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Abstract— In this paper, a new model for a capacitance-
based force sensor used in Interfacial Force Microscopy (IFM)
is proposed. This model considers both rotation and bending of
the torsion bars of a teeter-totter mechanism. A new actuation
method is introduced which greatly reduces the stress and strain
of the torsion bars. This results in increased sensitivity of the
sensor. A dynamic output feedback controller for this actuation
scheme is utilized in which the only measurement required is
the position of the sensor. Simulation results are presented that
confirm the analytical results.

I. INTRODUCTION

Atomic force microscope (AFM) is an instrument invented
in 1986 [1] for studying surface properties of materials at the
atomic level. AFM and its variations have been widely used
to probe a large range of physical and biological processes
in different research areas including mechanical properties
of single molecules, electric and magnetic fields of single
atoms and electrons, fabrication of microscopic devices,
DNA analysis and dissection, polymers and biomaterials
analysis, materials science, nano-manipulation, microelec-
tronics, telecommunications, data storage, and many other
high-tech industries. It has opened new perspectives in the
investigation and manipulation of biomedical specimens by
looking at, and working on, samples with “atomic” resolution
images which contain details not observable using any other
instrument.

In AFM, the interfacial force is measured by measuring
the deflection of a cantilever beam. This method is simple
and sensitive, but has some disadvantages. The force mea-
surement changes the interfacial separation and does not give
a direct measure of the force versus distance [2]. Another
problem appears when the spring constant is low and the
speed of approach or retraction is large. In such a case,
the sensor may become unstable due to the nonlinearity of
the interaction force [2]. Finally, the measurement of force
involves elastic energy storage in the sensor. Thus, if the
sensor moves to the thinner parts of the sample, the released
energy makes it difficult to study the topography of the
sample [2]. Interfacial Force Microscope (IFM) developed by
Joyce et al. [3], [4] is a modification of AFM with superior
capabilities for measuring force-displacement curves. Figure
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Fig. 1. Schematic diagram of IFM force sensor.

1 shows the IFM force sensor introduced by Joyce and
Houston [3]. The force is detected by sensing the deflection
of the tip and a force compensation system returns the sensor
tip to its original position. In this method, the electrostatic
forces generated by the capacitors are used to compensate for
the interaction forces; hence the sensor has effectively zero-
compliance. The deflection can be detected by measuring
the changes in the capacitance values or with other optical
methods.

IFM is a very suitable tool for biomedical applications
because of its longer and more rigid tungsten tip when
compared to AFM, which makes it easy to use inside watery
environments without significant changes in its character-
istics. IFM can be used for both indentation and imaging
applications. This makes IFM a unique scientific instrument.

In the current IFM sensor the electrostatic force is always
attractive. Currently in order to compensate for repulsive
forces, a DC bias voltage is applied on both capacitors.
The measuring range of the sensor is proportional to the
magnitude of the DC bias. The problem is that applying
this voltage may result in the bending, as well as downward
displacement of the common plate. The sensitivity of the
sensor is inversely related to this bias voltage as well. The
torsion bars can be designed to have a small torsional spring
constant and large bending (up or down) spring constants.
However, the common plate still moves as a result of the
applied forces [2].

Despite the current achievements in this area, IFM needs to
be improved in terms of speed, sensitivity, and sensor design
to be competitive with the available commercial instruments.
In this work, our focus is to develop a new actuation and
control scheme in order to achieve a higher sensitivity of the
microscope without reducing its measuring range.
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II. IFM FORCE SENSOR MODEL

Figure 2 shows the schematic diagram of the common
plate of the IFM force sensor. The torsion bars are connected
to the common plate from one side and to the frame (fixed
points) from the other side. Although the torsion bars are
designed to have relatively high spring constants in the Z and
Y directions compared to their torsional spring constant, they
still may bend when electrostatic and interfacial forces are
applied to the sensor. Considering the direction of the applied
forces, the bending in the Y direction can be neglected
while the movement of the plate in the Z direction should
be considered. The common plate and torsion bars can be

Fig. 2. Schematic diagram of the common plate of the IFM force sensor.

modelled by a mass located at the center and four springs
(two torsional and two linear springs). The parameters and
coordinates chosen for this case are shown in Figure 2. The
equations of the motion of the tip of the sensor can be derived
from the Lagrangian formulation [5]

d

dt

∂L

∂q̇
− ∂L

∂q
= τ (1)

with the Lagrangian L defined in terms of the kinetic energy
K and the potential energy P as L = K − P , q is the
generalized coordinate vector and τ is the applied torque
vector. Assuming that the plate is rigid, the kinetic energy
of the system can be expressed as

K =
1
2

mV T
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ωT I ω

=
1
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(
drT
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)(
dr
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)
+

1
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where m is mass of the moving part (plate and tip and torsion
bars), Vc is the velocity vector of the center of mass of
the plate, r is the position vector of the center of mass of
the common plate (Q́) with reference to its original position
(Q), ω is the angular velocity of the common plate, and I
is the inertia tensor of the common plate with reference to
its center of mass (Q́). To simplify the dynamic equations
of motion, from now on we assume that Lt = 2La = L
where Lt is the length of the torsion bars, La is the distance
from the tip to the axis of torsion bars, and L is the side
length of each capacitor plate. The movement of the tip in
the z direction is a consequence of the bending of the torsion
bars and the rotation of the common plate. The bending and
twist angles are shown in Figure 2 by φ and θ, respectively.
Assuming that φ and θ are very small, these movements can

be approximated by 3L
2 φ and L

2 θ and the total displacement
of the tip is

z =
3L

2
φ +

L

2
θ . (3)

The inertia tensor is then calculated, as

I =

 Ixx 0 0
0 Iyy 0
0 0 Izz


and consequently the kinetic energy of the tip body is given
by

K =
1
2
mṙ2 +

1
2
Ixxθ̇2 =

9
8
mL2φ̇2 +

1
2
Ixxθ̇2 (4)

where Ixx is the axial mass moment of inertia about the x
axis. The potential energy is given by

P = 2
(

1
2
kbr

2 +
1
2
ktθ

2

)
+ mgr

=
9
4
kbL

2φ2 + ktθ
2 +

3
2
mgLφ (5)

where kb and kt are the bending and torsional spring
constants of the torsion bars. The first term is the potential
energy of the bending, the second term is the potential energy
of the rotation, and the last term is the gravitational potential
energy. The first two terms are multiplied by two as there
are two torsion bars in the system.

Substituting K and P from (4) and (5) in (1), the equations
of motion can be written as

9
4
mL2φ̈ +

9
2
L2kbφ +

3
2
mLg =

3L

2
[fe1(z) + fe2(z)− fi(zs − z)] (6)

Ixxθ̈ + 2ktθ =
L

2
[fe1(z)− fe2(z)− fi(zs − z)] (7)

where fe1(z) and fe2(z) are the electrostatic forces exerted
on the capacitors and fi(zs−z) is the interfacial force exerted
by the sample. To simplify the analysis in deriving the
above equations, the widths of the torsion bars are neglected
compared to the width of capacitor plates (the widths of
torsion bars are around one percent of the width of capacitors
plates).

The gravitational force 3
2mLg in (6) is constant and can be

compensated for by a constant voltage. Therefore, it can be
removed from the dynamics. Assuming an air damping force
with a damping coefficient βb for the normal movement and
βt for the rotational movement, (6) and (7) can be written
as

9
4
mL2φ̈ + βbφ̇ +

9
2
L2kbφ

=
3L

2
[fe1(z) + fe2(z)− fi(zs − z)] (8)

Ixxθ̈ + βtθ̇ + 2ktθ =
L

2
[fe1(z)− fe2(z)− fi(zs − z)] .

(9)

It can be observed from (8) and (9) that the dynamics of
the system depend on the interfacial and electrostatic forces.
These forces are modeled in the following subsections.
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A. Modeling Interfacial Forces

The intermolecular and surface forces of elastic solids
forced into contact with each other have been studied for
many years [6]. Among the available models, the Hertz
model, the Derjaguin-Muller-Tupporov (DMT) model, and
the Johnson-Kendall-Roberts (JKR) model are more popular.
For the propose of this study, the JKR model can be used.
This model considers only interactions in the contact area
between the tip and the sample [7]. This model consists of
the Lennard-Jones potential and a modified Hertz model. The
interaction force of the Lennard-Jones model is given by

flj(z) = f0R

(
−(

σ

z
)2 +

1
30

(
σ

z
)8
)

(10)

where the tip is approximated with a ball of radius R, and
spherical approximation of the molecule diameter of σ. The
parameter f0 is given by

f0 =
2
3
π2ερ1ρ2σ

4

in which ρ1 is the density of the tip, ρ2 is the density of
the sample, and ε is the minimum energy of the Lennard-
Jones potential. The first term in the Lennard-Jones force is
the attractive Van der Waals interaction force and the second
term is the repulsive Pauli force. The attractive forces are
shown with negative signs while the repulsive forces are
shown with positive signs. The Hertz model describes the in-
teraction between two spheres and considers the deformation
of the spheres if they are in contact. By setting the radius of
the sample to infinity we get the interaction between a plane
surface and a spherical tip. This model has to be modified
because the resulting force has to be identical with the zero
point of the Lennard-Jones potential z0 [8]. The term z0 can
be found by setting flj = 0 in equation (10) which yields
z0 = 30−

1
6 σ. Assuming a small indentation of the plane

denoted by |z0 − z| � R we get

fh(z) = g0(z0 − z)3/2 (11)

where

g0 =
8
√

2R

3π
(

1−ν2
1

πE1
+ 1−ν2

2
πE2

) (12)

in which ν1, ν2 are the Poisson ratios of the tip and the
sample, and E1, E1 are the Young’s moduli of the tip and
the sample, respectively. Combining (10) and (11) results in
the interaction force for the whole range given by

fi(z) =
{

flj(z) if z > z0

fh(z) if z ≤ z0
(13)

B. Modeling Electrostatic Forces

When the tip approaches the sample, the interaction forces
pull the common plate toward the sample. In order to find
electrostatic forces the value of the capacitors should be
calculated first. The parallel plate capacitance is calculated
by

C0 = εε0
L2

D
(14)

where ε is the relative permittivity of the medium between
two electrodes (' 1 for air), ε0 = 8.854 × 10−12 C2

N.m2 is
the permittivity of vacuum, L2 is the area of each electrode,
and D is the the gap between the plates.

Rotation of the common plate changes the air gap between
the plates. Assuming that the angle of rotation is small
enough, the change in the air gap can be approximated by the
movement of the tip. With this assumption, the capacitance
formula changes to

C(z) = ε0
L2

D − z
(15)

where z is the movement of the tip. When a voltage is applied
to a capacitor, it will be charged by Q = C(z)V and the
electric energy stored in the capacitor is E = 1

2C(z)V 2.
The electrostatic force acting on the capacitors is given by

fe(z) = −dE

dz
= −1

2
V 2 dC

dz
=

1
2

ε0L
2

(D − z)2
V 2 (16)

III. ACTUATION SCHEME

One common approach is to bias both capacitors with a
constant DC voltage (Vdc) and apply a control voltage u
on the one of the two capacitors and −u on the other one
(u < Vdc) [9], [4]. This approach is referred to as double-
sided actuation. In this method, there is always a vertical
displacement of the common plate which is the consequence
of the DC bias voltage of the capacitors. This voltage
exerts electrostatic forces on both sides of the teeter-totter
mechanism. The problems of common plate displacement
will be alleviated if one uses compensation only on the tip-
bearing capacitor (C2 in Figure 1). This method is referred
to as single-sided actuation. In this case, both the total
torque and the net vertical force are balanced. In both cases,
the electrostatic forces have nonlinear relationships with the
control voltage. This is not too bad for rotation control as
it is possible to find a control input which can regulate the
rotation but these methods cause considerable deflection of
the torsion bars. For the sensor used in this study (refer to
Table I), and for fi = 0, Vdc = 10 V, with no control voltage,
the constant force exerted on the sensor (fe1(z) + fe2(z)) is
around 32.6 µN which generates considerable amount of
stress and strain on the sensor and reduces its sensitivity.

The approach proposed in this work to resolve this prob-
lem is to use an antagonistic actuation scheme. Figure 3
shows the schematic diagram of the proposed method. In
this mechanism, the controller has two outputs u1 and u2.
The u2 output will be active when z ≤ 0, while the u1 output
will be active when z > 0. The electrostatic force exerted
on the sensor can then be calculated as

fe(z) =

{
fe2(z) = 1

2
ε0L2

(D−z)2 u2
2 , z ≤ 0

fe1(z) = 1
2

ε0L2

(D+z)2 u2
1 , z > 0

(17)

IV. CONTROLLER DESIGN

Inspecting Table (I) reveals that kb is bigger than kt in the
order 105, so φ can be safely ignored in (3) and consequently
|z| ≈ L

2 θ. Therefore, in the following analysis the bending
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Fig. 3. Antagonistic Actuation Scheme.

dynamics are ignored. For non-contact imaging, z ≤ 0,
fe1(z) = 0, and fi(zs− z) = flj(zs− z). Now let us define

γ2(θ) =
1
2

ε0L
2

(D + L
2 θ)2

and u2
2 = u (18)

so fe2 can be found as fe2(z) = γ2(θ)u. Also let us define

flj(zs − z) = f2(θ) =

f0R

(
−(

σ

zs − L
2 θ

)2 +
1
30

(
σ

zs − L
2 θ

)8
)

. (19)

Now the dynamic equations of motion (9) for z ≤ 0 can be
written in the form

θ̈ =
−2kt

Ixx
θ − βt

Ixx
θ̇ +

L

2Ixx
γ2(θ)u−

L

2Ixx
f2(θ) . (20)

Choosing x1 = θ(t), this equation can be transformed into
the state space form

ẋ1 = x2 (21)

ẋ2 =
−2kt

Ixx
x1 −

βt

Ixx
x2 +

L

2Ixx
γ2(x1)

[
u− f2(x1)

γ2(x1)
]

(22)

z =
L

2
x1 (23)

where z is the output of the system. The control problem is
to regulate the output at a constant height in the presence of
varying interfacial forces.

To get some insight, let us analyze the equilibrium state of
the unforced system. The equilibrium points of the unforced
system can be obtained from (21) to (22), by substituting
ẋ1 = ẋ2 = 0 and u = 0, which results

x1 = − L

4kt
f2(x1) , x2 = 0 .

The equilibrium points depend on spring constant of the
sensor kt and the interfacial force f2(x1). These points can
be found graphically by finding the intersections of f2(x1)
and the linear torsional force line of the sensor. Figure 4
shows the equilibrium points of x1 for zs = 0.8 nm and
three different values of kt. In the equilibrium position, the
interfacial forces are balanced by the restoring mechanical
force. The number and the position of the equilibrium points
are dependent on the spring constant. For the simulated

Fig. 4. force-distance curve and instability points

system with zs = 0.8 nm and for 6 < kt < 11 N.m
rad

the number of equilibrium points varies between one to
three. The typical values of the sensor parameters which
have been used for simulation are listed in Table I. For
the sensor to be stable, the gradient of the restoring force
should be higher than that of the interfacial force. As shown
in Figure 4 the gradient of the interfacial force is lower
than that of the restoring force until point B is reached. At
this point they are equal and after that the gradient of the
interfacial force is higher, so the tip jumps to point C. In
the return path, the situation is vice versa. At point D, the
gradient of the restoring force is higher, hence the tip jumps
off from the surface to point A. Therefore to stabilize this
system, one may add the torsional stiffness of the sensor by
feedback control. It can be seen from equations (21) and
(22) and also from Figure 4 that the system is nonlinear. A
feedback linearization approach has been used to address the
nonlinearity of the system.

Let us take another pseudo control input v as

v = γ2(x1)u− f2(x1) . (24)

Substituting u from (24) in (22) converts the system to the
following linear system

ẋ = Ax + Bv (25)
z = Cx (26)

with

A =
(

0 1
− 2kt

Ixx
− βt

Ixx

)
, B =

(
0
L

2Ixx

)
, C =

(
L
2 0

)
,

(27)
and x = [x1 x2]T . Now taking the control signal v to be

v = −Kx with K =
(

k1 k2

)T
(28)

The system will be stable as long as A − BK is Hurwitz.
The controller (28) requires full state information which may
be restrictive due to sensor requirements. The system given
by (27) is observable/controllable as long as L is not zero
and Ixx is finite (which is the case for a physical device).
Hence we use a dynamic output feedback controller that uses
only one measurable parameter at the output. This greatly
improves the performance of the controller as it has all

2055



benefits of the classic derivative but it is less susceptible
to noise. The proposed controller is of the form

η̇ = h1η + h2z (29)
v = h3η + h4z (30)

where h1(≤ 0) to h4 are the single controller design
parameters. Substituting (29) and (30) in (25) results in the
following augmented system

˙̃x = Ãx̃ (31)

with
x̃ =

(
x η

)T
and

Ã =
(

A + Bh4C Bh3

h2C h1

)
· (32)

Using (30), (24) and (18), the final control inputs u2 can be
calculated from

u2 =

√
h3η + h4z

γ2(x1)
+

f2(x1)
γ2(x1)

. (33)

One should note that although f2(x1) in (33) can be recon-
structed using the knowledge of the interfacial force model, it
can also be considered as a disturbance and ruled out from
the control law. With this assumption, (24) will change to
v = γ2(x1)u. Substituting v and z from (33) and (26) in
(30), x1 is obtained. Now substituting x1 in (22) with x2

and ẋ2 = 0, the steady-state error is given by

x1 =
2Lh3η − 2Lf2(x1)

8kt − L2h4
(34)

which can be made arbitrary small with proper selection of
h3 and h4. One way to completely remove the output error
is to add an integral term in the controller design. With this
modification, the structure of the controller is given by

σ̇ = z (35)
η̇ = g1η + g2σ + g3z (36)
v = g4η + g5σ + g6z . (37)

which results in the following augmented system

˙̂x = Âx̂ (38)

with
x̂ =

(
x σ η

)T
and

Â =

 A + Bg6C Bg5 Bg4

C 0 0
g3C g2 g1

 . (39)

where g1 to g6 are single controller gains that are designed
such that Â is Hurwitz.

For z > 0, fe2 = 0 and again we can define γ1(x1),
f1(x1), and u from (17) and (13) as

γ1(x1) =
1
2

ε0L
2

(D − L
2 x)2

, u2
1 = u (40)

f1(x1) = g0(z0 − x)3/2 . (41)

With these definitions the state-space representation will
change to

ẋ1 = x2 (42)

ẋ2 =
−2kt

Ixx
x1 −

βt

Ixx
x2 +

L

2Ixx
γ1(x1)

[
u− f1(x1)

γ1(x1)
]

(43)

z =
L

2
x1 . (44)

A similar procedure can be used when z < 0.

V. SIMULATION RESULTS

The system was simulated in MATLAB/Simulink. The
interfacial forces were simulated by the modified JKR force
model. Assuming βt = 5.36 × 10−5 (Kg/m2)/(rad.sec),
and choosing h1 = −50, h2 = −100, h3 = −3, and
h4 = −1 ensures that the system is stable (Ã is full rank and
the real parts of the eigenvalues are all negative). An initial
tip-sample distance of 100.2 nm was set and the simulation
run time was set to 2 msec. The response of the system to
a step input of 100 nm applied with 1 msec delay is shown
in Figure 5. The controller output is also shown in Figure
6. As the Figure 6 shows the controller is able to follow

Fig. 5. Step response.

Fig. 6. Controller output to the step response.

the input very well with the transient time of less than 200
µsec. Figure 7 shows the response of the system when a
pulse disturbance with an amplitude of 0.02 volts (44% of
the control signal) and pulse width of 0.5 msec is applied at
1.5 msec. The figure shows that the proposed control method
is robust and can compensate for the effect of disturbances.

2056



Fig. 7. Controller output with the presence of disturbance.

The step response and the output of the system after
adding the integral term with g1 = −50, g2 = −100,
g3 = −1, g4 = −3, g5 = −1 × 103 , and g6 = −5 × 103

are shown in Figures 8 and 9. As the figures show, this

Fig. 8. Step response with integrator.

Fig. 9. Controller output with integrator.

modification completely removes the output error.

VI. CONCLUSIONS

A new model and actuation method for the IFM force
sensor was introduced in this paper which considers both
rotation and bending of the torsion bars of the teeter-totter
mechanism. The main advantage of this method of actuation
is that it completely removes the DC bias of the actuators. A
dynamic feedback control scheme for this actuation scheme
was designed and simulated. The results show satisfactory
performance. The simulation results indicate that the pro-
posed control scheme can greatly reduce the stress and strain
of the torsion bars. However it cannot completely prevent

bending in the repulsive force regime which may reduce
accuracy or cause instability in the contact mode imaging, or
in the force indentation applications. This will be addressed
in the future research. The experimental implementation of
this control strategy is in progress.

TABLE I
TYPICAL VALUES OF THE PHYSICAL PARAMETERS OF THE FORCE

SENSOR

Parameter (Symbol) Value for Si Sensor
ε0 8.854× 10−12 C2

N.m2

L 2.54× 10−3 m

ρ 2330 Kg
m3

M 8.2014× 10−5 Kg
D 5× 10−6 m
C0 11.63× 10−12 F
La 1.3335× 10−3 m
Lt 2.667× 10−3 m
b 1.27× 10−4 m
h 1.0× 10−4 m

E 9.8× 1010 N
m2

ν 0.45

G1 = E
2(1+ν)

3.379310× 1010 N
m2

Ixx 4.415427× 10−11 Kg.m2

Iyy 6.94354× 10−10 Kg.m2

Izz 5.510742× 10−11 Kg.m2

dIy 1.734298× 10−13 m4

dIz 1.365589× 10−13 m4

kb = Eb
4

( h
Lt

)3 1.898754× 102 N
m

kt = Ebh3

6Lt(1+ν)
5.632184× 10−4 N.m

rad
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