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Abstract— This paper revisits the problem of checking fea-

sibility of a given matrix inequality with rational dependence

on a real variable, ω, often interpreted as frequency. In the

case the frequency variable is allowed to assume arbitrary

values, the Kalman-Yakubovich-Popov (KYP) Lemma provides

an equivalent formulation of this problem as a Linear Matrix

Inequality (LMI). When the frequency lies within a finite or

semi-infinite range, generalizations of the KYP Lemma provide

equivalent formulations as a pair of LMIs. All such tests have a

particular form in which a constant, i.e. frequency independent,

coefficient matrix, Θ, is used to parametrize the Frequency

Domain Inequality (FDI). Previous results showed how one of

these LMI tests can be modified to render a sufficient test for a

given FDI in which Θ(ω) is an affine function of ω. The main

contribution of the present paper is to present a construction

that proves such test is also necessary. Many interesting results

are presented along the way related to the case when Θ(ω) is

quadratic.

I. INTRODUCTION

The Kalman-Yakubovich-Popov (KYP) Lemma has played

a major role in systems and control theory (see for instance

the survey paper [1]). In [2], [3] an extension to the KYP

Lemma was presented that established the equivalence be-

tween the frequency domain inequality (FDI)

[

(jωI − A)−1B

I

]∗

Θ

[

(jωI − A)−1B

I

]

≺ 0,

for all ω1 ≤ ω ≤ ω2, (1)

which is evaluated only on the finite frequency interval, with

the pair of Linear Matrix Inequalities (LMIs)
[

A B

I 0

]∗[ −Q P + jωcQ

P − jωcQ −ω1ω2Q

] [

A B

I 0

]

+ Θ ≺ 0,

(2)

Q � 0,

in Hermitian matrix variables P,Q of appropriate dimension

where ωc := (ω1 + ω2)/2. In [4], [5] equivalence was also

established with the pair of LMIs

[

A B

I 0

]∗[

I

jωiI

]

K∗+

K
[

I −jωiI
]

[

A B

I 0

]

+ Θ ≺ 0, (3)
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in complex matrix variable K of appropriate dimension for

i = {1, 2}. Many problems in systems and control theory

can be posed in the form (1) where appropriate choices

for the matrix Θ represent the analysis of various system

properties. Being LMIs, the set of feasible solutions to

inequalities (2) and (3) are convex and suitable variables P,Q

and respectively K can be computed (or proved that none

exists) in polynomial time using interior-point methods [6].

An interesting feature of the inequality (3) is that the class

of coefficient matrices Θ can be extended to be affine on the

frequency variable ω without incurring extra computational

cost. In [4], [5], solving a pair of LMIs of the form (3) was

shown to be sufficient in checking a FDI of the form (1)

with an affine frequency dependent coefficient matrix Θ(ω).

The main contribution of this paper is to show necessity for

the same affine frequency dependent coefficient matrix Θ(ω)

resulting in an alternative formulation of the Generalized

KYP Lemma [3].

Necessity for the alternative formulation of Generalized

KYP Lemma LMI conditions is shown through a constructive

approach, which on its own offers interesting developments

and insight. The affine frequency dependent coefficient ma-

trix Θ(ω) is incorporated into the Generalized KYP Lemma

conditions by way of an augmented system realization.

That produces a FDI in which the coefficient matrix Θ

is constant. Indeed, arbitrary polynomial dependence of Θ

on ω could be obtained at the expense of an exponential

growth in the number of variables and size of the inequalities,

see for instance [7], [8], [9]. This particular augmented

system considered when incorporating the affine frequency

dependent coefficient matrix Θ(ω) is then projected back to

the proposed alternative formulation of the Generalized KYP

Lemma.

In [4], [5], searching simultaneously for a frequency

dependent coefficient matrix while satisfying the FDI (1)

has applications, for instance, in robustness analysis via the

structured singular value (µ-analysis) [10]. Allowing Θ to

be frequency dependent can give tighter upper bounds for µ

(see for example [11], [12]).

A. Notation

The following notation will be used throughout the paper.

The scalar j =
√
−1. For a matrix X ∈ C

n×n: X , X∗ are the

complex-conjugate and complex-conjugate transpose of the

matrix X respectively and X−1, X⊥ are full rank matrices
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such that XX−1 = I and XX⊥ = 0. He{X} is short-hand

notation for X +X∗. We denote by HC
n the space of C

n×n

Hermitian matrices.

II. MAIN RESULT

The main result is presented in the following theorem,

which can be viewed as an alternative KYP Lemma that

holds over finite frequency intervals whereby the coefficient

matrix depends affinely on the frequency variable ω.

Theorem 1: Let matrices A ∈ C
n×n with no eigenvalues

on the imaginary axis, B ∈ C
n×m and Θ1,Θ2 ∈ HC

n+m

be given. Let scalars ω1, ω2 ∈ R be also given, then the

following statements are equivalent.

(i) The FDI
[

(jωI − A)−1B

I

]∗

Θ(ω)

[

(jωI − A)−1B

I

]

≺ 0, (4)

holds for all ω1 ≤ ω ≤ ω2, where Theta(ω) has the

form

Θ(ω) =
ω2 − ω

ω2 − ω1
Θ1 +

ω − ω1

ω2 − ω1
Θ2. (5)

(ii) There exists a matrix K ∈ C
n+m×n such that the pair

of LMI hold

He

{

K
[

I −jωiI
]

[

A B

I 0

]}

+ Θi ≺ 0, (6)

for i = {1, 2}.

Sufficiency was previously established in [4], [5] and is

based on the following idea. To show that (ii) implies (i),

assume that the pair of inequalities (6) have feasible solutions

and consider the affine function

Θ(ω) := λ(ω)Θ1 + [1 − λ(ω)]Θ2, (7)

where Θ1,Θ2 ∈ HC
n+m and

λ(ω) :=
ω2 − ω

ω2 − ω1
, ω1 ≤ ω ≤ ω2, (8)

so that λ ∈ [0, 1]. Note that (5) and (7) are equal with the

definition of λ(ω) plugged in. The sum of (6) for i = 1

multiplied by λ(ω) := (ω2 − ω)/(ω2 − ω1) ∈ [0, 1] and

of (6) for i = 2 multiplied by (1 − λ(ω)) implies that

He

{

K
[

I −jωI
]

[

A B

I 0

]}

+ Θ(ω) ≺ 0

is feasible for all ω1 ≤ ω ≤ ω2. Set

N (ω) :=

[

(jωI − A)−1B

I

]

(9)

which is a well defined matrix for all ω ∈ R due to the

assumption that A has no eigenvalue on the imaginary axis.

Multiply the above inequality by N (ω) on the right and by

its transpose conjugate on the left to obtain

N ∗(ω)Θ(ω)N (ω) =
[

(jωI − A)−1B

I

]∗

Θ(ω)

[

(jωI − A)−1B

I

]

≺ 0,

which is the FDI in (i).

Remark 1: In item (ii) one has to solve two inequali-

ties (6) of dimension n + m in 2n(n + m) real optimization

variables in the matrix K ∈ C
n+m×n.

In forming the class of affine frequency dependent coef-

ficient matrices (5) via the parameter λ(ω) ∈ [0, 1] in (7),

one can recognize concepts from the analysis of polytopic

systems [13] treating the frequency as a real uncertain

parameter. Furthermore, the implication from (ii) to (i)

demonstrates a clear connection with the Elimination Lemma

(see for instance [14]). Indeed this is a connection that

will appear again in proving necessity of (6). The proof of

necessity will be developed in the remainder of the paper.

III. GENERALIZED KYP LEMMA

The Generalized KYP Lemma gives necessary and suffi-

cient conditions for replacing FDI constraints, specified over

finite frequency interval ω1 ≤ ω ≤ ω2, with pairs of LMIs

for a constant coefficient matrix Θ.

Lemma 2: (Generalized KYP Lemma) Let the matrices

H ∈ C
2p×q with q < 2p and Θ ∈ HC

q be given. The

following statements are equivalent.

(i) The FDI

([

I −jωI
]

H
)∗

⊥
Θ

([

I −jωI
]

H
)

⊥
≺ 0, (10)

holds for all ω1 ≤ ω ≤ ω2.

(ii) There exists matrices P,Q ∈ HC
p with Q ≻ 0 such

that the LMI holds

H∗

[

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

H + Θ ≺ 0, (11)

where

ωc := (ω1 + ω2)/2. (12)

(iii) There exists a matrix K ∈ C
q×p such that the pair of

LMI holds

He
{

K
[

I −jωiI
]

H
}

+ Θ ≺ 0, i = {1, 2}. (13)

Equivalence between item (i) and (ii) was established

in [3] for the case Q � 0. Note that one can impose a strict

positive definite condition Q ≻ 0 in item (ii) without loss.

For instance consider the matrix
[

1 −jωc

jωc ω1ω2

]

,

which is indefinite since it can be reduced via congruent

transformation to the diagonal matrix diag
(

−ω2
c , (ω1ω2)

2
)

.

Now suppose that (11) holds, then there exists a sufficiently

small ε > 0 such that

H∗

([

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

+

ε

[

−I jωcI

−jωcI −ω1ω2I

])

H + Θ ≺ 0,
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holds and where Q̃ = Q + εI is strictly positive definite.

Equivalence between items (i),(ii) and (iii) was established

in [4], [5].

Note that as a particular case of Lemma 2, the FDI (1)

can be replaced with either of the pairs of LMIs (2) or (3)

by specifying

H =

[

A B

I 0

]

(14)

and recognizing that

(

[

I −jωI
]

[

A B

I 0

])

⊥

=

[

(jωI − A)−1B

I

]

holds for all ω since A has no eigenvalue on the imaginary

axis.

IV. AUGMENTED SYSTEM AND EQUIVALENT FDIS

This section introduces an augmented system that is useful

in replacing FDIs where the coefficient matrix depends on

frequency with FDIs where the coefficient matrix is constant.

Consider the frequency dependent coefficient matrix

Θ(ω) =

[

jωI

I

]∗

Σ

[

jωI

I

]

, (15)

where Σ is partitioned appropriately

Σ =

[

Σ11 Σ12

Σ∗
12 Σ22

]

, (16)

with Σii ∈ HC
n+m for i = {1, 2} and Σ12 ∈ C

n+m. Note

that the frequency dependent coefficient matrix can also be

written in the form

Θ(ω) = Σ22 + jω (Σ∗

12 − Σ12) + ω2Σ11, (17)

which clearly displays a quadratic dependence on the fre-

quency variable when Σ11 6= 0.

In case Σ11 = 0, it is possible to relate the matrix Σ with

Θ1 and Θ2 of the affine coefficient matrix (5). Note that

in Theorem 1 the form for the affine coefficient matrix (5) is

developed constructively from the proof of sufficiency, that

is from (7) with (8). The next result gives equivalent forms

for the affine frequency dependent coefficient matrix, one of

which relates the general quadratic form (15).

Lemma 3: Let Θi ∈ HC
n+m and the scalar ωi ∈ R for

i = {1, 2} be given. Define the affine frequency dependent

coefficient matrix Θ(ω) as in (5) over the finite frequency

range ω1 ≤ ω ≤ ω2. Then Θ(ω) can also be written as

Θ(ω) =

[

jωI

I

]∗

Π

[

jωI

I

]

, (18)

where

Π =

[

0 jΠ2/2

−jΠ2/2 Π1

]

, (19)

and Π1 and Π2 are given by

Π1 =
ω2Θ1 − ω1Θ2

ω2 − ω1
, Π2 =

Θ2 − Θ1

ω2 − ω1
,

respectively.

Proof: Equivalence between (5) and (18) can be estab-

lished by plugging in the definition for Π1 and Π2.

The general quadratic form (15) can be used in replacing

a FDI of the form (4) where the coefficient matrix Θ(ω)

depends quadratically on frequency with an equivalent aug-

mented FDI where the coefficient matrix is not frequency

dependent. The following lemma states this equivalence.

Lemma 4: Let matrices A ∈ C
n×n with no eigenvalues

on the imaginary axis, B ∈ C
n×m and Σ ∈ HC

2(n+m) be

given. The following statements are equivalent.

(i) The FDI
[

(jωI − A)−1B

I

]∗

Θ(ω)

[

(jωI − A)−1B

I

]

≺ 0,

(20)

holds for all frequencies ω1 ≤ ω ≤ ω2 where Θ(ω)

has the form (15).

(ii) The FDI
([

I −jωI
]

H
)∗

⊥
H∗ΣH

([

I −jωI
]

H
)

⊥
≺ 0,

(21)

holds for all ω1 ≤ ω ≤ ω2 where

H =









0 A B

I 0 0

0 I 0

0 0 I









. (22)

Proof: Note that

([

I −jωI
]

H
)

⊥
=

[

0 A − jωI B

I 0 −jωI

]

⊥

=





jωI

(jωI − A)−1B

I



 ,

which exists for all ω due to the assumption that A has no

eigenvalue on the imaginary axis. Now note that

H
([

I −jωI
]

H
)

⊥
=









A(jωI − A)−1B + B

jωI

(jωI − A)−1B

I









=









jωI 0

0 jωI

I 0

0 I









[

(jωI − A)−1B

I

]

where the final inequality comes from the fact that

A(jωI − A)−1B + B = [A + (jωI − A)](jωI − A)−1B

= jωI(jωI − A)−1B.

Hence the FDI (21) is equivalent to (4).
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Feasibility of the FDI (20) with coefficient matrices that

depend quadratically on the frequency variable, such as (15),

can be verified by checking feasibility of the augmented

FDI (21) with H given by (22). Using an augmented

systems realization is not a new technique for incorporating

coefficient matrices that depend rationally or polynomially

on a scalar variable (see [8], [9] for instance). Traditionally

this has been done by noticing that although Θ(ω) given

in (17) is not a proper rational function of ω one can always

introduce fixed poles and augment the system realization

for considering proper rational coefficient matrices [7], [15].

Here a different technique is used in which the augmented

system can be interpreted as a descriptor system. That is, the

FDI (21) can be viewed as the FDI
[

G(jω)

I

]∗

Σ

[

G(jω)

I

]

≺ 0,

where the system G(s) has a descriptor system realization

given by

G(s) =





0 A

I 0

0 I





[

0 sI − A

−I 0

]−1 [

B

−sI

]

+





B

0

0



 .

Furthermore, feasibility of the augmented FDI (21) for all

frequencies ω1 ≤ ω ≤ ω2 can be verified using the results

of Lemma 2 with the constant coefficient matrix

Θ = H∗ΣH. (23)

This result is presented next as a corollary to Lemma 2.

Corollary 5: Let matrices A ∈ C
n×n with no eigenvalues

on the imaginary axis, B ∈ C
n×m, Σ11,Σ22 ∈ HC

n+m and

Σ12 ∈ C
n+m be given. Let scalars ω1, ω2 ∈ R be also given,

then the following statements are true.

(i) The FDI (20) holds for all ω1 ≤ ω ≤ ω2, where Θ(ω)

has the form (15).

(ii) There exists matrices P,Q ∈ HC
n+m with Q ≻ 0 such

that the LMI holds

H∗

[

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

H + H∗ΣH ≺ 0, (24)

where H is given by (22).

(iii) There exists a matrix K ∈ C
(n+2m)×(n+m) such that

the pair of LMI holds

He
{

K
[

I −jωiI
]

H
}

+ H∗ΣH ≺ 0, (25)

for i = {1, 2} where H is given by (22).

Proof: Using Lemma 4, the FDI (4) with Θ(ω) given

by (17) is equivalent to (21) with H given by (22). Appli-

cation of Lemma 2 gives the desired result.

Remark 2: In Corollary 5 item (ii), one has to solve

inequality (24) of dimension n + 2m and inequality Q ≻ 0

of dimension n+m in 2(n+m)2 real optimization variables,

namely the matrices P,Q ∈ HC
n+m. In item (iii), one

has to solve two inequalities (25) of dimension n + 2m in

n2 + 3nm + 2m2 real optimization variables, namely the

matrix K ∈ C
(n+2m)×(n+m).

Note that Lemma 3 allows to change between equivalent

forms of the affine frequency dependent coefficient matrix,

that is (5) can be written in the general quadratic form (15).

Similar to Corollary 5, one can write equivalent LMI con-

ditions for the FDI (4) where Θ(ω) has affine frequency

dependence (5). That is, one could use the augmented

FDI (21) with H given by (22) and the resulting LMI

conditions (24) and (25) with Σ = Π where Π is given

by (19). These conditions however have larger dimension

and more optimization variables than what is posed by the

conditions of Theorem 1.

The FDI (21) reveals an interesting structure, namely

that the matrix H appears in both the constant coeffi-

cient matrix (23) as well as in the nullspace realization
([

I −jωI
]

H
)

⊥
. The following section explores the struc-

ture present in the FDI (21) in the particular case of an affine

frequency dependent coefficient matrix of the form (15)

with (19).

V. EXPLORING STRUCTURE IN THE AFFINE CASE

As mentioned in Section II, sufficiency of Theorem 1

demonstrates a connection with the Elimination Lemma.

Indeed the Elimination Lemma plays an additional role in

exploiting the structure of the FDI (21) for the particular

case when Θ(ω) depends affinely of the frequency variable.

Lemma 6 (Elimination Lemma): Let matrices Q ∈ HC
n,

B ∈ C
k×n such that rank(B) < n, and C ∈ C

m×n such that

rank(C) < n be given. Then the following statements are

equivalent.

(i) The two conditions hold

B∗

⊥
QB⊥ ≺ 0,

and

C∗

⊥
QC⊥ ≺ 0.

(26)

(ii) There exist a matrix X ∈ C
m×k such that

C∗XB + B∗X ∗C + Q ≺ 0. (27)

There are several proofs available in the literature for this

lemma, see for instance [16], [6].

Recall that FDIs of the form (5) with affine frequency

dependent coefficient matrices Θ(ω) can be equivalently

transformed into FDIs of the form (21) where the coefficient

matrix is constant and given by (23). Motivated by this

fact, the following lemma presents an extension of the

Generalized KYP Lemma (Lemma 2 items (i) and (ii)) where

the FDI has the particular structure given in (21) with the

additional constraint that Σ11 = 0. That is, Σ takes the form

of Π given in (19).

Lemma 7: Let matrices H ∈ C
2p×q with q < 2p and

Π ∈ HC
2p with the form (19) be given. Define the matrix

L := (H∗)
⊥
∈ C

2p×(2p−q). (28)
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The following are equivalent statements.

(i) The FDI

([

I −jωI
]

H
)∗

⊥
H∗ΣH

([

I −jωI
]

H
)

⊥
≺ 0,

(29)

holds for all ω1 ≤ ω ≤ ω2.

(ii) There exists matrices P,Q ∈ HC
p where Q ≻ 0, and

K ∈ C
p×(2p−q) such that the LMI

[

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

+ He

{[

0

K

]

L∗

}

+ Π ≺ 0,

(30)

where ωc is defined in (12).

Proof: Recall from Lemma 2 the FDI (29) is equivalent

to the existence of P,Q ∈ HC
p with Q ≻ 0 such that

H∗

[

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

H + H∗ΣH ≺ 0, (31)

holds. Let us rewrite (31) as

H∗

([

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

+ Π

)

H ≺ 0. (32)

Also note the condition Q ≻ 0 provides feasibility of the

additional inequality

0 ≻ −Q,

=
[

I 0
]

([

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

+ Π

)[

I

0

]

. (33)

With both inequalities (32) and (33) feasible, application of

the Elimination Lemma (Lemma 6) where

B⊥ =

[

I

0

]

, C⊥ = H,

gives an equivalence with the existence of a matrix variable

X ∈ C
(2p−q)×p such that

He
{

LX
[

0 I
]}

+

[

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

+ Π ≺ 0.

Finally, defining K := X ∗ gives the desired result.

In the above lemma, an extra multiplier variable K has

been introduced as in the extended LMI conditions derived

for robustness analysis [13], [17], [18]. The inequality (30)

remains an LMI in the optimization variables P , Q and K,

however, on a space of larger dimension and with more

optimization variables. Also note that Lemma 7 holds for

any matrix H such that (28) exists.

Remark 3: Consider the constant coefficient matrix (23)

with Σ having the form (19) and H given by (22).

In Lemma 7 item (ii), one has to solve inequality (30) of

dimension 2(n + m) and inequality Q ≻ 0 of dimension

n+m in 2(n+m)2+2m(n+m) real optimization variables,

namely the matrices P,Q ∈ C
n+m and K ∈ C

(n+m)×m.

Now that the essential preliminary results have been in-

troduced, the proof of necessity for Theorem 1 is completed

in the following section.

VI. PROOF OF THE MAIN RESULT: NECESSITY

To show necessity of Theorem 1, that is the implication

from item (i) to item (ii), suppose that (4) holds with Θ(ω)

given by (5). Recall from Lemma 3 that Θ(ω) can be written

in the general quadratic form (18) where Π given by (19).

It is important to note that the (1,1)-block of Π is zero.

From Lemma 4 the FDI (4) is equivalent to the FDI (21)

where H is given by (22).

Note that for H given by (22)

L∗ = (H∗)
∗

⊥
=

[

−I 0 A B
]

.

Then from Lemma 7 there exist matrices P,Q ∈ HC
n+m

with Q ≻ 0 and K ∈ C
(n+m)×n such that

[

−Q P + jωcQ

P − jωcQ −ω1ω2Q

]

+ Π

+ He

{[

0

K

]

[

−I 0 A B
]

}

≺ 0, (34)

holds.

Define the matrix

X(ω) :=

[

1 −jω

jω ω̂ + 2ωωc − ωc

]

⊗ Q,

where ω̂ := (ω2−ω1)/2 and ωc is given in (12). Note that the

matrix X(ω) is positive semidefinite for all ω1 ≤ ω ≤ ω2,

for details see [4], [5]. Add the matrix X(ω) � 0 to the right

hand side of (34) so that

Π + He

{[

0

K

]

[

−I 0 A B
]

}

≺
([

Q −P − jωcQ

−P + jωcQ ω1ω2Q

]

+

[

Q −jωQ

jωQ (ω̂ + 2ωωc − ωc)Q

])

,

where the right hand side of the inequality above can be

factored as

Π + He

{[

0

K

]

[

−I 0 A B
]

}

≺
([

−Q

−P + jωcQ

]

[

I −jωI
]

+

[

I

jωI

]

[

Q −P − jωcQ
]

)

.

Now choose

Y =

[

−Q

P − jωcQ

]

, (35)

so that

He

{

Y
[

I −jωI
]

+

[

0

K

]

[

−I 0 A B
]

}

+ Π ≺ 0,

holds for all ω2 ≤ ω ≤ ω2.
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Multiply the above inequality on the left hand side by
[

−jωI I
]

and on the right hand side by the conjugate

transpose,

0 ≻
[

jωI

I

]∗
(

He
{

Y
[

I −jωI
]

+

[

0

K

]

[

−I 0 A B
]

}

+ Π

)[

jωI

I

]

,

which reduces to

0 ≻ He
{

K
[

−jωI + A B
]}

+

[

jωI

I

]∗

Π

[

jωI

I

]

.

Finally using Lemma 3 the above inequality can be rewritten

as

He

{

K
[

I −jωI
]

[

A B

I 0

]}

+ Θ(ω) ≺ 0,

which should hold for any ω1 ≤ ω ≤ ω2, in particular, for

ω = ω1 and ω = ω2 to imply that the pair of inequalities (6)

are feasible.

VII. CONCLUSIONS

The KYP Lemma converts FDIs with a constant coefficient

matrix into computationally tractable LMI conditions on

additional matrix variables. Under the original KYP Lemma

formulation, including frequency dependent coefficient ma-

trices required augmentation of the original system realiza-

tion. The main result of Theorem 1 is to include an affine

frequency dependent coefficient matrix in the FDI without

the need for augmenting the original system.

Sufficiency of Theorem 1 was shown in [4], [5], where

constructing the convex combination of LMI conditions dic-

tates the affine frequency dependent form of the coefficient

matrix. Necessity requires a constructive approach, which on

its own offers interesting insight into the proposed alternative

formulation of the Generalized KYP Lemma conditions. The

affine frequency dependent matrix Θ(ω) can be incorporated

to the FDIs through particular augmented system realiza-

tions. However, the particular form of augmented systems

allows for a projection of the augmented LMI conditions

back to the original system realization.

The results in this paper can be extended to more general

classes of systems and curves on the complex plane as in

the Generalized KYP Lemma of [3]. This will be presented

in the paper [19].
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