
 
 

 

  

Abstract— This paper presents analysis of workspace of 
planar and spatial redundant cable robots by using two 
analytical approaches. The first one is based on linear algebra. 
It can include the upper limits for tension in cables as an 
important factor in optimum design of cable robots in order to 
find the largest possible workspace. The second approach is 
based on a variant of Bland’s pivot rule; by virtue of this 
method we leave out the use of successive determinates to 
compute workspace resulting in less computation time. Both 
approaches provide all of poses (positions/orientations) 
reaching by the cable robot end-effector for all types of cable 
robots with any number of redundancy. 

I. INTRODUCTION 
ABLE robots are a type of robotic manipulators which 
has recently attracted researchers' interest for large 
workspace manipulation tasks. The cable robots are 

relatively simple in form, with multiple cables attached to a 
mobile platform or an end-effector. The cable robots are 
appealing because of their structural simplicity, high 
stiffness, and high exerted wrench-to-weight ratio. A major 
disadvantage of cable robots is that a cable can only exert 
tension. Some researchers have incorporated workspace 
limits based on the cable interference, but these workspace 
limits are determined either experimentally [1] or 
numerically [2]. In most studies, the static equilibrium 
workspace (SEW) has been found numerically via “brute 
force” methods, where the entire task space is discretized 
and exhaustively searched to find the statically reachable 
poses [3]-[6]. Two exceptions are presented in [7] and 
[5],where the boundaries of the SEW are defined 
analytically, but both of the formulations rely on special 
manipulator geometries. Bosscher and Ebert-Uphoff 
presented an analytical method for computation of 
workspace [8]; however, while their work also involved 
characterizing the space spanned by available wrench 
vectors of the robot, they focused on whether this wrench-
closure workspace encompasses a given bounded set of 
possible loads. Despite the attractiveness of this type of 
analysis, it is computationally difficult to find the workspace 
in most of complicated systems. This is due to the possible 
interactions between the bounded loads and the boundaries 
of the available wrench set. 
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Stump and Kumar presented two other analytical methods 
for computation of workspace [9]. When a cable robot has 
more than one redundant cable; these methods do not find 
all poses belonging to the workspace because of using 
determinates for computation of boundary of workspace 
which takes a lot of time. Also none of them considers any 
limits on the tension of cables which is very important in 
real applications. 
In this paper, two analytical approaches are proposed in 
order to find the workspaces of planar and spatial cable 
robots with any number of redundancy. The first one is 
based on linear algebra. It can include tension limits for 
cables. The second approach, which is based on a variant of 
Bland’s pivot rule [10], needs much less computation time 
compared with other methods including the first proposed 
approach. It is worth nothing that the second one can not 
compute workspace with tension limits.  
 

I. KINEMATIC MODELING OF CABLE ROBOTS 
Consider an end-effector (i.e., the moving platform) held in 
place by n-cables, as shown in figure 1. Pi and Bi are two 
attaching points of the ith cable on the end-effector and the 
base, respectively. ai represents the position vector of Bi in 
the base frame, bi represents the position vector of the cable 
connection in the end-effector frame. Therefore, Ti=ai-R×bi-
c is the vector representing the length of each cable, ii TT

rr
 

is direction of the force along each cable, c is the position 
vector of mass center of end-effector parameterized by x and 
y for planar systems and by x,y and z for spatial systems, and 
R  is the rotation matrix between the two frames. The 
equations of equilibrium for this system with respect to the 
end-effector frame can be written as 

)1(1*1** mnnm DfW =  
where n is the number of cables, and m is 3 or 6 for planar 
and spatial robots, respectively. wi, ith column of the matrix 
W, is the unit-length wrench vector in the form:  
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f  is the vector of cable tensions and Vector D  is the load 
wrench which represents external forces and torques in the 
following form: 
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Major drawback for cable robots is that cables can only 
exert tension. Therefore, the statement of the constrained 
problem can be considered as: 
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II. WORKSPACE ANALYSIS 
The workspace of a cable robot is defined as the set of all 
poses (positions/orientations) to which the end-effector of 
the manipulator can physically reach while the force 
feasibility conditions and perhaps some additional 
constraints are satisfied. For the theoretical development, we 
propose two approaches to analytically find the workspace 
of the system: one is based on linear algebra with 
consideration of tension limit of each cable; and the other 
one is based on a variant of Bland’s pivot rule [10]. Both 
analytical methods provide all of poses that satisfy equation 
(4). 
 
A. Linear Algebra 
1. m=n case 
Given m=n cables in n-dimensional space and a load wrench 
vector D, the equilibrium equation has the following form 

DfW =  
A square system of equations which can be solved by 
Cramer’s rule is 
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and for i=1, 2 , …, n, and 
)7()]......[det( 1121 niii wwDwwwH +−=  

 

 
Fig.1. General kinematics of a cable robot 
 
 
Therefore, there exist positive tensions if and only if the 
determinants mHHH ,...,, 10  have the same sign, i.e. 

nHH i  ,…=>   2, 1,ifor 00  
2. m>n case 
Equation W f=D is solvable if and only if 
rank(W)=rank([W,D]) and this condition holds if and only if 
rank(W)=m with 

].....[ 21 nwwwW =  

We can rearrange the matrix columns so that the first m 
columns are linearly independent, then:  

)8(]........[ 21 nm wwwwW ′′′′=′  
)9(DfW =′′  

Matrix A is defined as: 
]|[ DWA ′=  

We compute reduced row echelon form (Hoffman et al., 
1971) of the matrix A as: 

[ ]DQIU mnmmm
A ′= − ,, )*(*  

where mmI *  is m*m identity matrix. 
Equation DfW =  is equivalent of: 

DfQI ′=′],[  
Solution of the above equation is: 

hp fff ′+′=′  

where 
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Using equation (10) and (11); 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧ −−

++

+

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧−

++

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧ ′

=′

−−

0

0
)(:,

)(

.....

0

1
)1(:,

)(

0

0
11

M

MM

mnQ

yx

Q

yx

D

f

mnmn

 

which can also be shown in the following compact from: 
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As positive exertion condition, tension of each cable is 
constrained by: 
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)12(,CYB ≤  
If we consider tension limit of each cable, then:  
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If robot has one redundant cable, we 
define }0|{ <=− iBiB , }0|{0 == iBiB and 

}0|{ >=+ iBiB . The inequality of (12) is satisfied if and 
only if one of the conditions below holds: 
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Also, when a cable robot has one or more redundant cables, 
one may show equivalence of equation (12) with )(YE  being 
zero where 

)13(),()()( YBCYBCYBCYE T −−−−=  

Since equation (13) has a positive  value, if minimum of 
equation (13) is zero the corresponding pose belongs to the 
workspace. When we consider tension limit in each cable, 
not only equation (13) should be zero, but also the following 
equation must be zero.  
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Equations (13, 14) can be solved by non linear programming 
(NLP) method. 
 
B. Variant of Bland’s pivot rule 
We can rearrange the matrix columns, so that the first m 
columns of W are linearly independent, then: 
[ ] )15(, DfWW =′′′  
where 
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Now equation (15) can be expanded to 
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We now have a complete description of the algorithm which 
is called the b-rule, for solving a problem in the form of (17) 
as [10]: 
 
Step 1: Introduce m slack variables nmn ff ′′′′ +− ,...,1  and use 
these as the basis (left-hand side): 
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Step 2: Set the cobasic (right-hand side) variable to zero. 
Find the smallest index of the basic (left-hand side) variables 
which receive a negative value. If there is none, terminate 
the algorithm with a feasible solution. 
Step 3: Find the cobasic variable in the equation chosen in 
Step 2 that has the smallest index and a positive coefficient. 
If there is none, terminate as the problem is infeasible. The 
coefficients of the slack variables give a certificate of 
infeasibility. Otherwise, solve this equation for the variable, 
and substitute in all of the other equations. Go to Step 2. 
It can be proved that the algorithm described above 
terminates in a finite number of steps [10]. This method, in 
addition to computing all poses that satisfy equation (4), is 
less time consuming in as compared to the linear algebra and 
the direct analysis [9] methods. 
 

III. SIMULATION 
In this article, analytical techniques are developed to find the 
workspace wherein all cables are under positive tension 
while exerting all possible wrenches. This is called the static 
workspace. It is assume that velocities and accelerations on 
the end-effector are small and thus the device may be 
controlled in a pseustatic manner. We will find the 
workspace for two types of cable robots, planar and spatial, 
containing redundant cables by the two methods presented 
in the previous section. In addition, the workspace is 
computed when tension limit for each cable is included.  
We first consider a planar cable robot with two redundant 
cables (cable robot 1). Dimensions of this cable robot are 
listed in Table 1. 
 
 

Table 1. Dimensions of cable robot 1 
Position 
vector X Y Position 

vector X y 

a1 6 2.5 b1 0.4 0 
a2 6 5 b2 0.1236 0.3804 
a3 0 5 b3 -0.3236 0.2351 
a4 0 0 b4 -0.3236 -0.2351 
a5 6 0 b5 0.1236 -0.3804 

 
We may also include a load wrench due to gravity in the 
problem statement. Therefore, the load wrench D for the 
planar cable robot will be: 

[ ]TxmgD 10=  
The result of applying variant of Bland’s pivot rule to this 
robot is represented in figure 2. 
The workspace of cable robot 1 computed by linear algebra 
method when maximum tension in each cable is limit, is 
shown in figure 3. 
It can be seen that the workspace for fmax=50N, 180N are 
subregion of the workspace without tension limits. By 
increasing fmax the subregion becomes larger. But there is a 
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limit for fmax. It means for fmax larger than a special value 
(279.65N for this planar cable robot), which can be found by 
trial and error, the workspace can not become larger than 
workspace without any tension limits. 
 

 
Fig 2. Workspace when the end-effector’s orientation is zero, by variant of 
Bland’s pivot rule, cable robot 1. 
 

 
Fig 3.Workspace when the end-effector’s orientation is zero (∆ points: 
fmax=50N, + points: fmax=180N, • points: without tension limit), by linear 
algebra, cable robot 1. 
 
The resulting workspace of cable robot 1 shown in figure 4, 
for different θ (orientation angle), is descretized into slices 
here to better illustrate the interior shape of the workspace. 
Workspace of cable robot 1 found by direct analysis method 
[9] is shown in figure 5. 
It can be observed that the first two methods have computed 
the complete workspace in compare to the direct analysis 
method. 
Now, we compare required computation time among the 
three analytical methods for cable robot 1 by a computer 
with CPU Duo 3GHz, as shown in Table 2. 
 

 
Fig 4. Workspace when the end-effector’s orientation is variable, cable 
robot 1. 
 

 
Fig 5. Workspace when the end-effector’s orientation is zero, by direct 
analysis method, cable robot 1. 
 

Table 2. Comparison among time efficiency of the three methods for 
workspace determination 

Method Time(sec) 
Direct Analysis 122 
Linear Algebra 121 

Variant of Bland’s pivot rule 16 
 
The variant of Bland’s pivot rule has less time spent for 
computation of workspace compared to the other methods; 
but, a major advantage of linear algebra method is it’s 
capability to include tension limit for each cable.  
As the second example, we consider a spatial cable robot 
with a redundant cable (cable robot 2). Dimensions of this 
cable robot are listed in Table 3. 
 

Table 3. Dimensions of cable robot 2 
Position vector X(m) Y(m) Z(m) 

a1 -0.5 0 1 

a2 -0.5 0 1 
a3 0.5 0 1 
a4 0.5 0 1 
a5 -0.2 1 1 
a6 -0.2 1 1 

a7 0.4 1 1 
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Table 3. Dimensions of cable robot 2, continued 
Position vector x(m) y(m) z(m) 

b1 0 0 -0.125 
b2 0 0 0.125 
b3 0 0 0.125 
b4 0 0 -0.125 
b5 -0.0625 0.1 -0.10825 
b6 -0.0625 0.1 0.10825 
b7 0.125 0.1 0 

 
The load wrench, D, for the spatial robot will be: 

[ ]TxymgD 0100 −=  
The result obtained by applying variant of Bland’s pivot rule 
is presented in figure 5. 
 

 
(a) 

 
(b) 

Fig 6. The computed workspace for the cable robot 2 when the end-
effector’s orientation is fixed by variant of Bland’s pivot rule; (a) the overall 
view, and (b) the detail view of the same workspace. 
  
The workspace of cable robot 2 computed by linear algebra 
method is shown in figure 7. 

 
(a) 

 (b) 
Fig 7. The computed workspace for the cable robot 2 when the end-
effector’s orientation is fixed by linear algebr; (a) the overall view, and (b) 
the detail view of the same workspace 
 
Figure 8 display the slices the workspace in the X-Y-Z  for 
better shown of the workspace. 

 
Fig 8. Slices of the workspace along the X, Y and Z axes. 
 
Figure 9-10 display the workspace in terms of the Euler 
angles when the end-effector’s position is fixed at (X,Y,Z)=( 
0, 0.4,0.95) in the base frame. 
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Fig 9. Workspace when the end-effector’s position is fixed, cable robot 2. 
where ψ rotation about x, Ө rotation about y, φ rotation 
about z. 
 

 
Fig 10. Slices of workspace along the ψ, Ө and φ axes. 
 
The same observation as for planar robots can be made for 
spatial cable robots. 

 
IV. CONCLUSION 

We have approached the problem of find all of poses 
reaching by the platform. We address two analytical 
methods for solving this problem. It is worth nothing that 
the approach presents here finds natural applications in other 
systems with unilateral point contact model such system 
include multifingered grasp and include are considered. 
 
 
 
 

V. FUTURE WORK 
Cable intertference (cable/cable interference and 
cable/endeffector interference) can be a serious problem for 
cable robots. Therefore, if analytical expression were 
formulated for the condition of interference, these would 
constitute additional workspace. Our going work address the 
find collosion-free workspace as the subset of workspace 
that can be reached without cable interference for all type of 
cable robots. 
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