4], which satisfy the

following equations, where the gain matrix equation is a

Riccati one and the equations for matrices Pi(t), i ≥ 1, are

not employed:

ṁ f1(t) = m f2(t −5)+P11(t)[y(t)−m f1(t)], (27)

ṁ f2(t) = −m f1(t −5)+P12(t)[y(t)−m f1(t)],

with the initial condition m f (θ) = 0, θ ∈ [−5,0];

Ṗ11(t) = 2P12(t)− (1− γ−2)P2
11(t), (28)

Ṗ12(t) = −P11(t)+P22(t)− (1− γ−2)P11(t)P12(t),

Ṗ22(t) = 1−2P12(t)− (1− γ−2)P2
12(t),

with the initial condition P(0) = R−1.

Finally, the previously obtained estimates are compared

to the alternative H∞ filter estimates satisfying the equations

(11),(20). The equation (11) for the estimate x f (t) remains

the same as (24), and the gain matrix equation (20) takes the

following particular form for the system (21),(22)

Ṗ11(t) = 2Ψ22(t −5, t)P12(t)− (1− γ−2)P2
11(t), (29)

Ṗ12(t) = −Ψ11(t −5, t)P11(t)+Ψ22(t −5, t)P22(t)−

(1− γ−2)P11(t)P12(t),

Ṗ22(t) = 1−2Ψ11(t −5, t)P12(t)− (1− γ−2)P2
12(t),

with the initial condition P(0) = R−1, where it is taken

into account that the state transition matrix Ψ(τ, t) for the

linear time-delay state (21) is calculated as a diagonal matrix

according to the algorithm suggested in Section 4.

Numerical simulation results are obtained solving the

systems of filtering equations (24)–(26), (27)–(28), and

(24),(29). The obtained estimate values are compared to the

real values of the state vector x(t) in (21). For each of

the three filters (24)–(26), (27)–(28), and (24),(29) and the

reference system (21) involved in simulation, the following

initial values are assigned: ϕ1(θ) = 1, ϕ2(θ) = 1, θ ∈ [−5,0];
R = I2 = diag[1 1]. The L2 disturbance w(t) = [w1(t),w2(t)]
is realized as w1(t) = 1/(1 + t)2, w2(t) = 2/(2 + t)2. Since

C(t) = L(t) = [1 0] in (22),(23) and the minimum achievable

value of the threshold γ is equal to ‖L‖/‖C‖ = 1, the value

γ = 1.1 is assigned for the simulations.

The following graphs are obtained: graphs of the output

H∞ estimation error z(t)−z f (t) corresponding to the estimate

x f (t) satisfying the equations (24)–(26) (Fig. 1); graphs of

the output H∞ estimation error z(t)− z f (t) corresponding

to the conventional estimate m f (t) satisfying the equations

(27)–(28) (Fig. 2); graphs of the output H∞ estimation error

z(t)− z f (t) corresponding to the alternative estimate x f (t)
satisfying the equations (24),(29) (Fig. 3). The graphs of the

output estimation errors are shown in the entire simulation

interval from t0 = 0 to T = 10. Figures 1–3 also demonstrate

the dynamics of the noise-output H∞ norms corresponding

to the shown output H∞ estimation errors in each case.

The following values of the noise-output H∞ norm

‖Tzw‖
2 = ‖z(t)−z f (t)‖

2
2/(‖ω(t)‖2

2 +‖ϕ(θ)‖2
2,R,[−h,0]) are ob-

tained at the final simulation time T = 10: ‖Tzw‖ = 0.1614

for the H∞ estimation error z(t)− z f (t) corresponding to the

estimate x f (t) satisfying the equations (24)–(26), ‖Tzw‖ =
1.46202 for H∞ estimation error z(t)− z f (t) corresponding

to the conventional estimate m f (t) satisfying the equations

(27)–(28), and ‖Tzw‖ = 0.29106 for H∞ estimation error

z(t)− z f (t) corresponding to the alternative estimate x f (t)
satisfying the equations (24),(29).

It can be concluded that the central suboptimal multi-

equational H∞ filter (24)–(26) and the central suboptimal

alternative H∞ filter (24),(29) provide reliably convergent

behavior of the output estimation error, yielding very small

values of the corresponding H∞ norms, even in comparison

to the assigned threshold value γ = 1.1. The latter serves as

an ultimate bound of the noise-output H∞ norm as time tends

to infinity. The larger value of the H∞ norm for the alternative

H∞ filter (24),(29) appears due to MatLab discretization

scheme, which poorly handles the division by numbers close

to zero employed for calculating the matrix Ψ(t − 5, t) in

(29). In contrast, the conventional central H∞ filter (27)–(28)

provides divergent behavior of the output estimation error,

yielding a large value of the corresponding H∞ norm, which

exceeds the assigned threshold. Thus, the simulation results

show definite advantages of the designed central suboptimal

H∞ filters for linear systems with state delay, in comparison

to the previously known conventional H∞ filter.
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Fig. 1. Above. Graph of the output H∞ estimation error z(t)− z f (t)
corresponding to the estimate x f (t) satisfying the equations (24)–(26), in
the simulation interval [0,10].Below. Graph of the noise-output H∞ norm
corresponding to the shown output H∞ estimation error, in the simulation
interval [0,10].
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Fig. 2. Above. Graph of the output H∞ estimation error z(t)− z f (t)
corresponding to the estimate x f (t) satisfying the equations (27)–(28), in
the simulation interval [0,10].Below. Graph of the noise-output H∞ norm
corresponding to the shown output H∞ estimation error, in the simulation
interval [0,10].
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Fig. 3. Above. Graph of the output H∞ estimation error z(t)− z f (t)
corresponding to the estimate x f (t) satisfying the equations (24),(29), in
the simulation interval [0,10].Below. Graph of the noise-output H∞ norm
corresponding to the shown output H∞ estimation error, in the simulation
interval [0,10].
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