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Abstract— We consider LTI finite-dimensional, com-
pletely controllable, but possibly open-loop unstable,
plants, with arbitrarily long actuator delay, and the corre-
sponding predictor-based feedback for delay compensation.
We study the problem of inverse-optimal re-design of
the predictor-based feedback law. We obtain a simple
modification of the basic predictor-based controller, which
employs a low-pass filter, and has been proposed previously
by Mondie and Michiels for achieving robustness to dis-
cretization of the integral term in the predictor feedback
law. The key element in our work is the employment of an
infinite-dimensional “backstepping” transformation, and
the resulting complete Lyapunov function, for the infinite
dimensional systems consisting of the state of the ODE
plant and the delay state. The Lyapunov function allows us
to establish inverse optimality of the modified feedback and
its disturbance attenuation properties. For the basic pre-
dictor feedback, the availability of the Lyapunov function
also allows us to prove robustness to small delay mismatch
(in both positive and negative directions).

I. INTRODUCTION

We consider control systems of the form

Ẋ(t) = AX(t) + BU(t − D) , (1)

where X ∈ R
n, (A, B) is a completely controllable

pair, and the input signal U(t) is delayed by D units of
time. We allow A to be unstable and the delay D to be
arbitrarily large. In [8], [9], [1] the following controller
was developed which achieves asymptotic stabilization
for any D > 0:

U(t) = K

[

eADX(t) +

∫ t

t−D

eA(t−θ)BU(θ)dθ

]

. (2)

and which is viewed as a “delay-compensated” version
of the ‘nominal controller’

U(t) = KX(t) . (3)

The controller (2) employs the history of the control
input U(t) over the last D time units, so it is infinite-
dimensional. The controller (2) is known under several
names in the literature, including “finite-spectum as-
signment,” “predictor-based controller” or “Smith pre-
dictor [14] for unstable systems,” and “reduction-based
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controller.” The properties of this controller have been
widely studied in the literature [3], [11] and it has been
extended to the parameter-adaptive case [2], [12].

In [7], using the backstepping method for PDEs, we
have constructed the Lyapunov function for the closed-
loop system (1), (2), which is in the form

V (t) = X(t)T PX(t)

+
a

2

∫ t

t−D

(1 + θ + D − t)W (θ)2dθ , (4)

where P is the solution of the Lyapunov equation

P (A + BK) + (A + BK)TP = −Q , (5)

P and Q are positive definite and symmetric, the con-
stant a > 0 is sufficiently large, and W (θ) is defined
as

W (θ) = U(θ) − K

[

∫ θ

t−D

eA(θ−σ)BU(σ)dσ

+eA(θ+D−t)X(t)
]

, (6)

with −D ≤ t − D ≤ θ ≤ t.
In this note we highlight some of the benefits of

constructing the transformation (6) and of the Lyapunov
function (4). The first benefit is the ability to derive an
inverse-optimal controller, which incorporates a penalty
not only on the ODE state X(t) and the input U(t) but
also on the delay state. Inverse optimality, as an objective
in designing controllers for delay systems, was pursued
by Jankovic [4], [5]. The predictor-based feedback (2) is
not inverse optimal, even if the nominal feedback (3) is
optimal, for example, if K = −BT P , where P solves a
Riccati equation, in other words, there does not exist (in
general) a positive definite functional in X(t), U(t) and
U(θ), θ ∈ [t−D, t], which the feedback (2) minimizes.
The inverse-optimal feedback that we design in the note
is of the form

U(t) =
c

s + c

{

K
[

eADX(t)

+

∫ t

t−D

eA(t−θ)BU(θ)dθ

]}

, (7)

where c > 0 is sufficiently large, i.e., the inverse-
optimal feedback is of the form of a low-pass filtered
version of (2). As it turns out, the low pass modification,
proposed here for inverse optimality, has already been
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proposed in [11] as a tool for ensuring robustness to the
discretization of the integral term in (2).

The second benefit of constructing the transformation
(6) and of the Lyapunov function (4) is that one can
prove robustness of exponential stability of the predictor
feedback to small mismatch in the actuator delay, both
in the positive and in the negative direction.

In Section II we establish inverse optimality of the
feedback law (7) and its stabilization property for suffi-
ciently large c. In Section III we consider the plant (1)
in the presence of an additive disturbance and establish
the inverse optimality of the feedback (7) in the sense
of solving a meaningful differential game problem and
we quantify its L∞ disturbance attenuation property.
Finally, for the basic predictor feedback, in Section IV
we use our Lyapunov function to prove robustness to
small delay mismatch.

II. INVERSE OPTIMAL RE-DESIGN

In the formulation of the inverse optimality problem
we will consider U̇(t) as the input to the system, whereas
U(t) is still the actuated variable. Hence, our inverse
optimal design will be implementable after integration

in time, i.e., as dynamic feedback. Treating U̇(t) as an
input is the same as adding an integrator, which has
been observed as being beneficial in the control design
for delay systems in [4].

Theorem 1: There exists c∗ such that the feedback
system (1), (7) is exponentially stable in the sense of
the norm

N(t) =

(

|X(t)|2 +

∫ t

t−D

U(θ)2dθ + U(t)2
)1/2

(8)

for all c > c∗. Furthermore, there exists c∗∗ > c∗ such
that, for any c ≥ c∗∗, the feedback (7) minimizes the
cost functional

J =

∫ ∞

0

(

Q(t) + U̇(t)2
)

dt , (9)

where Q(t) ≥ µN(t)2 for some µ(c) > 0, which is such
that µ(c) → ∞ as c → ∞.

Proof: We start by writing (1) as the ODE-PDE
system

Ẋ = AX + Bu(0, t). (10)

ut(x, t) = ux(x, t) (11)

u(D, t) = U(t) , (12)

where u(x, t) = U(t + x− D) and therefore the output
u(0, t) = U(t−D) gives the delayed input (see Fig. 1).

Consider the infinite-dimensional backstepping trans-
formation of the delay state [7]

w(x, t) = u(x, t) −

[
∫ x

0

KeA(x−y)Bu(y, t)dy

+KeAxX(t)
]

. (13)

It is readily verified that

Ẋ = (A + BK)X + Bw(0, t) (14)

wt(x, t) = wx(x, t) . (15)

Let us now consider w(D, t). It is easily seen that

wt(D, t) = ut(D, t) − K [Bu(D, t)

+

∫ D

0

eA(D−y)Bu(y, t)dy

+AeADX(t)
]

. (16)

Note that ut(D, t) = U̇(t), which is designated as the
control input penalized in (9). The inverse of (13) can
be derived as

u(x, t) = w(x, t) +

∫ x

0

Ke(A+BK)(x−y)Bw(y, t) dy

+ Ke(A+BK)xX(t) . (17)

Plugging (17) into (16), after a lengthy calculation that
involves a change of the order of integration in a double
integral, we get

wt(D, t) = ut(D, t) − KBw(D, t)

−K(A + BK)

[

∫ D

0

M(y)Bw(y, t)dy

+M(0)X(t)] , (18)

where

M(y) =

∫ D

y

eA(D−σ)BKe(A+BK)(σ−y)dσ

+eA(D−y)

= e(A+BK)(D−y) (19)

is a matrix-valued function defined for y ∈ [0, D]. Note
that N : [0, D] → R

n×n is in both L∞[0, D] and in
L2[0, D].

Consider now a Lyapunov function

V (t) = X(t)T PX(t) +
a

2

∫ D

0

(1 + x)w(x, t)2 dx

+
1

2
w(D, t)2 , (20)

2
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Fig. 1. Linear system Ẋ = AX + BU(t − D) with actuator delay D.

where P > 0 is defined in (5) and the parameter a > 0
is to be chosen later. We have

V̇ = (XT ((A + BK)T P + P (A + BK))X

+2XT PBw(0, t)

+
a

2

∫ D

0

(1 + D)w(x, t)wx(x, t)dx

+2w(D, t)wt(D, t)

= −XT QX + 2XT PBw(0, t)

+
a

2
(1 + D)w(D, t)2 −

a

2
w(0, t)2

−
a

2

∫ D

0

w(x, t)2 dx

+w(D, t)wt(D, t) (21)

≤ −XT QX +
2

a
‖XT PB‖2

−
a

2

∫ D

0

w(x, t)2 dx

+w(D, t)

(

wt(D, t) +
a(1 + D)

2
w(D, t)

)

,

(22)

and finally,

V̇ ≤ −
1

2
XT QX −

a

2

∫ D

0

w(x, t)2 dx

+w(D, t)

(

wt(D, t) +
a(1 + D)

2
w(D, t)

)

,

(23)

where we have chosen

a = 4
λmax(PBBT P )

λmin(Q)
, (24)

where λmin and λmax are minimum and maximum
eigenvalues of the corresponding matrices. Now we
consider (23) along with (18). With a completion of

squares, we obtain

V̇ ≤ −
1

4
XT QX −

a

4

∫ D

0

w(x, t)2 dx

+
|K(A + BK)M(0)|2

λmin(Q)
w(D, t)2

+
‖K(A + BK)MB‖2

a
w(D, t)2

+

(

a(1 + D)

2
− KB

)

w(D, t)2

+w(D, t)ut(D, t) . (25)

Choosing

ut(D, t) = −cw(D, t) , (26)

we arrive at

V̇ ≤ −
1

4
XT QX −

a

4

∫ D

0

w(x, t)2 dx

−(c − c∗)w(D, t)2 , (27)

where

c∗ =
a(1 + D)

2
− KB

+
|K(A + BK)M(0)|2

λmin(Q)

+
‖K(A + BK)MB‖2

a
. (28)

Using (13) for x = D and the fact that u(D, t) =
U(t), from (26) we get (7). Hence, from (27), the first
statement of the theorem is proved if we can show that
there exist positive numbers α1 and α2 such that

α1N
2 ≤ V ≤ α2N

2 , (29)

where

N(t)2 = |X(t)|2 +

∫ D

0

u(x, t)2 dx + u(D, t)2 . (30)

This is straightforward to establish by using (13), (17),
and (20), and employing the Cauchy-Schwartz inequal-
ity and other calculations, following a pattern of a
similar computation in [15]. Thus, the first part of the
theorem is proved.

3
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The second part of the theorem is established in a
manner very similar to the lengthy proof of Theorem
6 in [15], which is based on the idea of the proof of
Theorem 2.8 in [6]. We choose c∗∗ = 4c∗ and

Q(t) = − 2cV̇
∣

∣

∣

(21) with (18), (26), and c = 2c∗

+c(c − 4c∗)w(D, t)2

≥ c

(

1

2
XT QX +

a

2

∫ D

0

w(x, t)2 dx

+(c − 2c∗)w(D, t)2
)

. (31)

We have that Q(t) ≥ µN(t)2 for the same reason
that (29) holds. This completes the proof of inverse
optimality.

Remark 2.1: Having obtained inverse optimality, one
would be tempted to conclude that the controller (7)
has an infinite gain margin and a phase margin of
60◦. This is unfortunately not true. These properties
can be claimed only for the feedback law (26), i.e.,
U̇(t) = −cW (t). Hence, the only gain margin one
has is the stability robustness to varying the parameter
c from some large value c∗ to ∞, recovering in the
limit the basic, unfiltered predictor-based feedback (2).
This robustness property might be intuitively expected
from a singular perturbation idea, though an off-the-shelf
theorem for establishing this property would be highly
unlikely to be found in the literature due to the infinite
dimensionality and the special hybrid (ODE-PDE-ODE)
structure of the system at hand. The feedback (2) is not
inverse optimal, however the feedback (7) is, for any
c ∈ [c∗∗,∞). Its optimality holds for a highly relevant
cost functional, which is underbounded by the temporal
L2[0,∞) norm of the ODE state X(t), the norm of
the control U(t), as well as the norm of its derivative

U̇(t) (in addition to
∫ D

0 U(θ)2dθ which is fixed because
feedback has no influence on it). The controller (7) is
stabilizing for c = ∞, namely, in its nominal form (2),
however, since µ(∞) = ∞, it is not optimal with respect

to a cost functional that includes a penalty on U̇(t).

III. DISTURBANCE ATTENUATION

Consider the following system

Ẋ(t) = AX(t) + BU(t − D) + Gd(t) , (32)

where d(t) is an unmeasurable disturbance signal and
G is a vector. In this section, the availability of the
Lyapunov function (20) lets us establish the disturbance
attenuation properties of the controller (7).

Theorem 2: There exists c∗ such that, for all c > c∗,
the feedback system (32), (7) is L∞-stable, i.e., there
exist positive constants β1, β2, γ1, such that

N(t) ≤ β1e
−β2tN(0) + γ1 sup

τ∈[0,t]

|d(τ)| . (33)

Furthermore, there exists c∗∗ > c∗ such that, for any
c ≥ c∗∗, the feedback (7) minimizes the cost functional

J = sup
d∈D

lim
t→∞

[2cV (t)

+

∫ t

0

(

Q(τ) + U̇(t)2 − cγ2d(τ)2
)

dτ

]

, (34)

for any

γ2 ≥ γ∗∗
2 = 8

λmax(PBBT P )

λmin(Q)
, (35)

where Q(t) ≥ µN(t)2 for some µ(c, γ2) > 0, which is
such that µ(c, γ2) → ∞ as c → ∞, and D is the set of
linear scalar-valued functions of X .

Proof: First, with a slight modification of the
calculations leading to (27) we get that

V̇ ≤ −
1

8
XT QX −

a

4

∫ D

0

w(x, t)2 dx

−(c − c∗)w(D, t)2 +
b

2
d2 , (36)

From here, a straightforward, though lengthy, calculation
gives the L∞ stability result.

The proof of inverse optimality is obtained by spe-
cializing the proof of Theorem 2.8 in [6] to the present
case. The function Q(t) is defined as

Q(t) = −2cΩ(t)

+2c
γ2 − γ∗∗

2

γ2

8|PG|2

b
|X(t)|2

+c(c − 4c∗)w(D, t)2 , (37)

where Ω(t) is defined as the value of V̇ (t) in (21) with
(18), (26), c = 2c∗, and

d(t) =
1

b
GT PX(t) , (38)

where b = 2γ∗∗
2 . It is easy to see that Ω(t) ≤

− 1
8XT QX − a

4

∫D

0 w(x, t)2 dx − 2c∗w(D, t)2. There-
fore,

Q(t) ≥ c

(

γ2 − γ∗∗
2 /2

γ2
λmin(Q)|X(t)|2

+
a

2

∫ D

0

w(x, t)2 dx

+(c − 2c∗)w(D, t)2
)

, (39)

which is lower-bounded by µN(t)2 as in the proof
of Theorem 1. This completes the proof of inverse
optimality.

Remark 3.1: Similar to the last point in Remark 2.1,
the nominal predictor feedback (2), though not inverse
optimal, is L∞ stabilizing. This is seen with a different

Lyapunov function, V (t) = X(t)T PX(t) + a
2

∫D

0 (1 +
x)w(x, t)2 dx, which yields dV (t)/dt ≤ − 1

4XT QX −
a
2

∫D

0
w(x, t)2 dx + b

4d2.

4
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IV. ROBUSTNESS TO DELAY MISMATCH

Predictor-based feedbacks are known to be sensitive
to errors in the knowledge of the value of actuator delay.
This problem is discussed in [10], [3], [11] and other ref-
erences. Despite the sensitivity, the predictor feedbacks
are an ‘irreplaceble and widely used tool’ [13].

The existing studies of robustness to delay mismatch
are frequency domain studies. We are not aware of ro-
bustness analyses using Lyapunov techniques. The result
in [16] answers a similar question for ODEs, however
it does not apply to the present case where the nominal
case (without delay mismatch) is infinite dimensional
and the feedback law is also infinite dimensional.

We consider the feedback system

Ẋ = AX + BU(t − D0 − ∆D) , (40)

U(t) = K

[

eAD0X(t) +

∫ t

t−D0

eA(t−θ)BU(θ)dθ

]

.

(41)

The reader should note that the actual actuator delay
has a mismatch of ∆D, which can be either positive or
negative, relative to the assumed plant delay D0 > 0,
with the obvious necessary condition that D0 + ∆D ≥
0. Being in the possession of a complete Lyapunov
function, we are able to prove the following result.

Theorem 3: There exists δ > 0 such that for all
∆D ∈ (−δ, δ) the system (40), (41) is exponentially
stable in the sense of the state norm

N2(t) =

(

|X(t)|2 +

∫ t

t−D̄

U(θ)2dθ

)1/2

, (42)

where D̄ = D0 + max{0, ∆D}.
Proof: We use the same transport PDE formalism

as in Theorem 1 and the transformations (13), (17). First,
we note that the feedback (41) is written as

u(D0 + ∆D, t) = K
[

eAD0X(t)

+

∫ D0+∆D

∆D

eA(D0+∆D−y)Bu(y, t)dy

]

, (43)

which, using (13) for x = D0 + ∆D, gives us

w(D0 + ∆D, t) = KeAD0

[(

I − eA∆D
)

X(t)

−

∫ ∆D

0

eA(∆D−y)Bu(y, t)dy

]

. (44)

Then, employing (17) under the integral, and performing
certain calculations, we obtain

w(D0 + ∆D, t) = KeAD0

[(

I − e(A+BK)∆D
)

X(t)

−

∫ ∆D

0

e(A+BK)(∆D−y)Bw(y, t)dy

]

.

(45)

One then shows that

w(D0 + ∆D, t)2

≤ 2q1|X |2 + 2q2

∫ max{0,∆D}

min{0,∆D}

w(x, t)2dx , (46)

where the functions q1(∆D) and q2(∆D) are

q1 =
∣

∣

∣
KeAD0

(

I − e(A+BK)∆D
)∣

∣

∣

2

(47)

q2 =

∫ max{0,∆D}

min{0,∆D}

(

KeAD0e(A+BK)(∆D−y)B
)2

dy

(48)

Note that q1(0) = q2(0) = 0 and that q1 and q2 are
continuous functions of ∆D (the two integral terms in
q2 are both zero at zero, and continuous in ∆D).

The cases ∆D > 0 and ∆D < 0 are considered sepa-
rately. The case ∆D > 0 is easier; the state of the system
is X(t), u(x, t), x ∈ [0, D0 +∆D], i.e., X(t), U(θ), θ ∈
[t−D0−∆D, t]. The case ∆D < 0 is more intricate, as
the state of the system is X(t), u(x, t), x ∈ [∆D, D0 +
∆D], i.e., X(t), U(θ), θ ∈ [t − D0, t].

Case ∆D > 0. We take the Lyapunov function

V (t) = X(t)T PX(t)+
a

2

∫ D0+∆D

0

(1+x)w(x, t)2 dx .

(49)
A calculation similar to that at the beginning of the proof
of Theorem 1 gives

V̇ = −XT QX + 2XT PBw(0, t)

+
a

2
(1 + D)w(D0 + ∆D, t)2

−
a

2
w(0, t)2 −

a

2

∫ D0+∆D

0

w(x, t)2 dx (50)

≤ −

(

λmin(Q)

2
− a(1 + D)q1(∆D)

)

|X |2

−a

(

1

2
− (1 + D)q2(∆D)

)

×

∫ D0+∆D

0

w(x, t)2 dx , (51)

where a is chosen as in (24), and where we have denoted
D = D0 + ∆D for brevity. This proves exponential
stability of the origin of the (X(t), w(x, t), x ∈ [0, D0+
∆D]) system. Exponential stability in the norm N2(t)
is obtained using the standard procedures for over- and
under-bounding V (t) by a linear function of N2

2 (t).
Case ∆D < 0. In this case we use a different Lya-

punov function,

V (t) =X(t)T PX(t) +
a

2

∫ D0+∆D

0

(1 + x)w(x, t)2 dx

+
1

2

∫ 0

∆D

(D0 + x)w(x, t)2dx . (52)

5
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At the end of the Lyapunov calculation we obtain:

V̇ ≤

−

(

λmin(Q)

2
− a(1 + D)q1(∆D)

)

|X |2

−

(

a

2
−

D0

2
−

2|PB|2

λmin(Q)

)

w(0, t)2

−

(

1

2
− a(1 + D)q2(∆D)

)
∫ 0

∆D

w(x, t)2dx

−
D

2
w(∆D, t)2 −

max{a, 1}

4

∫ D0+∆D

∆D

w(x, t)2dx

(53)

This quantity is made negative definite by first choosing

a > D0 + 4|PB|2

λmin(Q) , and then choosing ∆D suffi-

ciently small so that
λmin(Q)

2 > a(1 + D)q1(∆D)
and 1

2 > a(1 + D)q2(∆D). One thus gets ex-

ponential decay estimates in terms of |X(t)|2 +
∫D0+∆D

∆D w(x, t)2dx, and with some further work also

in terms of |X(t)|2 +
∫D0+∆D

∆D
u(x, t)2dx, i.e., in terms

of |X(t)|2 +
∫ t

t−D0

U(θ)2dθ.

Remark 4.1: The result of Theorem 3 is fairly subtle.
The case when ∆D > 0 is clear, the robustness to
a “surplus” of actuator delay is a result that already
holds for ODEs [16]. The case ∆D < 0 is more
tricky. The controller, which overestimates the delay to
be D0 > D0 + ∆D, introduces the delayed inputs from
the time interval [t−D0, t−D0 −∆D] into the overall
dynamic system, making its state consist of control
inputs U(θ) from the entire interval θ ∈ [t − D0, t],
even though the actual actuator delay D0 + ∆D is
shorter. This peculiarity results in more complicated
analysis for ∆D < 0, with different weights on the
Krassovskii functionals for the different parts of the
delay interval (with lesser weight on the subinterval that
represents the delay “mismatch”). The greater difficulty
in proving the result for ∆D < 0, leads us to conjecture
that the predictor-based controllers would exhibit greater
sensitivity to delay mismatch in the cases where the
delay is “over-estimated” (and thus “overcompensated”)
rather than when it is “underestimated.” This means that,
while there is no question that predictor-based delay
compensation is indispensable for dealing with long
actuator delay, and thus, that some ”some amount” of
delay compensation is better than none, when faced with
a delay of uncertain length, “less” may be better than
“more,” i.e., it may be better to err on the side of caution
and design for the lower end of the delay range expected.

V. CONCLUSIONS

In this note we derived inverse optimality results
for stabilization and disturbance attenuation with the
low-pass filtered modification of the predictor-based

feedback for actuator delay compensation. It would be
interesting to explore direct optimality results, both for
stabilization and H∞ disturbance attenuation, however,
one would expect that direct optimal control formu-
lations yield operator Riccati equations and lack the
simplicity of (2).

Having established robustness to small delay mis-
match, as the most critical form of robustness in the
predictor-feedback problem (as well as robustness to
‘bandwidth limitation,’ in the form of a low-pass filter),
other forms of robustness are worth studying next, using
the complete Lyapunov functions, with the help of the
backtepping transformation and its inverse, (13), (17).
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