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Abstract— A continuous-time stochastic model is considered
for describing fading channels from irregularly sampled data
affected by measurement noise. The model parameters are
estimated using an instrumental variable approach that gives
consistent estimates as the number of data tends to infinity
and the upper bound on the irregular sampling interval tends
to zero. The proposed estimator is robust to measurement
noise, computationally efficient, and easy to implement. Once
the model parameters are estimated, the design of efficient
algorithms for power control is possible.

I. INTRODUCTION

Reliable models of fading channels are essential for power

control and receiver design in modern cellular systems. In

some situations, samples are only taken when there is no

severe fading. This means that only irregularly sampled data

are available and that there is a need for models that describe

and estimation algorithms that work with such data. When

only irregularly sampled data are available from a stochastic

system, it can be advantageous to use a continuous-time

stochastic model. This facilitates the design of a compu-

tationally efficient estimation algorithm for the model pa-

rameters. In this paper, a second order stochastic differential

equation is considered and an instrumental variable (IV)

estimator of its parameters is proposed.

II. PROBLEM DESCRIPTION

Following [1], assume that the Doppler power spectrum

P (iω) of the channel can be factorized as P (iω) = |G(iω)|2.

As a consequence, the output can be represented as y(t) =
∫ t

0
g(τ)e(t − τ)dτ , where e(t) is continuous-time Gaus-

sian white noise of unit incremental variance. Consider the

stochastic differential equation (SDE)

y(2)(t) + θ1y
(1)(t) + θ2y(t) = e(t), (1)

where y(i)(t) denotes the ith derivative of y(t) and where

y(0) and y(1)(0) are Gaussian random variables. Here, y(t)
represents the in-phase and quadrature components of the

total received signal. Note that the SDE (1) realizes G(iω) =
1/(−ω2 + iθ1ω + θ2). Define the parameter vector θ =
[

θ1 θ2

]T
, where, in the case of a time-varying channel,

the parameters θ1 and θ2 are considered as dependent on t
and τ .

The parameter vector θ is to be estimated from the

irregularly sampled measurements x(tk) = y(tk) + v(tk),
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where k = 1, . . . , N and where v(tk) is zero mean discrete-

time Gaussian white noise of variance σ2, independent of

e(t). In order to get a well-defined problem, the following

notations and assumptions regarding the irregular sampling

scheme are made. 1) Let hk = tk+1 − tk, and assume that

h 6 hk 6 h̄ for some h > 0 and finite h̄. 2) The sequence

of sampling intervals, {hk}, is independent and identically

distributed with an associated probability density function.

Moreover, {hk} is independent of the process. 3) Let the

operator E{·} denote expectation with respect to the process,

and introduce the operator Ē{·} , lim
N→∞

1
N

∑N
k=1 E{·}.

III. ESTIMATION

Consider the difference operator Dm
k such that

Dm
k f(tk) =

µ2
∑

µ=µ1

cm,k,µf(tk+µ) (2)

with the property that for f(t) smooth enough

Dm
k f(tk) = p(m)f(tk) + O(h̄p), (3)

where p(m) = dm/dtm. Here, it is assumed that 0 6 µ1 6
µ2.

Result 1. Relation (3) is fulfilled if the extended natural

conditions

µ2
∑

µ=µ1

cm,k,µλa
k(µ) =











0, a = 0, . . . ,m − 1

m!, a = m

0, a = m + 1, . . . ,m + p − 1

(4)

hold, where λk(µ) = tk+µ − tk.

Proof: The result follows directly from a Taylor series

expansion of f(tk+µ) around f(tk).
In this paper, Result 1 will be considered for i = {1, 2}
and p = 2. Assume that the sampled data {x(tk)}N

k=1 are

available. Rewrite (1) by using the operator (2), where the

weights fulfill (4), as w(tk) = ϕT (tk)θ + ε(tk), where

w(tk) = D2
kx(tk), ϕ(tk) =

[

−Dkx(tk) −x(tk)
]T

, and

ε(tk) is an equation error.

Proposition 1. Define

z(tk) =
[

x(tk−α) x(tk−α−1)
]T

, (5)

where α > 1. The solution to

1

N

N
∑

k=1

z(tk)ϕT (tk)θ̂ =
1

N

N
∑

k=1

z(tk)w(tk) (6)
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gives an IV estimate θ̂ of θ.

Note that the estimator can easily be implemented recursively

for tracking time-varying parameters.

Result 2. Equation (6) can be written as

Ē{z(tk)ϕT (tk)}θ̂ = Ē{z(tk)w(tk)} (7)

when N → ∞.

Proof: The result follows from the proof of Result 2

in [2].

The main result of the paper can now be given.

Result 3. Choose the weights for the operator (2) so that

(4) is fulfilled. Then it holds that

lim
N→∞

θ̂ = θ + O(h̄2), (8)

where θ̂ is given as the solution to (6).

Proof: The proof is inspired by calculations in [3], [4].

From Result 2 and by rewriting (7), we get

2
∑

i=0

θ̂2−iĒ{D
i
kx(tk) · x(tk−α−β)} = 0, (9)

or equivalently

lim
N→∞

1

N

N
∑

k=1

2
∑

i=0

θ̂2−i E{Di
kx(tk) · x(tk−α−β)} = 0, (10)

for β = 0, 1, where θ̂2−i denotes element 2 − i of θ̂, with

θ̂0 ≡ 1. Consider the element E{Di
kx(tk) · x(tk−α−β)} in

(10) and define rx(|ta − tb|) = E{x(ta)x(tb)} and ry(|ta −
tb|) = E{y(ta)y(tb)}. For i = 0, it holds that

E{x(tk)x(tk−α−β)} = rx(|tk − tk−α−β |)

= ry(|tk − tk−α−β |) + σ2δ0,α+β = ry(|tk − tk−α−β |),
(11)

where the last equality follows from the fact that α+β > 1.

From the result

E{Di
ky(tk) · y(tk−α−β)} = Di

kry(|tk − tk−α−β |)

= p(i)ry(|tk − tk−α−β |) + O(h̄2)
(12)

for i = 1, 2, it follows that

E{Di
kx(tk) · x(tk−α−β)}

= p(i)rx(|tk − tk−α−β |) + O(h̄2)

= p(i)ry(|tk − tk−α−β |) + σ2δ0,α+β + O(h̄2)

= p(i)ry(|tk − tk−α−β |) + O(h̄2)

(13)

for i = 1, 2, where, again, it is used that α + β > 1. Using

(11) and (13) in (10) gives

lim
N→∞

1

N

N
∑

k=1

2
∑

i=0

θ̂2−i E{Di
kx(tk) · x(tk−α−β)}

= lim
N→∞

1

N

N
∑

k=1

2
∑

i=0

θ̂2−i

(

p(i)ry(|tk − tk−α−β |)

+ O(h̄2)
)

= 0.

(14)
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Fig. 1. The mean values plus/minus the standard deviations for the
estimates of θ1 (left) and θ2 (right) as functions of the measurement noise
variance σ2. The true parameter values are indicated by dashed lines.

The covariance function ry(τ) satisfies the Yule-Walker

equation

lim
N→∞

1

N

N
∑

k=1

2
∑

i=0

θ2−ip
(i)ry(|tk − tk−α−β |) = 0 (15)

for τ > 0, see [3], [4]. By comparing (14) and (15), (8)

follows.

IV. NUMERICAL EXAMPLE

The properties of the IV estimator in Proposition 1 is in-

vestigated in a Monte Carlo simulation with 200 realizations.

The estimator is implemented with α = 1 in (5). In each

realization, N = 10000 data points are generated from the

process y(tk) defined by θ1 = θ2 = 2, and measurements

x(tk) are affected by noise σ2 in the interval [10−6, 10−3].
As an example of an irregular sampling scheme, we take

tk = kT +
∑k

l=1 δl, k = 1, . . . , N , where δl is uniformly

distributed between −δ̃ and δ̃. Moreover, δl is independent

of e(t) and v(tk) for all l, t, and k, and δl is independent of

δj for all j 6= l. Here, the choice δ̃ = T/5 is made, where

the average sampling interval T = 0.1.

The results are shown in Fig. 1, where the mean values

plus/minus the standard deviations for the estimates of θ1 and

θ2, respectively, are plotted as functions of the measurement

noise variance σ2.
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