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Abstract— This paper is concerned with decentralized con-
troller design for large-scale interconnected systems of pseudo-
hierarchical structure. Given such a system, one can use the
existing techniques to design a decentralized controller for the
reference hierarchical model, which is obtained by eliminating
certain weak interconnections of the original system. Although
this indirect controller design is often fascinating as far as the
computational complexity is concerned, it may not provide a
satisfactory performance for the original pseudo-hierarchical
system. A LQ cost function is defined in order to evaluate
the discrepancy between the pseudo-hierarchical system and its
reference hierarchical model under the designed decentralized
controller. A discrete Lyapunov equation should then be solved
to compute this performance index. However, due to the large-
scale nature of the system, this equation can by no means be
handled for many real-world systems. Thus, attaining an upper
bound on this cost function can be much more desirable than
finding its exact value. For this purpose, a novel technique is
proposed, which only requires solving a simple LMI optimiza-
tion problem with three variables. The problem is then reduced
to a scalar optimization problem, for which an explicit solution
is provided. It is also proved that as the pseudo-hierarchical
system approaches its reference hierarchical model, the bounds
obtained from the LMI and scalar optimization problems will
both go to zero. In the particular case, when the two models
are identical (i.e., the original system is exactly hierarchical),
both upper bounds will be zero.

I. INTRODUCTION

Many real-world plants can be modeled as large-scale
interconnected systems [1]. Since such systems normally
comprise several subsystems, their control is intricate. De-
centralized control theory was developed to alleviate the
control design and implementation problems for this type of
systems. Distinctive aspects of decentralized control systems
have been well-documented in the last three decades [2],
[3]. A decentralized controller consists of a number of
isolated local controllers corresponding to the subsystems
(or control channels) of the interconnected system. For the
sake of simplicity of the control design problem, it is often
desirable that the large-scale system possesses a hierarchical
structure [4], [5]. The control design problem for a hierar-
chical system can be broken down into a number of parallel
design subproblems corresponding to diverse subsystems.
The advantage of such design techniques is twofold; not only
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is the control design procedure far simpler for a number of
low-order subsystems rather than a high-order system, but
the parallel computation is also intriguing.

Many important physical cooperative control applications
such as formation flight, underwater vehicles, automated
highway systems, robotics, satellite constellation, etc. with
a leader-follower configuration have a hierarchical structure
[6], [7], [8]. Furthermore, it is shown in [9] that under
certain conditions, a continuous-time non-hierarchical system
can have a hierarchical discrete-time equivalent model. It
is straightforward to show that a set of stabilizing local
controllers obtained by neglecting all the interconnections
between the subsystems constitute a stabilizing decentralized
controller for the original hierarchical system [5]. This
significant result is quite beneficial in the sense that it
provides a simple technique for decentralized control design.
In addition, a technique is given in [10] to design a near-
optimal decentralized controller for hierarchical systems.
This idea is further developed in [11] to decentralize any
given centralized controller without losing its fundamental
properties. While decentralized control design for hierar-
chical systems to achieve various design specifications has
been widely investigated in the past several years, there are
only a few fledgling control design techniques for general
large-scale systems, due to the complexity of the problem.
Furthermore, there is no efficient performance evaluation
method for a closed-loop decentralized system when the
controller is designed for the system after some structural
modifications.

On the other hand, there exist numerous non-hierarchical
systems which are ”close” to being hierarchical. Such sys-
tems have a few weak interconnections between their subsys-
tems whose removal will change the structure of the system
to an exact hierarchical one. This type of systems will be re-
ferred to as pseudo-hierarchical systems, and the hierarchical
model obtained by eliminating a minimum number of ”weak”
interconnections will be called reference hierarchical model
throughout this paper. Given a pseudo-hierarchical large-
scale system, a decentralized controller can be designed for
the corresponding reference hierarchical model, by exploiting
the available techniques. Even though this straightforward
approach is appealing as far as the computational complexity
is concerned, the decentralized controller obtained will not
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necessarily meet the design specifications for the original
pseudo-hierarchical system. In fact, the controller obtained
may not even stabilize the original system, whereas it
definitely stabilizes the corresponding reference hierarchical
model. Apart from the stabilizability issue (which is not
a concern if the removed interconnections in the reference
hierarchical model are sufficiently weak), the performance of
the pseudo-hierarchical system under this controller can be
quite poor. Thus, it is important to carry out a performance
analysis for the corresponding closed-loop system in order
to make certain that this indirect design technique is suitable
for the given pseudo-hierarchical large-scale system.

This paper deals with the performance analysis for pseudo-
hierarchical decentralized large-scale systems. It is assumed
that a decentralized controller has been designed for the
reference hierarchical model of a pseudo-hierarchical system
to meet certain control objectives. Moreover, it is supposed
that the above-mentioned controller stabilizes the pseudo-
hierarchical system, while it may deteriorate the overall
performance. A LQ cost function is appropriately defined
to assess the discrepancy between the pseudo-hierarchical
system and the corresponding reference hierarchical model
under this decentralized controller. The smaller this perfor-
mance index is, the closer the two closed-loop systems are
to each other. Obtaining this cost function involves solving a
discrete Lyapunov equation. As a result of the large-scale
nature of the system, this equation by no means can be
handled efficiently. Alternatively, it would be very useful
to attain an upper bound on this cost function. A novel
technique is proposed to address this objective, and it is
subsequently shown that a LMI optimization problem with
only three variables needs to be solved in order to compute
this bound. This problem is also simplified and an explicit
bound is proposed, without having to solve any optimization
problem. The main distinguishing feature of this work is that
it presents a simple technique for performance evaluation of
pseudo-hierarchical decentralized systems. To elucidate that
the obtained bounds are not too conservative in general, it is
proved that as the pseudo-hierarchical system approaches the
corresponding reference hierarchical model, these bounds go
to zero, and if the original model is exactly hierarchical, then
the bounds are both equal to zero.

The organization of this paper is as follows. In Section II,
some preliminary results are provided and the problem is also
formulated. The main results and developments are derived in
Section III, which are illustrated in two numerical examples
in Section IV. Finally, some concluding remarks are drawn
in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a large-scale interconnected system S consisting
of ν subsystems, where its ith subsystem Si is represented
by:

xi[k + 1] =
ν∑

j=1

Aijxj [k] + Biui[k]

yi[k] = Cixi[k], i ∈ ν̄ := {1, 2, · · · , ν}
(1)

In the above equation, xi[k] ∈ Rnj , ui[k] ∈ Rmi and yi[k] ∈
Rri are the state, the input and the output of Si, respectively.
Define n to be n1 + n2 + · · ·+ nν . Sketch now a digraph G
associated with the system S as follows:
• Assign ν vertices, one for each subsystem of S.
• For any i, j ∈ ν̄, i 6= j, connect vertex i to vertex j

with a directed edge if Aij 6= 0.
• For any i, j ∈ ν̄, if there is an edge between vertex i

and vertex j, attribute the weight ‖Aij‖F to that edge,
where ‖ · ‖F represents the Frobenius norm operator.

The graph G specifies the topology of information transmis-
sion between the subsystems. From this perspective, it plays
an important role in the stability and stabilizability analysis
of the system. If the graph G has no directed cycles, then
the system S is said to be hierarchical. For any i ∈ ν̄, define
the isolated subsystem S̄i as:

x̄i[k + 1] = Aiix̄i[k] + Biūi[k]
ȳi[k] = Cix̄i[k]

(2)

For the case when the graph G is acyclic, a stabilizing
decentralized controller can be obtained by designing ν
local controllers separately such that the ith local controller
stabilizes the isolated subsystem S̄i, for all i ∈ ν̄. This
simple, but important fact implies that when the graph G
is acyclic, the decentralized controller design procedure can
be quite straightforward (as far as the stability is concerned).
It is to be noted that as discussed earlier, several methods
are proposed in the literature to design a LTI decentralized
controller for a hierarchical system in order to achieve pre-
determined objectives.

In the general case, when the graph G is not acyclic, one
can remove certain edges of G to obtain an acyclic graph,
and design the local controllers for the resultant system as
described before. However, the controller obtained may not
perform satisfactorily when applied to the original system, if
the interconnections neglected in the control design are not
sufficiently weak.

Assume now that some of the edges are removed to obtain
a hierarchical model, and a LTI decentralized controller
K is designed for the resultant model using the available
approaches. Once this controller is applied to the original
system S , the closed-loop system may perform poorly, and
may even be unstable. Therefore, it is desired in this paper
to evaluate the performance of the system S under the
controller K, with respect to its hierarchical counterpart (i.e.
the hierarchical model under the same controller K). To this
end, it is assumed that the closed-loop system is stable, which
is a requirement for performance degradation analysis in this
work. It is worth mentioning that the closed-loop stability
required here is guaranteed if the interconnections neglected
in control design procedure are sufficiently weak.

In the sequel, the hierarchical system Sh under the LTI
decentralized controller K is represented as:

xh[k + 1] = Ahxh[k] (3)

and the original system S under the same controller as:

xc[k + 1] = Acxc[k] (4)
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Furthermore, set xc[0] = xh[0]. With no loss of generality,
the matrix Ah can be assumed to be lower-block triangular.

Remark 1: In the case when a decentralized overlapping
controller is to be designed for an overlapping system
by mean of the inclusion principle, the expanded system
(obtained from the original overlapping system) under the
decentralized controller designed after neglecting all the
interconnections is expressed by (4). The expanded system
with nullified interconnections under the above-mentioned
decentralized controller can then be described by (3), as a
special case of a hierarchical model.

In order to assess the closeness of the systems given in (3)
and (4), one can measure the discrepancy between the states
xh[k] and xc[k]. This can be evaluated through the following
performance index:

Jd =
∞∑

k=0

(xc[k]− xh[k])T (xc[k]− xh[k]) (5)

Definition 1: Define the performance indices Jc and Jh as
below:

Jc =
∞∑

k=0

xc[k]T Qxc[k], Jh =
∞∑

k=0

xh[k]T Qxh[k] (6)

With no loss of generality, it will be assumed hereafter that
Q = I .

Definition 2: The controller K is said to be µ-suboptimal,
if the inequality Jd

Jh
< µ holds.

Some works such as [12], define the suboptimality based
on the ratio Jc

Jh
, as opposed to Jd

Jh
. However, it is manifest

that the smallness of Jc

Jh
does not necessarily imply the

closeness of xc[k] and xh[k]. The objective here is to obtain
a proper and easy-to-compute µ by which the controller K is
suboptimal. Nevertheless, the following practical restrictions
are also made.

Assumption 1: The order of the entire interconnected sys-
tem S is substantially higher than the order of each individual
subsystem Si; i.e., n À ni, i ∈ ν. As a result, a discrete
Lyapunov equation corresponding to the entire system cannot
be solved efficiently, whereas a discrete Lyapunov equation
corresponding to any individual subsystem can be easily
solved.

Assumption 2: Although a Lyapunov equation of order n
cannot be computed efficiently, lower and upper bounds on
the eigenvalues of any matrix of order n can be obtained.

It is quite important to note in Assumption 2 that solving
a Lyapunov equation of order n is much more difficult than
estimating the eigenvalues of a matrix of order n, as the
former problem involves n2 variables while the latter one
only n + 1 (regardless of their linearity or bilinearity).

It is evident that Jh and Jc in (6) satisfy the relations:

Jh = xh[0]T Phxh[0], Jc = xc[0]T Pcxc[0] (7)

where:

AT
h PhAh − Ph + I = 0, AT

c PcAc − Pc + I = 0 (8)

In order to develop the main results of the paper, one more
assumption is required to be made.

Assumption 3: The closed-loop system given in (4) is
stable with the Lyapunov matrix Ph.

It is to be noted that Assumption 3 is more restrictive
than only the stability condition for the system (4), and is
met when the removed edges have sufficiently small weights.
Various sufficient conditions are provided in the literature,
which ensure the validity of this assumption.

III. MAIN RESULTS

In what follows, the performance deviation Jd will be
formulated.

Lemma 1: The performance index Jd can be written as:

Jd =
[

xh[0]T xc[0]T
]
Pd

[
xh[0]
xc[0]

]
(9)

where:
[

Ah 0
0 Ac

]
Pd

[
Ah 0
0 Ac

]T

− Pd +
[

I −I
−I I

]
= 0

(10)
Proof: Augmenting the closed-loop systems (3) and (4)

results in:[
xh[k + 1]
xc[k + 1]

]
=

[
Ah 0
0 Ac

] [
xh[k]
xc[k]

]
(11)

On the other hand, the performance index Jd can be rewritten
as:

Jd =
∞∑

k=0

[
xh[k]T xc[k]T

] [
I −I
−I I

] [
xh[k]
xc[k]

]
(12)

It is well-known that the performance index Jd, can be
written as (9) where the matrix Pd satisfies the equation (10).
This completes the proof. ¥

Due to Assumption 1, the performance deviation Jd cannot
be directly computed from Lemma 1 in order to compute the
ratio Jd

Jh
precisely. Hence, the notion of µ-suboptimality is

helpful here in order to obtain a reasonable upper bound on
this ratio, which is carried out in the sequel.

Lemma 2: Given a matrix H of proper dimension, assume
the following inequality is satisfied:
[

Ah 0
0 Ac

]T

H

[
Ah 0
0 Ac

]
−H +

[
I −I
−I I

]
< 0

(13)
Then, the inequality given below holds:

Jd <
[

xh[0]T xc[0]T
]
H

[
xh[0]
xc[0]

]
(14)

Proof: It can be concluded from the relations (10) and (13)
that:
[

Ah 0
0 Ac

]T

(H−Pd)
[

Ah 0
0 Ac

]
−(H−Pd) < 0 (15)

Since both of the matrices Ac and Ah are assumed to be
Schur, it results from the above inequality that Pd < H . The
proof follows immediately from this result and the equation
(9). ¥

Let the following optimization problem be introduced.
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Problem 1: Find the infimum of the objective function
k1 + 2k2 + k3 for the variables k1, k2 and k3, subject to:
[

(1− k1)I k2(AT
h PhAc − Ph)− I

k2(AT
c PhAh − Ph)− I k3(AT

c PhAc − Ph) + I

]
< 0

(16)
Remark 2: Problem 1 is a LMI optimization which can

be efficiently handled using proper software tools.
Theorem 1: The controller K is µ-suboptimal, where µ

denotes the infimum obtained by solving Problem 1.
Proof: Consider any real scalars k1, k2 and k3 satisfying

the inequality (16) given in Problem 1. Using the equations
given in (8), this inequality can be rewritten as:
[

Ah 0
0 Ac

]T

H

[
Ah 0
0 Ac

]
−H +

[
I −I
−I I

]
< 0

(17)
if the matrix H is chosen as:

H =
[

k1Ph k2Ph

k2Ph k3Ph

]
(18)

Therefore, it can be inferred from Lemma 2 that:

Jd <
[

xh[0]T xc[0]T
]
H

[
xh[0]
xc[0]

]
=

(k1 + 2k2 + k3)xh[0]T Phxh[0] =
(k1 + 2k2 + k3)Jh

(19)

(note that xh[0] = xc[0]). Thus:

Jd

Jh
< k1 + 2k2 + k3 (20)

The above inequality explains why the objective function
k1 + 2k2 + k3 is to be minimized, and hence it completes
the proof. ¥

Theorem 1 states that the solution of Problem 1 provides
an upper bound on the ratio Jd

Jh
. It is interesting to note

that the inequality constraint of this optimization problem is
always feasible. To prove this, it suffices to choose k1 =
2, k2 = 0 and to let k3 be a very large number. Since
it is assumed in Assumption 3 that the Lyapunov matrix
Ph determines the stability or instability of the system (3),
the matrix AT

c PhAc − Ph is negative definite, and thus the
inequality (16) holds.

Due to Assumption 1 and the large-scale nature of the
system S , Problem 1 may not be handled efficiently by
existing techniques. This is mainly because of the matrix
constraint (16) which becomes sophisticated for large-scale
systems. Thus, it is desirable to convert the matrix inequality
(16) into a scalar one. This objective will be addressed in the
sequel.

Problem 2: Find the infimum of the objective function
k1 + 2k2 + k3 for the variables k1, k2 and k3 subject to the
scalar inequalities k1 > 1 and:

(k1 − 1) (−1 + k3m1)− 1− k2
2m2 − k2m3 > 0 (21)

where:

m1 = λ (−R2) , m2 = λ̄
(
R1R

T
1

)
,

m3 = λ̄
(−R1 −RT

1

) (22)

(the symbols λ̄(·) and λ(·) represent the maximum and
minimum magnitudes of the eigenvalues of a matrix, respec-
tively).

Theorem 2: Denote with µ the infimum obtained by solv-
ing Problem 2. Then, the controller K is µ-suboptimal.
Proof: The inequality constraint of Problem 1 can be rear-
ranged as:

[
(k3R2 + I) (k2R1 − I)(
k2R

T
1 − I

)
(1− k1) I

]
< 0 (23)

where:

R1 = AT
c PhAh − Ph, R2 = AT

c PhAc − Ph (24)

Applying the Schur complement formula to the inequality
(23) results in the following inequality:

(k1 − 1) (k3R2 + I) + (k2R1 − I)
(
k2R

T
1 − I

)
< 0 (25)

It is easy to verify that the matrix inequality (25) is guaran-
teed to hold, provided the scalar inequality given below is
satisfied:

λ
(
(k1 − 1) (−k3R2 − I)

)
> λ̄

(
(I − k2R1)

(
I − k2R

T
1

) )
(26)

Choose some scalars k1, k2, k3 satisfying the inequality (21).
It can be deduced from the above discussion and the result
of Theorem 1 that in order to prove Theorem 2 it suffices to
substantiate the validity of the inequality (26). To show this,
one can use the following equation:

λ
(
(k1 − 1) (−k3R2 − I)

)
= (k1 − 1) (−1 + k3m1) (27)

Moreover, it results from Lemma 2.1 in [13] that:

λ̄
(
(I − k2R1)

(
I − k2R

T
1

) )
=

1 + λ̄
(
k2

(−R1 −RT
1

)
+ k2

2R1R
T
1

)

≤ 1 + k2λ̄
(−R1 −RT

1

)
+ k2

2λ̄
(
R1R

T
1

)

≤ 1 + k2m3 + k2
2m2

(28)

The relations (21), (27) and (28) altogether lead to the
inequality (26). ¥

Remark 3: Similar to the previous case, it can be shown
that the constraints of Problem 2 are always feasible (by
considering k1 = 2, k2 = 0 and choosing a sufficiently
large value for k3). It is to be noted that m1 is positive in
light of Assumption 3.

Remark 4: Since the statement of Problem 2 is attained by
reducing the matrix constraint in Problem 1 to some scalar
constraints, the upper bound proposed for µ in Theorem 2
is more conservative than the one given in Theorem 1.

To solve any of the two problems introduced in this
paper, the Lyapunov matrix Ph needs to be obtained first.
As a consequence of Assumption 1, this matrix cannot be
computed using the conventional methods. However, since
the matrix Ah which is required for obtaining Ph is assumed
to be lower-block triangular, it can be found by solving a
number of Lyapunov and Sylvester equations of subsystems’
orders (as opposed to the system’s order), successively. To
clarify this issue, assume that there are only two subsystems
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(i.e. ν = 2). In this case, the equation AT
h PhAh−Ph+I = 0

can be equivalently decomposed as:

AT
22P3A22 − P3 + I = 0 (29a)

AT
11P2A22 + AT

21P3A22 − P2 = 0 (29b)

AT
11P1A11 + AT

11P2A21 + AT
21P2A11

+ AT
21P3A21 − P1 + I = 0 (29c)

where:

Ph =
[

P1 P2

P2 P3

]
(30)

Since the underlying hierarchical closed-loop system is sta-
ble, the matrices A11 and A22 are both Schur. At this point,
the Lyapunov equation (29a), which is of subsystem’s order,
can be solved to find the matrix P3. Substitution of P3 in
the equation (29b) will yield a Sylvester equation, which
has a unique solution P2 (because the eigenvalues of A11

and A22 are all inside the unit circle). Finally, the Lyapunov
equation (29c) can be solved for the matrix variable P1 after
substituting P2 and P3 obtained above into this equation.
This illustrates that due to the special structure of Ah, the
condition of Assumption 1 is not essential. It is worth men-
tioning that in the general case (a system with any arbitrary
number of subsystems), the corresponding Lyapunov and
Sylvester equations can be systematically obtained, similarly
to the equations given in (29).

Theorem 3: Denote the optimal values of the vari-
ables k1, k2, k3 in Problem 2 with k∗1 , k∗2 , k∗3 . The triple
(k∗1 , k∗2 , k∗3) satisfies either the set of equations:

k∗1 = 1 (31a)
I − k∗2R1 = 0 (31b)

k∗3 =
1

m1
(31c)

or the following ones:

(4m2
2 − 4m1m2)(k∗2)2 + (4m2m3 − 4m1m3)k∗2

+ (m2
3 − 4m1) = 0 (32a)

k∗3 =
−2m2k

∗
2 + m3

2m1
+

1
m1

(32b)

k∗1 =
m2(k∗2)2 + m3k

∗
2 + 1

k∗3m1 − 1
+ 1 (32c)

Proof: Since the objective function k1 + 2k2 + k3 has no
minimum point (due to the inequality constraints), the solu-
tion of Problem 2 will occur at some point on the boundary
of the region defined by the corresponding constraints. Thus,
there are two possibilities as follows:

• Case 1: The equation k∗1−1 = 0 holds: In this case, the
optimization problem reduces to finding the infimum
of 1 + 2k2 + k3 under the constraint −1 − k2

2m2 −
k2m3 > 0. Since the resultant objective function has
no local minimum as noted above, the optimal solution
occurs at some point on the remaining boundary, i.e.
−1−(k∗2)2m2−k∗2m3 = 0. On the other hand, it follows

from (28) that:

0 ≤ λ̄
(
(I − k∗2R1)

(
I − k∗2RT

1

) )

≤ 1 + k∗2m3 + (k∗2)2m2

(33)

The above relation along with the equation −1 −
(k∗2)2m2−k∗2m3 = 0 signifies that the matrix I−k∗2R1

is equal to zero. Taking this result into account, it can
be concluded from the constraint of Problem 2 and the
equation k∗1 = 1+ that k∗3m1 − 1 is nonnegative. This
implies that in order for the objective function to be
minimized, k∗3 should be chosen as 1

m1
. The relations

obtained above satisfy the set of equations given in (31).
• Case 2: The equation (k∗1 − 1) (−1 + k∗3m1) − 1 −

(k∗2)2m2 − k∗2m3 = 0 holds: It can be inferred in this
case, that:

k∗1 =
m2(k∗2)2 + m3k

∗
2 + 1

k∗3m1 − 1
+ 1 (34)

If k∗1 − 1 is equal to zero, this case turns out to be
the same as Case 1. Hence, with no loss of generality,
assume that k∗1 − 1 is strictly positive. This yields that
solving Problem 2 is equivalent to finding the lowest
minimum point of the function:

m2k
2
2 + m3k2 + 1
k3m1 − 1

+ 1 + 2k2 + k3 (35)

for which k∗1 obtained in (34) is greater than or equal
to 1. Taking the gradient of the function in (35) and
equating it to zero will lead to the equations:

m2(k∗2)2 + m3k
∗
2 + 1

(k∗3m1 − 1)2
× (−m1) + 1 = 0 (36a)

2 +
2m2k

∗
2 + m3

m1k∗3 − 1
= 0 (36b)

One can combine these two equations to arrive at the
relation (32a). The proof follows from the fact that
the equations (36b) and (34) are identical to (32b) and
(32c), respectively. ¥

Theorem 3 presents a solution to Problem 2 which,
according to Theorem 2, provides a value for µ (i.e., the
suboptimality degree of controller K). Regarding the set
of equations (32) in this theorem, one should note that the
quadratic equation (32a) needs to be solved first; the result
obtained should then be substituted into the equations (32b)
and (32c) to find all other parameters.

The question arises as to how conservative the values of µ
obtained in Theorems 1 and 2 are. To answer this question, an
elegant result on the tightness of this bound will be presented
next.

Theorem 4: In the case when Ah and Ac are identical,
Theorems 1 and 2 both arrive at the exact solution µ = 0.

Proof: For the case when Ah = Ac, it can be easily veri-
fied that R1 = R2 = −I; consequently, m1 = m2 = 1 and
m3 = 2. Now, Theorem 2 states (after some simplifications)
that µ is equal to the infimum of k1 + 2k2 + k3 under the
inequality constraints k1 > 1 and:

k1k3 − k1 − k3 − 2k2 − k2
2 > 0 (37)
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The latter inequality is equivalent to:

(k1 − 1)(k3 − 1) ≥ (k2 + 1)2 (38)

Hence, µ is equal to 0, and is attained when k1 = k3 → 1+

and k2 = −1. ¥
Remark 5: It can be inferred from Theorem 4 and the

continuity, that if Ah is sufficiently close to Ac, then the
upper bounds proposed in this paper will be close to zero.
As can be noticed from the proof of this theorem, the result
is not trivial at all. In other words, it is not straightforward
to conclude from Theorems 1 and 2 that if Ah = Ac, then
the corresponding upper bounds will be equal to the exact
value, i.e. µ = 0.

IV. NUMERICAL EXAMPLES

Example 1: Consider an interconnected system S with
nine SISO subsystems of order 1, and assume that the
interconnections from subsystem i to subsystem j, ∀i, j ∈
{1, 2, ..., 9}, i < j, are in general ”weaker” than the ones
in the opposite direction. Hence, to design a decentralized
controller for the system with nine local controllers, one
can eliminate these weak interconnections and design a
decentralized controller for the resultant hierarchical model
using any arbitrary method. For simplicity, assume that a
static decentralized controller has been designed for the
hierarchical model. For the performance analysis of the
pseudo-hierarchical system under the designed controller,
two different choices will be considered for the closed-loop
matrix Anh in the sequel.

Consider first a matrix Anh of the following form:

1

4.35




1 0.5 2 0.1 0.5 0.6 0.3 0.3 0.1
0 1 1.5 0.5 1 0 1 0.2 0.25
1 0.3 1 0 0.2 1 0.2 0.5 0.31
0 0 0.3 1 3 1 0.05 0.1 0.01

0.3 0 0 1 1 2 0 0 0.2
0 0 0 0 1 1 0.8 0 1
0 0 .04 0.5 0.6 0 0.5 1 1

0.01 0 0 0.1 0.1 0 0.5 1 2
0.4 0.9 0.04 0.03 0 0.3 0.05 1 0




It can be observed that the lower-diagonal entries of this ma-
trix have smaller magnitudes compared to the upper-diagonal
ones in general (which introduce ”weak” interconnections
in the digraph of the system). The hierarchical matrix (Ah)
obtained by neglecting the lower-diagonal entries of the
above matrix is given by:

1

4.35




1 0.5 2 0.1 0.5 0.6 0.3 0.3 0.1
0 1 1.5 0.5 1 0 1 0.2 0.25
0 0 1 0 0.2 1 0.2 0.5 0.31
0 0 0 1 3 1 0.05 0.1 0.01
0 0 0 0 1 2 0 0 0.2
0 0 0 0 0 1 0.8 0 1
0 0 0 0 0 0 0.5 1 1
0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0




It can be verified that Jd and Jh for this example are
equal to 67.9336 and 38.6145, respectively, resulting in Jd

Jh
=

1.7593. On the other hand, an upper bound on Jd

Jh
can be

attained from Theorem 1 by solving Problem 1, which leads
to:

k1 = 2.131, k2 = −1.7529, k3 = 5.7894

Due to the relation µ = min(k1+2k2+k3), the upper bound
µ on the ratio Jd

Jh
is equal to 4.4145. Note that although

the obtained upper bound is approximately 2.5 times greater
than the exact value, it has been attained through a quite
simple procedure, which is very desirable for large-scale
systems. This relatively large difference between Jd

Jh
and

the corresponding upper bound µ is due to the fact that
the neglected interconnections are not ”weak” enough to be
ignored. For instance, there are some large lower-diagonal
entries (such as 0.9

4.35 ), which are comparable and greater than
some of the upper-diagonal entries.

Since Problem 1 involves matrix variables, its handling
may be formidable for typical large-scale systems. Thus, let
Theorems 2 and 3 be utilized here to obtain an upper bound
µ. In this case, the variables k1, k2 and k3 are obtained
to be equal to 1.5206, -0.9144 and 5.2813, respectively,
which correspond to the upper bound limit µ = 4.973. Even
though the matrix constraint in Problem 1 may seem to
be oversimplified when introducing Problem 2, the results
obtained for this example show that this is not necessarily
the case. In other words, the bound µ = 4.973 obtained by
using Theorem 3 is relatively close to the bound µ = 4.4145
resulted from Theorem 1.

Example 2: Consider the previous example, but with a new
matrix Anh given below:”

1

4.35




1 0.5 2 0.1 0.5 0.6 0.3 0.3 0.1
0 1 1.5 0.5 1 0 1 0.2 0.25
0 0 1 0 0.2 1 0.2 0.5 0.31
0 0 0 1 3 1 0.05 0.1 0.01
0 0 0 0 1 2 0 0 0.2

0.05 0 0 0 0 1 0.8 0 1
0 0 0 0 0 0 0.5 1 1
0 0 0 0 0 0 0 1 2

0.001 0 0 0 0 0 0 0 0




In this case, the ”weak” interconnections of the previous
system have been further weakened in order for the pseudo-
hierarchical system to become closer to its reference hierar-
chical model. Notice that the reference hierarchical model
of this system is still given by the matrix Ah presented
for the previous case. It can be verified that Jd and Jh

in this case are equal to 0.0117 and 38.6145, respectively.
The sizeable drop in the magnitude of Jd compared to
the previous case manifestly confirms that the closeness
of the pseudo-hierarchical and the corresponding reference
hierarchical models has a significant impact on the accuracy
of the proposed performance evaluation. The upper bound
limit µ obtained by using Theorems 1 and 2 are equal
to 0.0041 and 0.0671, respectively. These results are in
accordance with the statement of Theorem 4.

V. CONCLUSIONS

This paper deals with the performance analysis of large-
scale systems with pseudo-hierarchical structures; i.e., those
systems that are ”close” to being hierarchical, due to certain
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weak interconnections between their subsystems. It is as-
sumed that a stabilizing decentralized controller is available
for the system, which is basically designed to achieve some
control objectives for the reference hierarchical model; i.e.,
a hierarchical model which is obtained by eliminating some
weak interconnections in the original system. Since this indi-
rect design technique may not result in a good performance
for the original pseudo-hierarchical system, this work aims
to quantitatively measure the closeness of the system and
the corresponding reference hierarchical model under the
designed controller. For this purpose, a LQ cost function
is properly defined to measure the discrepancy between
the original pseudo-hierarchical system and its hierarchical
counterpart under the designed controller. Since computing
the exact value of this cost function involves solving a large-
scale Lyapunov equation, it is desired instead to obtain an
upper bound on it. To this end, a simple LMI optimization
problem with only three variables is proposed here to attain
said upper bound. To further simplify the procedure of
obtaining a proper bound, the matrix optimization problem
is reduced to a scalar optimization one for which an explicit
solution is obtained. In addition, it is shown that the closer
the pseudo-hierarchical system to the reference hierarchical
model is, the smaller these bounds are, and when the models
are identical, these bounds are both equal to zero. This
demonstrates that the bounds obtained through the proposed
simple optimization problems are not too conservative. The
ideas developed here are illustrated in two numerical exam-
ples.
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