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Abstract— In incomplete information system, new informa-
tion entropy and conditional entropy based on general relation
are proposed. The results that the information entropy is
extended from the general relation to equivalent relation and
tolerance relation are found. Then the conclusion that the
conditional entropy based on general relation decreases monoto-
nously as the neighbor operators become finer is obtained. This
paper presents some useful exploration about the incomplete
information system from information views.

Index Terms— Rough set; Information entropy; Conditional
entropy; General relation; Incomplete information system

I. INTRODUCTION

Rough set theory is a mathematical tool to deal with

vagueness and uncertainty of imprecise data. The theory

introduced by Pawlak in 1982 has been developed and found

applications in the field of decision analysis, data analy-

sis, pattern recognition, machine learning, and knowledge

discovery in databases. While the equivalence relation is

too harsh to meet and is extended to tolerance relation and

similarity relation. For example, equivalence relation can’t be

established based on the null value of attribute. In incomplete

information systems, which relations are established can be

the base of further study for rough computation, knowledge

reduction and rule extraction.

For the incomplete information systems, Kryszkietxricz

[1] proposed tolerance relation (reflexivity and symmetry),

J Stefamowski and A Tsoukeas [2] studied non-symmetric

similarity relation (reflexivity and transitivity), Wang [3] an-

alyzed limited tolerance relation (reflexivity and symmetry).

Yao [4] introduced neighborhood operators and discussed

interrelationship of rough models in general relation.

Information entropy can be used as an uncertainty mea-

surement. In the recent years, many researchers have dis-

cussed the relationship between roughness of knowledge,

roughness of rough sets and information entropy [5-9], which

can be regarded as an interpretation about roughness of

knowledge and roughness of rough sets from the information

views. Huang et al. discussed rough entropy based on gen-

eralized covering [10]. He proposed a tolerance fuzzy-rough

sets based on fuzzy tolerance relation. Tolerance fuzzy-rough

attribute reduction and the method for measuring fuzziness
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are also given. Incomplete fuzzy information system is stud-

ied by Yang et al.. Furthermore, fuzzy covering on universe

is proposed, three different operations on the coverings are

formed and then some significant results are gained. Besides,

with the two new definitions of fuzzy rough entropies,

uncertain factors can be effectively measured, some impor-

tant relationships between the varieties of uncertain factors

and the strength of those entropies are discussed carefully

[12]. Liang analyzed information entropy, rough entropy

and knowledge granulation in complete information system

systemically, and also discussed in incomplete information

systems [13]. However, the incomplete information systems

is pointed as tolerance relation, few research has be shown

about the information entropy in general relation.

General relation exists widely in social relation, for in-

stance, mutual spread of virus, citing behavior of references,

acquaintance relation of people etc. So it is necessary to dis-

cuss the measurements of general relation. If the information

entropies of equivalence relation and tolerance relation are

regarded as that of general relation, which only considered

the neighborhood size and ignored number of element. Since

the number of element also contains information quantity,

considering this a new information entropy of general rela-

tion is introduced. We can demonstrate the new information

entropy of general relation is the extensions of information

entropies based on equivalence relation and tolerance rela-

tion respectively. The conclusion that the new information

entropy of general relation decreases monotonously as the

neighborhood becomes finer is obtained.

The paper is organized as follows. In section II, ba-

sic notions related to information entropies are introduced.

And new information entropy based on general relation is

proposed. Furthermore, the interrelationships of entropies

based on equivalence relation, tolerance relation, and general

relation are discussed. In section III, conditional entropy

based on general relation is proposed. Section IV concludes

the whole paper.

II. AN NEW INFORMATION ENTROPY BASED ON

GENERAL RELATION

Information entropy based on equivalence relation is de-

fined by domain partition. If equivalence relation is extended

to tolerance relation or similarity relation, the tolerance

class or similarity class can not treated as domain partition,

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrAI02.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3650



but covering. It is that all subclasses may overlap in the

tolerance class or the similarity class. In the following, a new

information entropy based on general relation is introduced.

Definition 1. (See[14]) Let U be universe, {X1,X2, · · · ,Xn}
is a partition, pi = P(Xi) is the probability distribution of

{X1,X2, · · · ,Xn}. Then H(X) =−∑
n
i=1 pilogpi is information

entropy of information source X , where the base of logarithm

is 2, and if pi = 0, then 0× log0 = 0.

Definition 2. (See[15]) Let S = (U,A) be a complete

information systems, U/A = {X1,X2, · · · ,Xm}. Information

entropy is defined by

Eind(A) =
m

∑
i=1

|Xi|

|U |

|X c
i |

|U |
=

m

∑
i=1

|Xi|

|U |
(1−

|Xi|

|U |
)

where, X c
i denotes the complementary set of Xi, namely,

X c
i = U −Xi.

|Xi|
|U| is the probability of Xi in U and

|Xc
i |

|U| is

the probability of complementary set of Xi in U . Complete

information system implies it is equivalence relation.

Definition 3. (See[13]) Let S = (U,A) be an incomplete in-

formation systems, U/SIM(A)= SA(x1),SA(x2), · · · ,SA(x|U|).
Then information entropy of A is defined by

Esim(A) =
|U|

∑
i=1

1

|U |
(1−

|SA(ui)|

|U |
)

Generally, the relation we usually defined in incomplete

systems is the following: SIM(A) = {(x,y) ∈ U ×U,a ∈
A,a(x)= a(y) or a(x)= ∗ or a(y)= ∗}. Obviously, SIM(A)=
⋂

a∈A

SIM(a) is the similarity relation.

Definition 4. Let S = (U,A), U = {x1,x2, · · · ,x|U|} and

|xi|A = |{nA(x j)|xi ∈ nA(x j),1 ≤ j ≤ |U |}|. Then information

entropy of A in general relation is defined by

En(A) =
|U|

∑
i=1

[

1

|U |

√

(1−
|nA(xi)|

|U |
)× (1−

|xi|A
|U |

)

]

Where |xi|A is number of xi appearance in each neighbor-

hood x j (1 ≤ j ≤ |U |). nA denotes the neighborhood operator

in general relation. For reflexivity of the general relation,

xi ∈ nA(xi), i = 1,2, · · · , |U |.
Lemma 1. Let S = (U,A), U = {x1,x2, · · · ,x|U|}. The

information entropy of A in general relation can obtain its

maximum E(A) = 1−1/|U | if and only if nA(xi) = (xi), and

it can also obtain its minimum 0 if and only if nA(xi) = U .

Proof: If information entropy of A in general relation

obtains maximum E(A) = 1−1/|U |, then |xi|A and |nA(xi)|
need to be gotten the minimum values at the same time.

Since A is the general relation, each xi satisfies reflexivity xi ∈
nA(xi), thus |xi|min = 1 and |np(xi)|min = 1, namely, nA(xi) =
{xi}. On the contrary, if nA(xi) = {xi}, |xi|A and |nA(xi)|
can all obtain minimum values 1, which make information

entropy of A obtaining maximum value E(A) = 1−1/|U |.
With the same method, the information entropy of A in

general relation can obtain its minimum value 0 if and only

if nA(xi) = U .

Lemma 2. Let S = (U,A) be a complete information

system, U/A = {nA(x1),nA(x2), · · · ,nA(x|U|)}, U/IND(A) =
{X1,X2, · · · ,Xm}, then we have En(A) = Eind(A).

Proof: Let U/IND(A) = {X1,X2, · · · ,Xm}, Xi =
{xi1,xi2, · · · ,xiSi

}, where IND(A) be an equivalence

relation, |Xi| = Si, and
m

∑
i=1

|Si| = |U |. Then we have the

following equations,

Xi = nA(xi1) = nA(xi2) = · · · = nA(xiSi
).

It is that

|Xi| = |nA(xi1)| = |nA(xi2)| = · · · = |nA(xiSi
)|.

Where number of appearance xi j(1 ≤ j ≤ Si) in Xi is denoted

by |xi j|A, so we get

|xi1|A = |xi2|A == |xiSi
|A = |Xi| = Si.

Therefore, the following equality hold

|Xi|

|U |
(1−

|Xi|

|U |
)

=
1

|U |

[

(1−
|Xi|

|U |
)+ (1−

|Xi|

|U |
)+ · · ·+(1−

|Xi|

|U |
)

]

=
1

|U |

[
√

(1−
|nA(xi1)|

|U |
)(1−

|xi1|

|U |
)+ · · ·

+

√

(1−
|nA(xiSi

)|

|U |
)(1−

|xiSi
|

|U |
)

]

Hence,

Eind(A)

=
m

∑
i=1

|Xi|

|U |
(1−

|Xi|

|U |
)

=
m

∑
i=1

[

1

|U |
(1−

|Xi|

|U |
)+ · · ·+(1−

|Xi|

|U |
)

]

=
m

∑
i=1

1

|U |

[
√

(1−
|nA(xi1)|

|U |
)(1−

|xi1|A
|U |

)+ · · ·

+

√

(1−
|nA(xiSi

)|

|U |
)(1−

|xiSi
|A

|U |
)

]

=
|U|

∑
i=1

1

|U |

[
√

(1−
|nA(xi)|

|U |
)(1−

|xi|A
|U |

)+ · · ·

+

√

(1−
|nA(x|U|)|

|U |
)(1−

|x|U||A

|U |
)





=En(A)

From the Lemma 2, we have the information entropy

of general relation is the extension of that of equivalence

relation.

Lemma 3. Let S = (U,A) be an incomplete information

system, U/A = {nA(x1),nA(x2), · · · ,nA(x|U|)}, U/SIM(A) =
{SA(x1),SA(x2), · · · ,SA(x|U|)}. SIM(A) denotes a tolerance

relation. Then we have the following equality En(A) =
Esim(A).

Proof: SIM(A) denotes a tolerance relation , obviously.

For any SA(xi) = nA(xi) = {xi1,xi2, · · · ,xiTi
}, by reflexivity,

3651



xi ∈ SA(xi); by symmetry, xi ∈ SA(xi1),xi ∈ SA(xi2), · · · ,xi ∈
SA(xiTi

), and ∀x j ∈ {U − SA(xi)}, xi /∈ SA(x j). It is that xi

belongs to the neighborhood of elements which are in SA(xi),
and will not appear in other neighborhoods. Hence, the

number of xi appearance is |xi|A = |SA(xi)|. Obviously,

1

|U |
(1−

|SA(xi)|

|U |
) =

1

|U |

√

(1−
|nA(xi)|

|U |
)× (1−

|xi|A
|U |

).

Therefore,

Esim(A) =
|U|

∑
i=1

1

|U |
(1−

|SA(xi)|

|U |
)

=
|U|

∑
i=1

[

1

|U |

√

(1−
|nA(xi)|

|U |
)× (1−

|xi|A
|U |

)

]

=En(A)

From the Lemma 3, we have the information entropy of

general relation is the extension of that of tolerance relation.

Lemma 4. Let S = (U,A) be an information system of

general relation, P,Q ⊆ A. If P ⊂ Q, then En(Q) < En(P).
Proof. Let P⊂Q, for ∀i∈ {1,2, · · · , |U |}, we have nP(xi)⊆

nQ(xi). Clearly, |xi|P ≤ |xi|Q. There exists i ∈ {1,2, · · · , |U |}
such that nP(xi) ⊂ nQ(xi) or |xi|P < |xi|Q. Therefore

En(Q) =
|U|

∑
i=1

1

|U |

√

(1−
|nQ(xi)|

|U |
)(1−

|xi|Q
|U |

)

<
|U|

∑
i=1

1

|U |

√

(1−
|nP(xi)|

|U |
)(1−

|xi|P
|U |

)

=En(P).

III. CONDITIONAL ENTROPY BASED ON GENERAL

RELATION

Definition 5. Let S = (U,A) be an information systems of

general relation, P,Q ⊆ A. The conditional entropy is defined

as follows

En(Q|P)

=
1

|U |

|U|

∑
i=1

|U|

∑
j=1

[
√

|nQ(xi)∩nP(x j)|

|U |

|xQixP j|

|U |

×

√

|nP(x j)−nQ(xi)|

|U |

|xP jx̄Qi|

|U |

]

.

Where |xQixP j| denotes number of appearance of xi and x j

not only in the relation P, but also in the relation Q; xP j x̄Qi

denotes number of appearance of xi and x j in the relation P,

but not in the relation Q.

Lemma 5. Let S = (U,A) be an information systems

of general relation, P,Q ⊆ A. If P ⊂ Q, then En(D|P) <
En(D|Q).

Proof: Let P ⊂ Q, for ∀i ∈ {1,2, · · · , |U |},

nP(xi) ⊆ nQ(xi), we have |nP(xi)| < |nQ(xi)|,
|nD(xi) ∩ nP(x j)||xDixP j| < |nD(xi) ∩ nQ(x j)||xDixQ j|,

|nP(x j) − nD(xi)||xP j x̄Di| < |nQ(x j) − nD(xi)||xQ j x̄Di|.
Therefore

En(D|P) =
1

|U |

|U|

∑
i=1

|U|

∑
j=1

√

|nD(xi)∩nP(x j)|

|U |

|xDixP j|

|U |

×

√

√

√

√

|nP(x j)−nD(xi)|
|xP j x̄Di|

|U|

|U |

<
1

|U |

|U|

∑
i=1

|U|

∑
j=1

√

|nD(xi)∩nQ(x j)|

|U |

|xDixQ j|

|U |

×

√

√

√

√

|nQ(x j)−nD(xi)|
|xQ j x̄Di|

|U|

|U |

=En(D|Q)

namely, En(D|P) < En(D|Q).
Lemma 6. Let S = (U,A) be a complete

information system, U/P = {nP(x1),nP(x2), · · · ,nP(x|U|)},

U/Q = {nQ(x1),nQ(x2), · · · ,nQ(x|U|)}; U/IND(P) =
{X1,X2, · · · ,Xm}, |Xi| = Si, U/IND(Q) = {Y1,Y2, · · · ,Yn},

|Yi| = Vi. Then the relationship of conditional entropy

between in general relation and in equivalence is as follows

En(Q|P) =
n

∑
i=1

m

∑
j=1

V jSi

|U |

|Xi ∩Yj|

|U |

|X c
i −Y c

j |

|U |
.

Proof: Let U/IND(P) = {X1,X2, · · · ,Xm}, Xi =

{xi1,xi2, · · · ,xiSi
}, where |Xi| = Si and

m

∑
i=1

|Si| = |U |;

U/IND(Q) = {Y1,Y2, · · · ,Yn}, Yi = {xi1,xi2, · · · ,xiVi
}, where

|Yi| = Vi and
n

∑
i=1

|Yi| = |U |. Then the elements in U/P and

these in U/IND(P) have the following relationship

Xi = nP(xi1) = nP(xi2) = · · · = nP(xiSi
),

namely,

|Xi| = |nP(xi1)| = |nP(xi2)| = · · · = |nP(xiSi
)|.

The elements in U/Q and these in U/IND(Q) have the

following relationship

|Yi| = |nQ(xi1)| = |nQ(xi2)| = · · · = |nQ(xiSi
)|.

We can obtain |nQ(xi) ∩ nP(x j)| = |xQixP j| = |Xi ∩ Yj|,
|nP(x j)−nQ(xi)| = |xP jx̄Qi| = |X c

i −Y c
j |, so

En(Q|P)

=
1

|U |

|U|

∑
i=1

|U|

∑
j=1

[
√

|nQ(xi)∩nP(x j)|

|U |

|xQixP j|

|U |
√

|nP(x j)−nQ(xi)|

|U |

|xP jx̄Qi|

|U |

]

=
n

∑
i=1

m

∑
j=1

V jSi

|U |

|Xi ∩Yj|

|U |

|X c
i −Y c

j |

|U |
.

From the lemma 6, we can see weighed sum of compo-

nents which is of conditional entropy in equivalence relation
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is the conditional entropy of general relation, where weight

coefficients relate to the sizes of two domain.

Lemma 7. Let S = (U,A) be a complete

system, U/P = {nP(x1),nP(x2), · · · ,nP(x|U|)},

U/Q = {nQ(x1),nQ(x2), · · · ,nQ(x|U|)}; U/IND(P) =
{X1,X2, · · · ,Xm}, U/IND(Q) = {Y1,Y2, · · · ,Yn}. If

nP(xi) = {xi} and nQ(xi) = {xi}, En(Q|P) = 1
|U|Eind(Q|P); if

nP(xi) = U and nQ(xi) = U , En(Q|P) = 0.

Proof: From the proof procedure of Lemma 6, we can

know

En(Q|P) =
n

∑
i=1

m

∑
j=1

V jSi

|U |

|Xi ∩Yj|

|U |

|X c
i −Y c

j |

|U |
.

If nP(xi) = {xi} and nQ(xi) = {xi}, then V j = Si = 1. There-

fore, En(Q|P) = 1
|U|Eind(Q|P). If nP(xi) =U and nQ(xi) = U ,

according to the definition of conditional entropy, En(Q|P) =
0.

Example 1. Let {x1,x2, · · · ,x10}, U/P =
{{x1,x5},{x2,x3,x4,x6,x7},{x8,x9,x10}}, U/Q =
{{x1,x3,x4},{x2,x5,x6},{x7,x8,x9,x10}}, U/D =
{{x1,x3,x5,x8,x9},{x2,x4,x6,x7,x10}}. If it is general

relation, then En(D|P) = 0.26, En(D|Q) = 0.33. Obviously,

En(D|P) < En(D|Q), while P ⊂ Q does not hold.

Lemma 8. Let S1(U,P) and S2(U,Q) be two information

systems of general relations, P⊂Q if and only if E(Q|P)= 0.

Proof: Suppose P ⊂ Q, for any nP(x j) and nQ(x j),
we have nP(x j) ∩ nQ(x j) = /0. Therefore for any nP(x j)
and nQ(x j), we obtain

√

|nQ(xi)∩nP(x j)|× |xQixP j| = 0,
√

|nP(x j)−nQ(xi)|× |xP jx̄Qi| = 0. Thus

En(Q|P)

=
1

|U |

|U|

∑
i=1

|U|

∑
j=1

[
√

|nQ(xi)∩nP(x j)|

|U |

|xQixP j|

|U |
√

|nP(x j)−nQ(xi)|

|U |

|xP jx̄Qi|

|U |

=0.

Suppose En(Q|P) = 0, if P ⊂ Q is not hold,

there at least exist nP(x j) and nQ(x j) such that

nP(x j) ⊃ nQ(x j), then
√

|nQ(xi)∩nP(x j)|× |xQixP j| 6= 0,
√

|nP(x j)−nQ(xi)|× |xP jx̄Qi| 6= 0. Therefore, En(Q|P) > 0.

If nP(x j) ∩ nQ(x j) 6= /0, in a similar way, we can get

En(Q|P) > 0, which is contrary to the assumption. Thus

P ⊂ Q.

IV. CONCLUSIONS

New information entropy of general relation are proposed.

After analyzing the information entropies of the equivalence

relation and tolerance relation, we conclude the information

entropy of general relation is the extension of two infor-

mation entropies in two above relations and corresponding

proof are given. Furthermore, the property of the conditional

entropy is studied. Then the conclusion that the conditional

entropy based on general relation decreases monotonously

as the neighbor operators become finer is obtained.
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