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Abstract— In this paper the reachability property for single-
input continuous-time positive switched systems is investigated.
By referring to an existing (and hard to check) characterization
of the reachability of the class of positive switched systems
which commute among n single-input n-dimensional systems
[9], we develop new algebraic tools which allow us to derive
sufficient reachability conditions which are easier to evaluate.

I. INTRODUCTION

Modeling of physical phenomena typically comes as the

result of a pondered balance among different, often conflict-

ing, needs. The first natural goal one pursues, when describ-

ing a physical system, is accuracy, which is generally ensured

by resorting to computationally demanding solutions. As a

consequence, this requirement is often weakened in order

to achieve feasible solutions, which are more suitable to

real-time implementation. Under this point of view, the case

often occurs that a complex nonlinear model, which provides

a good description of the real system dynamics, can be

efficiently replaced by a family of simpler and possibly linear

models, each of them appropriate for describing the system

evolution under specific working conditions.

This simple fact stimulated, in the last ten-fifteen years,

a long stream of research concerned with the analysis and

design of “switched linear systems”, by this meaning sys-

tems whose describing equations change, according to some

switching law, within a (possibly infinite) family of (linear)

subsystems. Research efforts in this area were first oriented to

the investigation of stability and stabilizability issues [7], and

it was only a few years later that structural properties, like

reachability, controllability and observability, were initially

addressed [4], [13], [14].

On the other hand, the positivity requirement is often

introduced in the system models whenever the physical

nature of the describing variables constrains them to take

only positive (or at least nonnegative) values. Positive linear

systems naturally arise in various fields such as bioengi-

neering (compartmental models), economic modelling, be-

havioral science, and stochastic processes (Markov chains),

where the state variables represent quantities, like pressures,

population levels, concentrations, etc., that have no meaning

unless nonnegative [3].

In this perspective, switched positive systems are mathe-

matical models which keep into account two different needs:

the need for a system model which is obtained as a family of

simple subsystems, each of them accurate enough to capture
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the system laws under specific operating conditions, and the

need to introduce the nonnegativity constraint the physical

variables are subject to. This is the case when trying to de-

scribe certain physiological and pharmacokinetic processes.

For instance, the insulin-sugar metabolism is captured by

two different compartmental models: one valid in steady-

state and the other (more complex) describing the evolution

under perturbed conditions, following an oral assumption or

an intravenous injection.

Of course, the need for this class of systems in specific

research contexts has stimulated an interest in theoretical

issues related to them, and, in particular, structural properties

of continuous-time positive switched systems have been

recently investigated in [8], [9], [10]. In detail, necessary

conditions for reachability have been investigated in [8]

(monomial reachability) and in [9] (pattern reachability),

while necessary and sufficient conditions for the reachability

of continuous-time positive switched systems of dimension

n, which commute among n single-input subsystems, have

been investigated in [10]. These conditions, even though

valuable from a theoretical point of view, appear quite

difficult to check. This difficulty has stimulated research

interest in the detailed analysis of the dominant modes of

the exponential of a Metzler matrix [11].

By relaying on those results and on some new technical

lemmas, we will be able to derive in this paper some new

sufficient conditions for reachability of this special class of

systems which are easy enough to check.

Before proceeding, we introduce some notation. For every

k ∈ N, we set 〈k〉 := {1, 2, . . . , k}. In the sequel, the

(i, j)th entry of a matrix A is denoted by [A]i,j . If A is

block partitioned, block(i,j)[A] denotes its (i, j)th block. R+

is the semiring of nonnegative real numbers. A matrix A

with entries in R+ is a nonnegative matrix (A ≥ 0); if

A ≥ 0 and A 6= 0, A is a positive matrix (A > 0), while

if all its entries are positive it is a strictly positive matrix

(A ≫ 0). The same notation is adopted for nonnegative,

positive and strictly positive vectors. A Metzler matrix, on

the other hand, is a real square matrix, whose off-diagonal

entries are nonnegative.

Given any matrix A ∈ Rq×r, by the nonzero pattern of A

we mean the set of index pairs corresponding to its nonzero

entries, namely ZP(A) := {(i, j) : [A]i,j 6= 0}. Conversely,

the zero pattern ZP(A) is the set of indices corresponding

to the zero entries of A. The adaptation of these concepts to

the vector case is straightforward.

We let ei denote the ith vector of the canonical basis in

Rn (where n is always clear from the context), whose entries
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are all zero except for the ith which is unitary. We say that

a vector v ∈ Rn
+ is an ith monomial vector if ZP(v) =

ZP(ei) = {i}. For any set S ⊆ 〈n〉 and any vector v ∈

Rn
+, we let vS ∈ R

|S|
+ be the restriction of v to its positive

components.

To every n × n Metzler matrix A we associate [2],

[12] a directed graph G(A) with vertices indexed by

1, 2, . . . , n. There is an arc (j, i) from j to i if and only

if [A]ij 6= 0. We say that vertex i is accessible from j

if there exists a path (i.e., a sequence of adjacent arcs

(j, i1), (i1, i2), . . . , (ik−1, i)) in G(A) from j to i (equiv-

alently, ∃ k ∈ N such that [Ak]ij 6= 0). Two distinct

vertices are said to communicate if each of them is accessible

from the other. By definition, each vertex communicates

with itself. The concept of communicating vertices allows to

partition the set of vertices 〈n〉 into communicating classes,

say C1, . . . , Cℓ. To any class Ci we associate two index sets:

A(Ci) := {j : the class Cj has access to the class Ci}
D(Ci) := {j : the class Cj is accessible from the class Ci}.

Each class Ci is assumed to access to itself. If i is a vertex

in G(A), we denote by C(i) the class i belongs to.

The reduced graph R(A) [12] associated with A (with

G(A)) is the (acyclic) graph having the classes C1, C2, . . . , Cℓ

as vertices. There is an arc (j, i) in R(A) if and only if i ∈
D(Cj). Any (acyclic) path (i1, i2), (i2, i3), . . . , (ik−1, ik) in

R(A) identifies a chain of classes (Ci1 , Ci2 , . . . , Cik
), having

Ci1 as initial class and Cik
as final class.

An n × n Metzler matrix A is reducible if there exists a

permutation matrix P such that

PT AP =

[

A11 A12

0 A22

]

,

where A11 and A22 are square (nonvacuous) matrices, other-

wise it is irreducible. It follows that 1×1 matrices are always

irreducible. In general, given a square Metzler matrix A, a

permutation matrix P can be found such that

PT AP =









A11 A12 . . . A1ℓ

A22 . . . A2ℓ

. . .
...

Aℓℓ









, (1)

where each Aii is irreducible. (1) is usually known as

Frobenius normal form of A [2]. Clearly, the irreducible

matrices A11, A22, . . . , Aℓℓ correspond to the communicating

classes C1, C2, . . . , Cℓ of G(PT AP ) (coinciding with those of

G(A), after a suitable relabelling).

When dealing with the graph of a matrix in Frobenius

normal form (1), for every i ∈ 〈ℓ〉, A(Ci) ⊆ {i, i+1, . . . , ℓ},

while D(Ci) ⊆ {1, 2, . . . , i} = 〈i〉, so that A(Ci) ∩ D(Ci) =
{i}. On the other hand, if i > j then A(Ci) ∩ D(Cj) = ∅,

while if i < j the following conditions are equivalent

A(Ci) ∩D(Cj) 6= ∅ ⇔ i ∈ D(Cj) ⇔ j ∈ A(Ci).

A class Ci is initial if A(Ci) = {i}, and it is distinguished

[12] if λmax(Aii) > λmax(Ajj) for every j ∈ D(Ci), j 6= i.

Basic definitions and results about cones may be found, for

instance, in [1]. We recall here only the few facts used within

this paper. A set K ⊂ R
n

is said to be a cone if αK ⊂ K
for all α ≥ 0. A cone K is said to be polyhedral if it can be

expressed as the set of nonnegative linear combinations of a

finite set of generating vectors. This amounts to saying that

k ∈ N and C ∈ Rn×k can be found, such that K coincides

with the set of nonnegative combinations of the columns of

C. In this case, we adopt the notation K := Cone(C).

A polyhedral cone K in Rn is simplicial if it admits

n linearly independent generating vectors. In other words,

K := Cone(C) for some nonsingular matrix C. When so, a

vector v belongs to the boundary of the simplicial cone K
if and only if v = Cu for some u > 0, with ZP(u) 6= 〈n〉.

II. REACHABILITY OF SINGLE-INPUT POSITIVE

SWITCHED SYSTEMS

A single-input continuous-time positive switched system is

described by the following equation

ẋ(t) = Aσ(t)x(t) + bσ(t)u(t), t ∈ R+, (2)

where x(t) and u(t) denote the n-dimensional state variable

and the scalar input, respectively, at the time instant t,

σ is a switching sequence, taking values in a finite set

P = {1, 2, . . . , p}. As a matter of fact, in this paper we

will steadily address the case when P = 〈n〉, namely p = n.

We assume that the switching sequence is piece-wise

constant, and hence in every time interval [0, t] there is a

finite number of discontinuities, which corresponds to a finite

number of switching instants 0 = t0 < t1 < . . . < tk < t.

Also, we assume that, at the switching time tℓ, σ is right

continuous. For each i ∈ P , the pair (Ai, bi) represents a

continuous-time positive system, which means that Ai is an

n×n Metzler matrix and bi is an n-dimensional nonnegative

column vector.

As a first step, we recall the definition of reachability for

positive switched systems.

Definition 1: [9], [10] A state xf ∈ Rn
+ is said to be

reachable if there exist some time instant tf > 0, a switching

sequence σ : [0, tf [→ P and an input u : [0, tf [→ R+ that

lead the state trajectory from x(0) = 0 to x(tf ) = xf .

A positive switched system is said to be reachable if every

state xf ∈ Rn
+ is reachable.

As a starting point, we recall here the characterization of

reachability for a system described as in (2) and commuting

among n single-input subsystems. For the sake of compact-

ness, we restate it by making use of some new notation.

Given any set S ⊆ 〈n〉, we introduce the family of indices

IS := {i ∈ P : ZP(eAi
eS) = S}. (3)

Proposition 1: [9] Given an n-dimensional continuous-

time positive switched system (2), commuting among n

single-input subsystems (Ai, bi), i = 1, 2, . . . , n, the follow-

ing facts are equivalent:
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i) the switched system (2) is reachable;

ii) for every proper subset1 S ⊂ 〈n〉 we have:

iia) 2 if |S| = 1, then ∃ j(S) ∈ IS such that ZP(bj(S)) = S;

iib) if |S| > 1, then IS 6= ∅ and either

1. ∃ j(S) ∈ IS such that ZP(bj(S)) ⊂ S,

or

2. for every v ∈ Rn
+, with ZP(v) = S, there exist

m ∈ N, (τ1, . . . , τm) ∈ Rn
+ and i1, . . . , im ∈ IS ,

such that v can be obtained as the nonnegative

combination of no more than |S| − 1 columns

of eAi1τ1 . . . eAimτmPS , where PS is the selection

matrix which selects all the columns corresponding

to the indices appearing in S.

Remark 1: It is worthwhile noticing that the two subcases

of point iib) correspond to two different ways of reaching

the final vector v: indeed, in the former case a nonnegative

forcing input is applied during the last switching interval,

while in the latter the system is left to freely evolve.

Remark 2: The algebraic conditions provided in Propo-

sition 1 cannot be easily verified. Specifically, there is

no obvious way of testing whether indices i1, . . . , im and

positive time intervals τ1, . . . , τm can be found, such that

a given positive vector v, with ZP(v) = S, belongs

to Cone(eAi1τ1 . . . eAimτmPS) and it can be obtained by

combining less than |S| columns of eAi1τ1 . . . eAimτmPS .

This would require trying all index sequences, of increasing

length, meanwhile varying the lengths of the switching

intervals τi. Of course, as there is no obvious result about

what it may be convenient to do (increasing or decreasing

the τi’s) and when one may give up (is there a maximum

numbers of indices m after which no successful result can

be obtained, unless it has been obtained earlier?), we need

to explore alternative means for solving this problem. This

will require us to find sufficient conditions for the problem

solvability.

If we assume that the nonempty set S ⊂ 〈n〉 and the

indices i1, i2, . . . , im ∈ IS are given, the problem one has

to address is the following one.

PROBLEM STATEMENT: Given any positive vector v ∈
Rn

+, with ZP(v) = S, find conditions ensuring that

vS ∈ R
|S|
+ belongs to the boundary of the simplicial

cone, Cone[PT
S eAi1τ1 . . . eAimτmPS ], where vS is the |S|-

dimensional strictly positive vector obtained by restricting v

to its positive entries, and PS is the selection matrix that

singles out the columns indexed on S.

This amounts to searching for conditions that allow to

obtain v as v = eAi1τ1 . . . eAimτm
u, for some u ∈ Rn

+ with

ZP(u) ( S, or, again, that we can obtain vS in the form

vS = PT
S eAi1τ1 . . . eAimτmPSuS , for some uS ∈ R

|S|
+ with

ZP(uS) 6= ∅.

1The case S = 〈n〉 is trivial, as either one the following two conditions
in iib) is necessarily satisfied.

2This condition is equivalent [8] to the so-called monomial reachability,
namely the possibility of reaching, starting from the zero initial condition
and by resorting to nonnegative inputs, any monomial vector.

In the following we will address our problem in an

apparently restrictive, but in fact equivalent, formulation, by

assuming S = 〈n〉 and IS = P . As a result, vS = v and

NEW PROBLEM STATEMENT: we search for conditions

ensuring that v ∈ Rn
+,v ≫ 0, can be obtained as

v = eAi1τ1 . . . eAimτm
u, ∃ u ∈ Rn

+ with ZP(u) 6= ∅. (4)

III. EXPONENTIAL ASYMPTOTIC CONES

To solve this new problem, we recall the concept of

asymptotic exponential cone of an exponential matrix and

introduce, more generally, the asymptotic cone of a product

of exponential matrices along some direction in Rn
+.

Definition 2: [10], [11] Given an n × n Metzler matrix

A, we define its asymptotic exponential cone, Cone∞(eAt),
as the polyhedral cone generated by the vectors v

∞
i , which

represent the asymptotic directions of the columns of eAt:

v
∞
i := lim

t→∞

eAt
ei

‖eAt
ei‖

, i = 1, 2, . . . , n.

Analogously, given an ordered set of n×n Metzler matrices

Ai1 , . . . , Aim
and a positive vector ᾱ = (α1, . . . , αm), we

define their asymptotic exponential cone along ᾱ

Coneᾱ
∞

(

eAi1 t . . . eAim t
)

as the polyhedral cone generated by the (normalized) vectors

v
∞
i which represent the asymptotic directions of the columns

of eAi1α1t . . . eAimαmt, i.e.

v
∞
i := lim

t→∞

eAi1α1t . . . eAimαmt
ei

‖eAi1α1t . . . eAimαmt
ei‖

, i = 1, 2, . . . , n.

It is not hard to prove that Cone∞(eAt) always exists, it

is a polyhedral convex cone in Rn
+, and it is never the empty

set. Moreover, except for the case of a diagonal matrix A

(in which case Cone(eAt) = Cone∞(eAt) = Rn
+ for every

t ≥ 0), we have for every 0 < t1 < t2 < +∞:

Rn
+ ) Cone(eAt1) ) Cone(eAt2) ) Cone∞(eAt).

Notice, also, that while Cone(eAt) is a simplicial cone for

every t ≥ 0, Cone∞(eAt) is typically not. Indeed, it may

have no internal points. Similarly, Coneᾱ
∞

(

eAi1 t . . . eAim t
)

is a polyhedral cone in Rn
+, and it is never the empty

set. However, no monotonicity property can be generally

guaranteed, as it happens for a single matrix exponential.

One may wonder why there is the need for introducing a

whole family of asymptotic cones corresponding to a certain

index family {i1, i2, . . . , im}. The reason is that, for m > 1,

different directions ᾱ lead to different asymptotic cones. This

simple example clarifies this point.

Example 1: Consider the two Metzler matrices

A1 =

[

1 1
0 2

]

, A2 =

[

6 1
0 4

]

.
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It is a matter of simple computation to show that, for any

ᾱ = (α1, α2) ∈ R2
+, we get

eA1α1teA2α2t =

[

e(α1+6α2)t e(α1+6α2)t + e(2α1+4α2)t + l.t.

0 e(2α1+4α2)t

]

where “l.t.” (“lower terms”) denotes terms which are surely

dominated by the two terms appearing in the (1, 2)-entry.

Consequently, we distinguish the following three cases:

1) α1 + 6α2 > 2α1 + 4α2, namely α1 < 2α2: if so,

Coneᾱ
∞(eA1teA2t) = Cone

([

1
0

])

;

2) α1 +6α2 = 2α1 +4α2, namely α1 = 2α2: in this case

Coneᾱ
∞(eA1teA2t) = Cone

([

1 2
0 1

])

;

3) α1 + 6α2 < 2α1 + 4α2, namely α1 > 2α2, for which

Coneᾱ
∞(eA1teA2t) = Cone

([

1 1
0 1

])

.

Notice that even if ᾱ varies in Rm
+ , the number of

asymptotic cones is necessarily finite, as it depends on

which mode dominates each column in the matrix product

eAi1α1teAi2α2t . . . eAimαmt. Since the dominant modes are

obtained by multiplying the dominant modes of each single

entry of the various factors eAih
αht, the number of possible

combinations as ᾱ varies in Rm
+ is necessarily finite.

In the following sections we investigate the relationship

between the asymptotic exponential cones and the boundaries

of the cones generated by either single exponential matrices

or products of exponential matrices. By making use of these

characterizations and of the fundamental result of Proposition

1, we will be able to provide a family of sufficient conditions

for reachability.

IV. THE SINGLE EXPONENTIAL CASE

Lemma 1: Given an n×n Metzler matrix A and a strictly

positive vector v ∈ Rn
+, the following facts are equivalent:

i) there exists τ > 0 such that v belongs to ∂Cone(eAτ );
ii) v 6∈ Cone∞(eAt).

Even more, if any of the above equivalent conditions holds,

there exists a unique τ > 0 such that v belongs to

∂Cone(eAτ ).
Proof: The equivalence i)-ii) has been proved in [11].

Suppose, by contradiction, that there exist τ1, τ2 > 0, with

τ1 6= τ2, such that v = eAτ1
u1 = eAτ2

u2, for some

positive vectors u1,u2 with nontrivial zero patterns. If we

assume, w.l.o.g., τ2 > τ1, then from the previous identity one

gets u1 = eA(τ2−τ1)
u2, which ensures [9] that ZP(u1) =

ZP(eA(τ2−τ1)
u2) = ZP(eAτ2

u2) = ZP(v), a contradiction.

As an immediate corollary of Lemma 1, we get

Corollary 1: Given an n × n Metzler matrix A, the

following facts are equivalent:

i) every v ≫ 0 belongs to ∂Cone(eAτ ) for some τ > 0;

ii) Cone∞(eAt) ⊆ ∂Rn
+;

iii) there exists some index k ∈ 〈n〉 such that k ∈ ZP(v∞
i )

for every i ∈ 〈n〉.

Cone∞(eAt) and its generating vectors, v
∞
i play a major

role in our analysis, and hence it is fundamental to fully iden-

tify them. By making use of Theorem 5.4 and Proposition

6.1, in [11], we may derive this complete characterization.

Lemma 2: Given an n × n Metzler matrix A,

i) for every i ∈ 〈n〉 v
∞
i is a positive eigenvector (of unitary

norm) of A, corresponding to the dominant eigenvalue of

some distinguished class;

ii) a positive eigenvector v of A, corresponding to some

eigenvalue λ ∈ σ(A), can be expressed as the nonnegative

combination of all those eigenvectors v
∞
i which correspond

to the eigenvalue λ, and hence v belongs to Cone∞(eAt);
iii) Cone∞(eAt) coincides with the (polyhedral) cone in Rn

+

generated by the set of positive eigenvectors of A. Even

more, Cone∞(eAt) is the polyhedral cone generated by a

full column rank positive matrix.

Proof: i) has been proved in [11], and, indeed, it

immediately follows from Proposition 6.1 in [11].

ii) Suppose w.l.o.g. that ‖v‖ = 1 and that A is in Frobenius

normal form (1). Since eAt
v = eλt

v, it is easily seen that

lim
t→+∞

eAt
v

‖eAt
v‖

= lim
t→+∞

eλt
v

‖eλt
v‖

= lim
t→+∞

v = v.

On the other hand, by resorting to Proposition 6.1 in [11],

we may say that, when t tends to +∞, then

eAt
v ≈

∑

i∈I

v
∞
i [v]i m(t),

where

• m(t) is the dominant mode within the set
{

eλjt t
mj

mj ! : j ∈ ZP(v)
}

, with λj = max{λmax(Akk) :

k ∈ D(C(j))} and mj + 1 the maximum number of

classes Ck with λmax(Akk) = λj that lie in a single

chain starting from C(j) in R(A);
• I := {i ∈ ZP(v) : mi(t) = m(t)}.

Consequently, lim
t→+∞

eAt
v

‖eAt
v‖

=

∑

i∈I v
∞
i [v]i

‖
∑

i∈I v
∞
i [v]i‖

. So, it

must be v =

∑

i∈I v
∞
i [v]i

‖
∑

i∈I v
∞
i [v]i‖

.

iii) Let V be the set of all positive eigenvectors of A. By the

previous point ii), Cone(V ) ⊆ Cone∞(eAt). On the other

hand, Cone∞(eAt) = Cone(v∞
1 , . . . ,v∞

n ) ⊆ Cone(V ), and

hence Cone(V ) = Cone∞(eAt). Since, given a subset of lin-

early dependent positive eigenvectors in {v∞
1 ,v∞

2 , . . . ,v∞
n },

there is at least one vector which can be expressed as the

nonnegative combination of the remaining eigenvectors, by

getting rid of one eigenvector at a time, we can obtain a

family of linearly independent generators for Cone∞(eAt)
whose coordinates make up a full column rank matrix.

Remark 3: Notice that when A is an irreducible matrix,

it admits only one positive eigenvector of unitary norm,

which is strictly positive and corresponds to the dominant

eigenvalue [1]. Therefore Cone∞(eAt) collapses into a one
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dimensional cone (a ray) which lies in the interior of the

positive orthant.

We finally get a characterization of the condition

Cone∞(eAt) 6⊆ ∂Rn
+.

Proposition 2: Let A be an n × n Metzler matrix in

Frobenius normal form (1). Cone∞(eAt) 6⊆ ∂Rn
+ if and only

if every initial class is distinguished, namely if A(Cj) = {j}
then λmax(Ajj) > λmax(Akk) for every k ∈ D(Cj).

Proof: [Sufficiency] Suppose that for every class

Cj , j ∈ 〈ℓ〉, which is initial λmax(Ajj) > λmax(Akk) for

every k ∈ D(Cj). Let j be an arbitrary index in 〈ℓ〉. If Cj is

an initial class, then for every index i such that C(i) = Cj ,

blockj [v
∞
i ] ≫ 0. On the other hand, when Cj is not an

initial class, and we let Ch be an initial class accessing Cj ,

then for every index i such that C(i) = Ch, blockj [v
∞
i ] ≫ 0.

This proves that for every j ∈ 〈ℓ〉 there is at least one

vector v
∞
i with blockj [v

∞
i ] ≫ 0, and this ensures that

Cone∞(eAt) 6⊆ ∂Rn
+.

[Necessity] Assume, by contradiction, that there is one initial

class Cj, j ∈ 〈ℓ〉, such that λmax(Ajj) ≤ λmax(Akk) for

some k ∈ D(Cj). Let i be an arbitrary index in 〈n〉. If i 6∈ Cj

then blockj [e
At

ei] = 0 and hence blockj [v
∞
i ] = 0 (see

Theorem 5.4 in [11]). On the other hand, if i ∈ Cj then

there exists h < i such that blockh[eAt
ei] strictly dominates

blockj [e
At

ei]. Consequently, blockj [v
∞
i ] = 0. This ensures

that all vectors v
∞
i have the jth block identically zero, and

this implies that Cone∞(eAt) ⊆ ∂Rn
+.

At this point, by putting together Proposition 1 with

Corollary 1 and Proposition 2, we get the following sufficient

condition for reachability.

Proposition 3: Consider an n-dimensional continuous-

time positive switched system (2), commuting among n

single-input subsystems (Ai, bi), i = 1, 2, . . . , n, and sup-

pose that |IS | = 1 for every proper subset S ⊂ 〈n〉,
namely that there exists a unique index j(S) ∈ 〈n〉 such

that ZP(eAj(S)eS) = S. Then the system is reachable if and

only if the following two conditions hold:

a) the system is monomially reachable;

b) for every S, with |S| > 1, either ZP(bj(S)) ⊆ S or

Cone∞

(

PT
S eAj(S)tPS

)

⊆ ∂Rn
+, where PS is the selec-

tion matrix which selects all the columns corresponding

to the indices belonging to S.

Proof: [Sufficiency] Notice, first, that if

Cone∞

(

PT
S eAj(S)tPS

)

⊆ ∂Rn
+, then, by Corollary 1,

for every strictly positive vector vS ∈ R
|S|
+ there exists

τ > 0 such that vS ∈ ∂Cone
(

PT
S eAj(S)τPS

)

. So, as a

consequence of condition ZP(eAj(S)eS) = S, for every

positive vector v ∈ Rn
+, with ZP(v) = S, there exists

τ > 0 such that v = eAj(S)τPSuS , with ZP(uS) 6= ∅.

Consequently, assumptions a) and b) imply conditions iia)

and iib) of Proposition 1, and reachability follows.

[Necessity] By comparing the proposition’s statement with

the one of Proposition 1, it remains to prove that if the

system is reachable and for every S ⊂ 〈n〉 there is a single

index j(S) such that ZP(eAj(S)
eS) = S, then condition3

∅ 6= ZP(bj(S)) 6⊆ S implies Cone∞

(

PT
S eAj(S)PS

)

⊆ ∂Rn
+.

Indeed, let v be a positive vector with ZP(v) = S. If

the vector v is reachable, then [9] it can be expressed as

v = eAj(S)τkBk, with τk > 0 and

Bk := e
Aik−1

τk−1 . . . eAi1τ1eAi0τ0bi0ci0 + . . .

+ eAik−1
τk−1bik−1

cik−1
, (5)

for suitable indices iℓ (with iℓ 6= iℓ+1), nonnegative time

intervals τℓ and nonnegative coefficients cℓ. But then [9]

Sk := ZP(Bk) ⊆ S, and the uniqueness of j(S) ensures

that Sk ( S. So, v = eAj(S)τkPSuS , ∃ uS ≥ 0, with

ZP(uS) 6= ∅. But since this must be true for every vector

v ∈ VS := {v : ZP(v) = S}, then every vS ∈ R
|S|
+ , with

vS ≫ 0, must lie on the boundary of Cone(PT
S eAj(S)τPS)

for some τ = τ(vS) > 0. By Corollary 1, then, it must be

Cone∞

(

PT
S eAj(S)PS

)

⊆ ∂Rn
+.

Proposition 4: Consider an n-dimensional positive

switched system (2), commuting among n single-input

subsystems (Ai, bi), i = 1, 2, . . . , n, and suppose that the

system is monomially reachable. If for every proper subset

S ⊂ 〈n〉, with |S| ≥ 2,

∩i∈IS
Cone∞(eP T

S
AiPSt) ⊆ ∂R

|S|
+ , (6)

then the system is reachable.

Proof: Monomial reachability ensures that all mono-

mial vectors are reachable. On the other hand, consider the

case of any vector v with S = ZP(v) of cardinality greater

than 1 and let vS be the restriction of v to the indices

corresponding to S. If (6) holds, than, by the strict positivity

of vS , there exists at least one index j = j(vS) ∈ IS such

that vS 6∈ Cone∞(eP T
S

AjPSt). Thus, by Lemma 1, there

exists τ > 0 such that vS ∈ ∂Cone(eP T
S

AjPSτ ) and v is

reachable.

V. THE MULTIPLE EXPONENTIAL CASE

In this section we explore the properties of the cones

generated by an ordered family of exponential matrices,

along certain directions. As illustrated in Example 1, once

the indices i1, i2, . . . , im ∈ P have been chosen, we are

dealing with a family of asymptotic exponential cones, and

not a single one. Nonetheless this is always a finite family.

Unfortunately, the result of Lemma 1 for the asymptotic

cone of a single exponential matrix can be only partially

extended, thus getting the following proposition, which rep-

resents an extended of version a similar result in [9].

Proposition 5: Given a set A = {A1, . . . , Ap} of Met-

zler matrices and a strictly positive vector v ∈ Rn
+, let

m be in N and let i1, i2, . . . , im be indices in P . If

v 6∈ Cone(1,1,...,1)
∞ (eAi1 t . . . eAim t), then ∃ τ1, . . . , τm >

0 such that v ∈ ∂ Cone(eAi1τ1 . . . eAimτm). Conse-

quently, if v 6∈ Coneᾱ
∞(eAi1 t . . . eAim t), for some ᾱ =

3Notice that reachability ensures monomial reachability and this implies
[9], for this class of systems, that all vectors bi, i ∈ 〈n〉, are monomial.
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(α1, α2, . . . , αm) ∈ Rm
+ , then ∃ τ̄1, . . . , τ̄m > 0 such that

v ∈ ∂ Cone(eAi1 τ̄1 . . . eAim τ̄m).

Proof: The first part was proved in [9]. The final part

follows from the previous one, by assuming Āih
:= Aih

αh

and τh = αhτ̄h.

This sufficient condition for the solvability of the NEW

PROBLEM immediately brings, as a corollary, a sufficient

condition for the original PROBLEM solution.

Corollary 2: Consider a set A = {A1, . . . , Ap} of Met-

zler matrices and a nonnegative vector v ∈ Rn
+. Set S :=

ZP(v), and let PS denote the (column) selection matrix cor-

responding to the indices in S, and vS = PT
S v the subvector

obtained by restricting v to the entries corresponding to S.

If

vS 6∈
⋂

m≥1

⋂

i1,...,im∈IS

⋂

ᾱ∈R
m
+

Coneᾱ
∞(PT

S eAi1 t . . . eAim tPS),

then ∃ i1, i2, . . . , im ∈ IS and τ1, . . . , τm > 0 such that

v = eAi1τ1 . . . eAimτm
u, with ZP(u) ( S.

Unfortunately, up to now, we have not been able to reverse

the statement of Proposition 5. However, examples have

been given showing that v ∈ Cone(1,...,1)
∞ (eAi1 t . . . eAim t)

does not necessarily mean that v cannot be expressed as

v = eAi1τ1 . . . eAimτm
u, for some positive vector u with

ZP(u) ( S. There are some special cases, though, when we

are able to forecast that each strictly positive vector lies in

the boundary of some cone generated by the product of two

exponential matrices.

Lemma 3: Let A1, A2 ∈ Rn×n be two Metzler matrices.

Suppose that A2 is irreducible with dominant eigenvector (of

unitary norm) v ≫ 0, so that Cone(v) = Cone∞(eA2t). If

v ∈ Cone∞(eA1t), but it is not an eigenvector of A1, then

∀ τ1 > 0, ∃ τ2 > 0 such that v ∈ ∂Cone(eA1τ1eA2τ2).
Proof: This amounts to proving that for every τ1 > 0

there exists τ2 > 0 such that

v = eA1τ1eA2τ2
u ⇔ e−A1τ1

v = eA2τ2
u,

for some u > 0 with ZP(u) 6= ∅. We first observe that

for every τ1 > 0, w := e−A1τ1
v is not a multiple of v

and hence it does not belong to Cone∞(eA2t). On the other

hand, since v ∈ Cone∞(eA1t), then v is an internal point

of Cone(eA1t), for every t ≥ 0. So, in particular, v is an

internal point of Cone(eA1τ1), which amounts to saying that

v = eA1τ1
u1 for some u1 ≫ 0. Clearly, by the invertibility

of the exponential matrix, w = u1 ≫ 0. So, we have shown

that w is a strictly positive vector which does not belong

to Cone∞(eA2t). This implies that w ∈ ∂Cone(eA2τ2) for

some τ2 > 0, and hence w = eA2τ2
u, for some u > 0 with

ZP(u) 6= ∅. This completes the proof.

The previous technical result leads to the following suffi-

cient condition for reachability.

Proposition 6: An n-dimensional continuous-time posi-

tive switched system (2), commuting among n single-input

subsystems (Ai, bi), i = 1, 2, . . . , n, is reachable if for every

proper subset S ⊂ 〈n〉 we have:

a) if |S| = 1, then ∃ j(S) ∈ IS such that ZP(bj(S)) = S;

b) if |S| > 1, then either

1. ∃ j(S) ∈ IS such that ZP(bj(S)) ⊂ S,

or

2. ∃ ji(S), jk(S) ∈ IS such that PT
S Aji(S)PS is irre-

ducible and its strictly positive eigenvector (of unitary

modulus) is not an eigenvector of PT
S Ajk(S)PS .

Proof: We only need to show that condition b) - 2.

implies condition iib - 2) in Proposition 1.

To this end, let v be a positive vector with S = ZP(v) of

cardinality greater than 1, and notice that, under assumption

b)-2., there exists ji ∈ IS such that Cone∞(PT
S Aji

PS)
coincides with the cone generated by an eigenvector w ≫ 0.

Let vS be the restriction of v to the indices corresponding

to S. If vS 6= w, then vS 6∈ Cone∞(eP T
S

Aji
PSt), and hence

there exists τ > 0 such that vS ∈ ∂Cone(eP T
S

Aji
PSτ ).

This ensures that v is reachable. If vS = w, then either

vS 6∈ Cone∞(eP T
S

AjPSt) for some other j ∈ IS (and

if so, by repeating the previous argument, we may say

that vS ∈ ∂Cone(eP T
S

AjPSτ ), ∃ τ > 0, and hence v is

reachable), or for every j 6= i, j ∈ IS , we have vS ∈
Cone∞(eP T

S
AjPSt). For one such index jk ∈ IS , though,

vS is not an eigenvector of PT
S Ajk

PS . So, by applying

Lemma 3, we may say that there exist τk, τi > 0 such

that vS = eP T
S

Ajk
PSτkeP T

S
Aji

PSτi
uS , for some positive

vector uS , with ZP(uS) 6= ∅. This ensures, again, that v

is reachable.
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