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Abstract— One of the approaches to sampled-data controller
design for nonlinear continuous-time systems consists of ob-
taining an appropriate model and then proceeding to design a
controller for the model. Then, it is important to derive a good
approximate sampled-data model because the exact sampled-
data model for nonlinear systems is often unavailable to the
controller designers. Recently, Yuz and Goodwin have proposed
an accurate sampled-data model which includes extra zero
dynamics, so-called the sampling zero dynamics, corresponding
to the relative degree of the continuous-time nonlinear system.
This paper shows that a more accurate sampled-data model is
required for a controlled Van der Pol system with the relative
degree two. The reason is that the closed-loop system becomes
unstable when a controller design method based on cancellation
of the zero dynamics is applied, and the phenomenon seems
related to the instability of the sampling zero dynamics of
the more accurate sampled-data model. Further, this paper
derives a more accurate model than that of Yuz and Goodwin
for continuous-time nonlinear systems with the relative degree
two, and presents a condition which assures the stability of the
sampling zero dynamics of the obtained model.

I. INTRODUCTION

Advances in digital electronics that occurred in the second
half of the 20th century have led to a rapid development
in computer technology and this has had a great impact
on engineering areas, including control engineering. Since
recent control systems usually employ digital technology for
controller implementation, the study of sampled-data control
systems has become an important issue in control fields.
Significant progress has been achieved in this area during
this decade.

There are two distinct approaches to sampled-data con-
troller design for nonlinear systems [1]. The first one, so-
called controller emulation, involves digital implementation
of a continuous-time stabilizing control law at a sufficient
high sampling rate. The second approach consists of obtain-
ing a sampled-data model and then proceeding to design
a controller for the model. Emulation is regarded as the
simple method, whereas it is typically inferior to the second
in terms of stability and achievable performance. On the
other hand, the second approach requires a good approximate
sampled-data model because the exact sampled-data model
for nonlinear systems is often unavailable to the controller
designers.

Therefore, the accuracy of the approximate sampled-data
model has proven to be a key issue in the context of
control design, where a controller designed to stabilize an
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approximate model may fail to stabilize the exact discrete-
time model [2].

Recently, Yuz and Goodwin have proposed an accurate
sampled-data model [3]. The resulting model includes extra
zero dynamics which are called sampling zero dynamics. It
has been shown explicitly that they have no counterpart in the
underlying continuous-time system and are the same as those
for the linear case [4], although an implicit characterization
has been given in [5]. It is worth noting here that Yuz and
Goodwin’s model has a mode corresponding to the sampling
zero dynamics just on the unit circle when the relative degree
of a continuous-time nonlinear system is two.

This paper shows that a more accurate sampled-data model
is required for a controlled Van der Pol system with the
relative degree two. The reason is that the closed-loop system
becomes unstable when a controller design method based
on cancellation of the zero dynamics is applied, and the
phenomenon seems related to the instability of the sampling
zero dynamics of the more accurate sampled-data model.

Further, this paper derives a more accurate model than that
of Yuz and Goodwin for continuous-time nonlinear systems
with the relative degree two, and shows a condition which
assures the stability of the sampling zero dynamics of the
obtained model.

For linear systems, the properties of the sampling zeros
corresponding to the sampling zero dynamics for nonlinear
systems are discussed in many papers [4], [6]-[11].

II. SYSTEM DESCRIPTION AND PREVIOUS
RESULTS

Consider a class of the following single-input single-
output nth-order nonlinear system⎧⎨

⎩
ẋ = f(x) + g(x)u

y = h(x)
(1)

where x is the state evolving on an open subset M ⊂ Rn,
and where the vector fields f(·) and g(·), and the output
function h(x) are analytic on M.

First, the following assumptions are introduced.
Assumption 1: The unique equilibrium point lies on the
origin.
Assumption 2: The continuous-time nonlinear system (1) has
the uniform relative degree r(≤ n) and is minimum phase
in the open subset M, where the state x evolves.

Then, the system can be expressed in its so-called normal
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form [12], [13].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇ =
[

0r−1 Ir−1

0 0T
r−1

]
ζ

+
[

0r−1

1

]
(b(ζ, η) + a(ζ, η)u)

η̇ = c(ζ, η)

y = z1

(2)

ζ =

⎡
⎢⎣

z1

...
zr

⎤
⎥⎦ , η =

⎡
⎢⎣

zr+1

...
zn

⎤
⎥⎦ , (3)

z =
[

ζ
η

]
, c =

⎡
⎢⎣

cr+1(ζ, η)
...

cn(ζ, η)

⎤
⎥⎦ (4)

where a(0,0)�= 0, b(0,0) =0 and c(0,0) = 0.
Under the assumptions 1 and 2, the zero dynamics of (2)

is determined by
η̇ = c(0, η) (5)

and is asymptotically stable in M.
We are interested in the sampled-data model for the

nonlinear system (2) when the input is a piecewise constant
signal generated by a zero-order hold (ZOH); i.e.,

u(t) = u(kT ), kT ≤ t < (k + 1)T,

k = 0, 1, · · · (6)

where T is a sampling period.
For small sampling periods, Yuz and Goodwin have de-

rived a sampled-data model of the following form⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζk+1 = Fsζk + gs (bk + akuk)

ηk+1 = ηk + Tc(ζk, ηk)

yk = [1 0T
r−1]ζk

(7)

Fs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T
T 2

2
· · · T r−1

(r − 1)!

1 T
T r−2

(r − 2)!
. . . . . .

...
O 1 T

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, gs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T r

r!
T r−1

(r − 1)!
...

T 2

2!
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

bk ≡ b(ζk, ηk), ak ≡ a(ζk, ηk) (9)

where the subscripts k and k + 1 denote the time instants
kT and (k + 1)T , respectively.

Then, the zero dynamics of the sampled-data model (7)
consist of the sampled counterpart of the continuous-time
zero dynamics and the additional zero dynamics produced by

the sampling process [3]. The latter are called the sampling
zero dynamics, and equivalent to the same as those which
appear asymptotically for the linear case when the sampling
period tends to zero, namely, the roots of the following
equations.

z + 1 = 0, r = 2
z2 + 4z + 1 = 0, r = 3
(z + 1)(z2 + 10z + 1) = 0, r = 4
z4 + 26z3 + 66z2 + 26z + 1 = 0, r = 5

...

The zeros are given as follows.

−1, r = 2
−3.732, −1/3.732, r = 3
−1, −9.899, −1/9.899, r = 4
−2.322, −23.20, −1/2.322, −1/23.20, r = 5

...

The result above has been derived by the following relation.

zi+1,k+1 = y
(i)
k+1

≈ y
(i)
k + Ty

(i+1)
k +

T 2

2
y
(i+2)
k +

· · · + T r−i

(r − i)!
y
(r)
k

≈ zi+1,k + Tzi+2,k +
T 2

2
zi+3,k +

· · · + T r−i

(r − i)!
(ak + bkuk),

i = 0, · · · , r − 1 (10)

Here, if a higher-order Taylor expansion such as

zi+1,k+1 = y
(i)
k+1

≈ y
(i)
k + Ty

(i+1)
k +

T 2

2
y
(i+2)
k +

· · · + T r−i

(r − i)!
y
(r)
k +

T r−i+1

(r − i + 1)!
y
(r+1)
k

i = 0, · · · , r − 1 (11)

is applied, then a more accurate sampled-data model is
obtained.

We define here the nonlinear sampling zeros σri (i =
1, · · · , r − 1) as the eigenvalues of the matrix which deter-
mines the sampling zero dynamics of a sampled-data model
proposed by Yuz and Goodwin [3]. Then, it is expected that
the nonlinear sampling zeros ρri (i = 1, · · · , r − 1) of the
more accurate sampled-data model (11) is expressed as

ρri(ζk,ηk) = σri + σri(ζk,ηk)T (12)

From the results of Yuz and Goodwin, at least one of the
nonlinear sampling zeros lies strictly outside of the unit
circle; i.e., |σri| > 1 for r ≥ 3. Hence, from the view
point of the stability of the sampling zero dynamics, it is not
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important to derive a more accurate sampled-data model for
nonlinear systems with the relative degree r ≥ 3. However,
when the relative degree r of a nonlinear system is two,
the nonlinear sampling zero σri is equal to −1. Namely, the
stability of the sampling zero dynamics is marginal. Thus, in
order to analyze the stability of the nonlinear sampling zero
dynamics, it is useful to derive the relation (12) of nonlinear
systems with r = 2. Notice here that the relative degree of
many nonlinear mechanical systems in the practical field is
two.

In the remainder of this section, an interesting example
is shown to motivate the derivation of the more accurate
nonlinear sampling zero (12) for nonlinear systems with r =
2 mentioned above.

Consider a controlled Van der Pol system with the follow-
ing equation [13].

⎧⎨
⎩

ẋ1 = x2

ẋ2 = −x1 + ε(1 − x2
1)x2 + u, ε > 0

y = x1

(13)

It is obvious that the relative degree of the system (13) is two,
and that the system does not have zero dynamics. A sampled-
data model by Yuz and Goodwin for (13) is represented as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1,k+1 = x1,k + Tx2,k

+
T 2

2
[−x1,k + ε(1 − x2

1,k)x2,k + uk

]
x2,k+1 = x2,k + T

[
−x1,k + ε(1 − x2

1,k)x2,k + uk

]
yk = x1,k

(14)
The zero dynamics of the sampled-data model (14) are given
by the equation z + 1 = 0 [3].

Consider here model following control such that the output
converges to the origin. When the input uk is designed as

uk = x1,k − ε(1 − x2
1,k)x2,k

+
2

T 2
[−Tx2,k + (α − 1)x1,k] ,

0 < α < 1 (15)

then, the closed-loop sampled-data model (14) generates the
output relation

yk+1 − αyk = 0 (16)

and the internal dynamics

x2,k+1 + x2,k = 0 (17)

Thus, the convergence of the output to the origin is achieved
and all the variables remain bounded [14].

However, in simulation, when the input (15) is imposed
through a ZOH on the original continuous-time system (13),
the output does not converge to the origin. In other words,
the closed-loop system is unstable.

The reason is explained below. A more accurate sampled-
data model using (11) is expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,k+1 = x1,k + Tx2,k

+
T 2

2
[−x1,k + ε(1 − x2

1,k)x2,k + uk

]
+

T 3

3!
[−x2,k − 2εx1,kx2

1,k + ε(1 − x2
1,k)

× {−x1,k + ε(1 − x2
1,k)x2,k + uk}

]
x2,k+1 = x2,k + T

[
−x1,k + ε(1 − x2

1,k)x2,k + uk

]
+

T 2

2
[−x2,k − 2εx1,kx2

1,k + ε(1 − x2
1,k)

× {−x1,k + ε(1 − x2
1,k)x2,k + uk}

]
yk = x1,k

(18)
The local truncation error between the output of the sampled-
data model (18) and the true output is of order T 4. This fact
means that the sampled-data model (18) is closer to the true
system than that by Yuz and Goodwin.

Now, when the input (15) is applied to the sampled-data
model (18), the closed-loop system is given by

yk+1 − αyk = o(T ) (19)

and the internal dynamics

x2,k+1 = −{1 + ε(1 − x2
1,k)T}x2,k

−
(

1
2
x2,k + εx1,kx2

2,k

)
T 2 + δ (20)

where the term δ does not include the variable x2,k. The
relation (20) implies that the internal dynamics is unstable in
the neighborhood of x1,k = 0 for sufficiently small sampling
periods. As a result, the convergence of the output to the
origin is not achieved.

Next, it is easy to obtain the zero dynamics of the more
accurate sampled-data model (18) as

x2,k+1 = −
(
1 +

ε

3
T
)

x2,k (21)

Hence, it is found that the internal dynamics (20) is related
directly to the zero dynamics of the more accurate sampled-
data model (18).

III. MAIN RESULTS

Consider a class of the following single-input single-
output nth-order nonlinear system with the relative degree
two which is expressed in the normal form such as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇ =
[

0 1
0 0

]
ζ+[

0
1

]
(b(ζ, η) + a(ζ, η)u)

η̇ = c(ζ, η)

y = z1

(22)
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ζ =
[

z1

z2

]
, η =

⎡
⎢⎣

z3

...
zn

⎤
⎥⎦ , (23)

z =
[

ζ
η

]
, c =

⎡
⎢⎣

c3(ζ, η)
...

cn(ζ, η)

⎤
⎥⎦ (24)

where a(0,0)�= 0, b(0,0) =0 and c(0,0) = 0.
Now, it will be shown below when a more accurate model

has the sampling zero dynamics inside or outside of the unit
circle.

Before proceeding, the following assumption is needed
here for the preservation of an affine property in the process
of sampling.
Assumption 3:

∂a(ζ, η)
∂z2

= 0 (25)

Assumption 3 ensures that a new sampled-data system is also
an affine one.

Note here that

u̇(t) = 0, ü(t) = 0, t ∈ [kT, (k + 1)T ] (26)

and that

ẏ = ż1 = z2 (27)
ÿ = ż2 = b + au (28)

y(3) = ḃ + ȧu

=
n∑

i=1

∂b

∂zi
żi +

n∑
i=1

∂a

∂zi
żiu

=
∂b

∂z1
z2 +

∂b

∂z2
(b + au)

+
n∑

i=3

∂b

∂zi
ci +

(
∂a

∂z1
z2 +

n∑
i=3

∂a

∂zi
ci

)
u

= b + au (29)

where

b = b(ζ, η) ≡ ∂b

∂z1
z2 +

∂b

∂z2
b +

n∑
i=3

∂b

∂zi
ci (30)

a = a(ζ, η) ≡ ∂b

∂z2
a +

∂a

∂z1
z2 +

n∑
i=3

∂a

∂zi
ci (31)

then, a more accurate model than that of Yuz and Goodwin
is derived by substituting (29) as well as (27) and (28) into
the Taylor’s expansion forms of y((k+1)T ) and ẏ((k+1)T )
and neglecting higher order terms as follows

yk+1 = yk + T ẏk +
T 2

2
ÿk +

T 3

6
y
(3)
k

= yk + T ẏk +
T 2

2
(bk + akuk)

+
T 3

6
(
bk + akuk

)
= yk + T ẏk +

T 2

2
bk +

T 3

6
bk

+
(

T 2

2
ak +

T 3

6
ak

)
uk (32)

ẏk+1 = ẏk + T ÿk +
T 2

2
y
(3)
k

= ẏk + T (bk + akuk) +
T 2

2
(
bk + akuk

)
= ẏk + Tbk +

T 2

2
bk + T

(
ak +

T

2
ak

)
uk (33)

ηk+1 = ηk + Tc(ζk, ηk) (34)

where

bk ≡ b(ζk, ηk), ak ≡ a(ζk, ηk) (35)

Now, the following assumption is further imposed.
Assumption 4:

∂c(ζ, η)
∂z2

= 0 (36)

Since c(ζ, η) is independent of z2 under the assumption 4,
the sampled-data system (32)-(34) has the sampled counter-
part of the continuous-time zero dynamics given by

ηk+1 = ηk + Tc(0, ηk) (37)

On the basis of the result in [3], the sampling zero
dynamics of the model (32)-(34) are calculated below. First,
when we set yk+1 = yk = 0, then (32) leads to

T ẏk +
T 2

2
bk0 +

T 3

6
bk0

+
(

T 2

2
ak0 +

T 3

6
ak0

)
uk = 0 (38)

where bk0, ak0, bk0, ak0 denote the values of bk, ak, bk, ak

with yk = 0 and ηk = ηS where ηS is the state vector
of the sampled counterpart (37) of the continuous-time zero
dynamics [3]. Deleting uk in (33) by (38) yields

ẏk+1 = ẏk + Tbk0 +
T 2

2
bk0

− 6
(3ak0 + Tak0)T 2

(
Tak0 +

T 2

2
ak0

)

×
(

T ẏk +
T 2

2
bk0 +

T 3

6
bk0

)

= ẏk +
T

2
(
2bk0 + Tbk0

)
− 2ak0 + Tak0

2(3ak0 + Tak0)
(
6ẏk + 3Tbk0 + T 2bk0

)
(39)

Here, the coefficient of (39) is approximated as

2ak0 + Tak0

3ak0 + Tak0
=

2ak0

(
1 +

Tak0

2ak0

)

3ak0

(
1 +

Tak0

3ak0

)

≈ 2
3

(
1 +

Tak0

2ak0

)(
1 − Tak0

3ak0

)

≈ 2
3

{
1 +

(
ak0

2ak0
− ak0

3ak0

)
T

}

=
2
3

(
1 +

ak0

6ak0
T

)
(40)
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Hence, the relation (39) is rewritten as

ẏk+1 ≈ ẏk +
T

2
(
2bk0 + Tbk0

)
−1

3

(
1 +

ak0

6ak0
T

)
(6ẏk + 3Tbk0)

≈ −ẏk +
{

bk0 − 1
3

(
ak0

ak0
ẏk + 3bk0

)}
T

= −ẏk − ak0

3ak0
T ẏk (41)

As a result, the sampling zero dynamics are given by (41).
From (41), the main result is obtained as follows.

Theorem 1. Consider an affine nonlinear system (22) with
the relative degree two. Then, for sufficiently small sampling
periods T , the sampling zero dynamics of the sampled-data
model (32)-(34) are given approximately by

ẏk+1 + ẏk +
ak0

3ak0
T ẏk = 0 (42)

where ak0 and ak0 are the values of ak and ak, respectively,
with yk = 0 and η = ηS where ηS is the state vector of the
sampled counterpart of the continuous-time zero dynamics.
Further, ak and ak are defined by (9) and (35), respectively.

It is straightforward to obtain the following theorem from
Theorem 1.

Theorem 2. For sufficiently small sampling periods, the
sampling zero dynamics of the sampled-data model (32)-(34)
are stable if

ak0

3ak0
< 0 (43)

and they are unstable if

ak0

3ak0
> 0 (44)

IV. EXAMPLES

Two examples of Theorems 1 and 2 are shown.

Example 1. Consider a pendulum system with the following
equation. ⎧⎨

⎩
ẋ1 = x2

ẋ2 = −cx2 − d sinx1 + au
y = x1

(45)

It is easy to see that

a(ζ, η) = a, (46)

b(ζ, η) = −cx2 − d sin x1, (47)

a(ζ, η) =
∂b

∂x2
a +

∂a

∂x1
x2 = −ac (48)

Hence, we have
ak0

3ak0
= − c

3
< 0 (49)

From Theorem 1, for sufficiently small sampling periods
T , the sampling zero dynamics of the sampled-data model

(32)-(34) corresponding to the pendulum system are given
approximately by

ẏk+1 + ẏk − c

3
T ẏk = 0 (50)

Further, from Theorem 2, the sampled-data model corre-
sponding to the pendulum system has stable sampling zero
dynamics for sufficiently small sampling periods.

Example 2. Consider a Van der Pol system (13). Note here
that

a(ζ, η) = 1, (51)
b(ζ, η) = −x1 + ε(1 − x2

1)x2, (52)

a(ζ, η) =
∂b

∂x2
a +

∂a

∂x1
x2 = ε(1 − x2

1) (53)

then, it holds that

ak0

3ak0
=

ε(1 − x2
1)

3

∣∣∣∣
x1=0

=
ε

3
> 0 (54)

From Theorem 1, for sufficiently small sampling periods
T , the sampling zero dynamics of the sampled-data model
(32)-(34) corresponding to the Van der Pol system are given
approximately by

ẏk+1 + ẏk +
ε

3
T ẏk = 0 (55)

in the neighborhood of the origin. Further, from Theorem
2, the sampled-data model corresponding to the Van der Pol
system has unstable sampling zero dynamics for sufficiently
small sampling periods.

V. CONCLUSIONS

Recently, Yuz and Goodwin have proposed an accurate
sampled-data model which includes extra zero dynamics,
so-called the sampling zero dynamics, corresponding to the
relative degree of the continuous-time nonlinear system.
This paper shows that a more accurate sampled-data model
is required for a controlled Van der Pol system with the
relative degree two. The reason is that the closed-loop system
becomes unstable when a controller design method based
on cancellation of the zero dynamics is applied, and the
phenomenon seems related to the instability of the sampling
zero dynamics of the more accurate sampled-data model.
Further, this paper derives a more accurate model than that
of Yuz and Goodwin for continuous-time nonlinear systems
with the relative degree two, and presents a condition which
assures the stability of the sampling zero dynamics of the
obtained model.
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