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Abstract— An Energy Management (EM) system tradition-
ally relies on (quasi) static maps offering efficiency parameters
of the vehicle powertrain. During a vehicle’s life span, these
maps lose validity, so optimal performance for EM is not
assured. This paper presents a proof-of-concept for a novel
measurement system, estimating important engine and genera-
tor characteristics on-line during driving.

The generator applies a small excitation signal to the
combustion engine and by means of correlation techniques
and feedback control, the incremental fuel cost for generating
electric power is estimated. This information is very relevant
for EM in Hybrid Electric Vehicles. No additional sensors (e.g.
torque estimators) are needed.

Under mild assumptions it is shown that the measurement
system satisfies a Linear Time Periodic (LTP) System. Har-
monic analysis as well as Floquet Theory are used to analyze
performance and stability criteria. Simulation results support
this analysis and demonstrate good noise rejection of the system.

I. INTRODUCTION

Owing to the high standards on safety and comfort, the

electric power demand of today’s vehicles increases rapidly.

Simultaneously, the automobile industry is forced to reduce

their fleet emissions due to environmental regulations. As

a consequence, innovative research appears in the field of

advanced power supply systems [12] and emission after-

treatment [1], as well as alternative vehicle concepts, e.g.,

Hybrid Electric Vehicles (HEVs) or Hydrogen Vehicles. En-

ergy & Emission Management (EM) is needed to supervise

the vehicle power flow and satisfy its power demand in a

fuel efficient and environmental friendly way [2].

An EM strategy requires knowledge about the vehicle

status and its surrounding to decide upon production, stor-

age and consumption of energy. Existing strategies rely on

vehicle models, with parameters derived from static maps of

components [9]. In general, these static maps originate from

experiments within a conditioned test environment. However,

road vehicles are subject to many operational conditions

and transients appear during acceleration and deceleration

phases. Moreover, vehicles suffer from wear and periodic

service is needed to guarantee reliable operation. It is clear

that regular updates of model parameters are necessary to

guarantee robust performance for EM. Ultimately, on-line

measurement and adaptation of these parameters is foreseen.

To maximize the performance of existing EM strategies,

this paper presents a novel measurement system for on-

line identification of powertrain’s specific fuel consumption.

Regarding the identification of Internal Combustion Engines

(ICE), most work concentrates on estimating engine torque

[8], [10] and almost no attention is paid to estimating the

ICE fuel consumption, rather than using expensive mass

flow sensors for on-line measurement. The electric gener-

ator is separately identified on a test-bench. In this paper,

identification of both the ICE and the generator is done

simultaneously through a combination of signal correlation

and control. The system utilizes the generator of the vehicle

to apply a (small) periodic disturbance on the output power

of the primary power source, the ICE. Initially, the ICE

exhibits a small perturbation on its nominal speed, but by

means of correlation and non-linear feedback, the amplitude

of the perturbation is estimated and compensated via the fuel-

injection signal. This provides enough information to derive

the incremental fuel costs for generating electric power.

Besides benefits for EM, the proposed system offers many

extra advantages. It can be used to detect when a vehicle

needs to be serviced, so maintenance costs are minimized.

Also variations in fuel quality are recognized and can be

taken into account by the engine control unit.

Although the measurement system is still in development,

simulation results demonstrate that the measurement concept

is valid. In this paper, emphasis is put on system analysis.

It is shown how the non-linearities, arising from two mul-

tiplications in the correlation method, can be represented as

a Linear Time Periodic (LTP) system. Various performance

and stability aspects are elaborated using Harmonic analysis

and Floquet’s theory, including a proof of stability.

The structure of this paper is as follows. An overview of

the measurement system is given in Section II. A system

analysis is done in Section III and IV, using Harmonic

Analysis. Numerical stability is addressed in Section V by

means of Floquet’s theory. Section VI shows preliminary

results from simulations and the conclusions are drawn in

Section VIII.

II. SYSTEM DESCRIPTION

The measurement system identifies the additional fuel

use ∆f [g/s] of the Internal Combustion engine (ICE)

for producing additional electric power ∆P [W] with the

generator. A small disturbance ∆P is added to the generator
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Fig. 1. Block diagram for system identification

power and the fuelling system is used to compensate for

this disturbance by means of fuel injection ∆f . In case the

identification is done with an infinite small disturbance, the

incremental fuel cost λ can be deduced for a given operating

point θ:

λ(θ) =
∂f

∂P

∣

∣

∣

∣

θ

≈
∆f

∆P

∣

∣

∣

∣

θ

[g/J]. (1)

Hence, λ(θ) expresses the amount of additional fuel ∆f
to produce ∆P additional electric power. To apply EM

in HEVs, this information is crucial since it directly tells

when to produce electric power (i.e. where λ(θ) reaches

its minimum), see [5], [6]. Although λ(θ) originates from

Lagrange multipliers, other related work denotes this quantity

as Fuel Specific Equivalent, as it describes the equivalent fuel

mass flow for a specific power increase, see e.g., [4], [11]. It

is foreseen that θ covers many variables, amongst others, the

engine speed, engine torque, temperature, generator power.

In this work, however, a proof-of-concept will be given for

one fixed operating point θ.

A. Correlation method

A block diagram of the measurement system is shown in

Fig. 1. The inputs f [g/s] and Pe [W] represent the driver’s

request for engine power and alternator power when driving

a certain speed. A sinusoidal signal with frequency a [rad/s]

is injected for system identification, so ∆P = 2 sin(at). The

ICE and the generator can be seen as a gain, which needs

to be identified. The generator is mechanically connected

to the engine’s crankshaft, and the Σ -block demonstrates

how its torque request is subtracted for the ICE torque. The

remaining torque, expressed by e [Nm] in Fig. 1, becomes

available for vehicle propulsion. The dynamic behavior of the

vehicle is covered by the transfer function HV (s). Only the

engine speed w [rad/s] is used by the measurement system.

Without feedback, two frequency components are rec-

ognized in the engine speed: w = wV + ∆w. The first

constant term wV emerges from the constant vehicle speed

whereas the second frequency is the known disturbance with

frequency a. For compensating the disturbance ∆w, the

measurement system entails a feedback path, applying the

following correlating actions:

1) A bandpass filter HF selects the signal ∆w from w =
wV + ∆w.

2) Demodulation of ∆w through multiplication with

uD(t) = 2 cos(at). The signal ∆w maps on two

sidebands with the frequencies ω1 = 0 and ω2 = 2a.

3) A controller HC reduces ∆w by means of an integra-

tor. This yields λ.

4) Modulation of λ with uM (t) = 2 sin(at) leads to the

desired compensation ∆f .

Due to multiplication with sinusoidal signals, a non-linear

feed-back path emerges. This looks similar to the feedback

scheme from Extremum Seeking (see e.g., [13] and the

references therein), but is different since two multiplications

are now used.

In steady state, there holds z = 0 so ∆w = 0. For this

operating point, λ equals the quotient of the generator gain

HGen(s) = KGen and the ICE gain HICE(s) = KICE :

KGen ∆P = KICE ∆f ⇒ λ =
∆f

∆P
=
KGen

KICE

. (2)

This quotient is a good measure of the conversion from

(additional) fuel into (additional) electric power from (1).

B. Linear periodic model

To evaluate stability and performance characteristics of the

measurement system, the vehicle model HV is reduced and

linearized around a fixed engine speed wV . This yields a first

order model between the input torque E(s) and the engine

speed W (s):

HV (s) =
W (s)

E(s)
=

1

Js+ d
, (3)

with J [kgm2] the equivalent inertia and d [Nms/rad] the

damping. HF (s) is a second order bandpass filter (critically

damped at frequency a):

HF (s) =
Q(s)

W (s)
=

a2s

(s+ a)2
. (4)

For the controller HC(s) an integrator has to be used:

HC(s) =
Λ(s)

Z(s)
=
K

s
, (5)

with K the gain of the controller. It will be shown that

this gain is important for stability and performance of the

system. For simplicity, the ICE gain and the generator gain

are selected fixed (KICE = KGen = 1), although they

depend on θ in reality. The reduced system is redrawn in

Fig. 2, using positive feedback:

E(s) = −R(s) + ∆F (s). (6)

The system shown in Fig. 2 satisfies a Linear Time Varying

(LTV) system with the state-space description:

ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)

(7)

with state vector x = [ w q1 q2 λ ]⊤ and

A(t) =









− d
J

0 0 2

J
sin(at)

a2 −2a −a2 0
0 1 0 0
0 2K cos(at) 0 0









(8)
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Fig. 2. Simplified measurement system

Selecting input u = r and output y = λ yields B =
[− 1

J
0 0 0]⊤, C = [0 0 0 1] and D = 0. Note that the

system (7) is T -periodic, because there holds:

A(t+ T ) = A(t) (9)

for all t. Therefore, the system is also addressed as a Linear

Time Periodic (LTP) system.

III. HARMONIC ANALYSIS

Although the used correlation method with sinusoidal

multiplication is indeed very selective, it does not only com-

pensate for ∆P , but it also injects new signals with frequency

na, n ∈ Z into the system. To explain the relationship

between all individual frequency components, this section

considers the Harmonic Analysis as studied by Wereley

and Hall [15]. This method will also be used to analyse

performance characteristics of the system in Section VI.

Definition 1 (Exponentially Modulated Periodic signal [15]):

An Exponentially Modulated Periodic (EMP) signal can be

expressed as the complex Fourier series of a periodic signal

of frequency ωp, modulated by a complex exponential

signal,

u(t) =
∑

n∈Z

une
snt, (10)

where t ≥ 0, sn = s+ jnωp, and s ∈ C.

�

Assigning an EMP signal u(t) to the LTP system (7)

implies that the steady state response is also EMP,

x(t) =
∑

n∈Z

xne
snt, (11)

ẋ(t) =
∑

n∈Z

snxne
snt, (12)

and also the output y(t) is an EMP signal

y(t) =
∑

n∈Z

yne
snt. (13)

The dynamics matrix (8) has fundamental frequency ωp =
a and using Euler’s formula, it can be expanded in a complex

Fourier series

A(t) =
∑

m∈Z

Ame
jmωpt (14)

= A−1e
−jωpt +A0 +A1e

jωpt (15)

with Fourier coefficients Am:

A0 =









−d
J

0 0 0
a2 −2a −a2 0
0 1 0 0
0 0 0 0









, (16)

A1 = A−1 =









0 0 0 1

Jj

0 0 0 0
0 0 0 0
0 K 0 0









, (17)

and Am = 0 for |m| > 1. Similarly, B(t), C(t) and D(t) can

also be expanded in Fourier series but since they are constant

matrices, this boils down to B0 = B, C0 = C and D0 = D,

respectively. Next, (7) is expanded into these Fourier series:

0 =
∑

n∈Z

{

snxn −
∑

m∈Z

An−mxm −
∑

m∈Z

Bn−mum

}

esnt,

0 =
∑

n∈Z

{

yn −
∑

m∈Z

Cn−mxm −
∑

m∈Z

Dn−mum

}

esnt.

(18)

According to the method of harmonic balance, the complex

exponentials {ejnωpt|n ∈ Z} form an orthonormal basis in

L2[0, T ]. Therefore, the terms enclosed by the braces must

vanish and for ∀n ∈ Z there holds:

snxn =
∑

m∈Z

An−mxm +
∑

m∈Z

Bn−mum,

yn =
∑

m∈Z

Cn−mxm +
∑

m∈Z

Dn−mum. (19)

This system can be transformed into a Harmonic state

space model. The Fourier coefficients (16-17) are stacked

into an infinite Toeplitz block matrix. Because A(t) covers

only three non-zero Fourier coefficients, the Toeplitz matrix

becomes tridiagonal:

A =

























. . .
...

...
...

...
...

. . . A0 A−1 0 0 0 . . .

. . . A1 A0 A−1 0 0 . . .

. . . 0 A1 A0 A−1 0 . . .

. . . 0 0 A1 A0 A−1 . . .

. . . 0 0 0 A1 A0 . . .
...

...
...

...
...

. . .

























(20)

A similar definition holds for B in terms of B0 = B, C in

terms of C0 = C, and D in terms of D0 = D. Altogether,

this yields the harmonic state space model with infinite

dimensional matrices [15]:

sX = (A−N )X + BU
Y = CX + DU

(21)

and with an infinite vector representation for the harmonics

of the state

X = [. . . , x⊤−2, x
⊤
−1, x

⊤
0 , x

⊤
1 , x

⊤
2 , . . .]

⊤, (22)
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and similarly for input U , and output Y . The modulation

frequency matrix N is defined as

N = blockdiag{jnωpI}; ∀n ∈ Z, (23)

with I the identify matrix of appropriate dimension.

Definition 2 (Harmonic Transfer Function [15]): The

Harmonic Transfer Function (HTF) H(s) describes the

relationship between the harmonics of the input signal U
and output signal Y , such that

Y = H(s)U , (24)

where

H(s) = C[sI − (A−N )]−1B + D. (25)

�

Note that the HTF acts as a generalized form of the classi-

cal describing function method [7]. A describing function is

restricted to the fundamental harmonic frequency, while the

HTF expresses the input-output mapping for all harmonics

active in the system.

IV. HARMONIC ANALYSIS APPROXIMATION

Direct application of the HTF is hindered as infinite sums

need to be computed. Nevertheless, all linear components in

Fig. 2 are proper. This allows to approximate the HTF with

a truncated version ĤN (s). Only N positive harmonics (as

well as N negative harmonics and the zero harmonic) are

included in the corresponding finite state space model (21),

with finite dimension for the Toeplitz block matrices A, B,

C and D.

Owing to the structure of A, it turns out that ĤN (s)
becomes a checkerboard with entries Hm,n = 0 for m +
n = even. For N = 2 this looks like

ĤN (s) =











0 H
−2,−1 0 H

−2,1 0
H

−1,−2 0 H
−1,0 0 H

−1,2

0 Ĥ0,−1 0 Ĥ0,1 0
H1,−2 0 H1,0 0 H1,2

0 H2,−1 0 H2,1 0











(26)

Physically, the structure of H(s) originates from (de-)

modulation in the measurement system. Through the mul-

tiplication with a sinusoidal signal, all harmonics shift up

and down with the fundamental frequency, see Fig. 3. By

evaluating the loop at λ, it can be seen that the even terms

ω = 0, 2a, . . . (arising from the applied input signal ∆P )

are modulated to odd harmonics in ∆f and demodulated

back to even terms in z. Conversely, the odd terms ω =
a, 3a, . . . at λ originate from the constant engine speed wV

and are modulated to even harmonics in ∆f and return to

the odd terms in z. As supported by ĤN (s), all signals

can be simultaneously present in the system, but there is

no interaction between both groups and both sets behave

orthogonal.

The transfer functions Hm,n(jω) map an EMP input into

an EMP output according to

Hm,n(jω) : un → ym, (27)

e q z l Df e

w = 0

w = a

w = 2a

w = 3a

w = 4a

w

Fig. 3. Signal mappings through (de-)modulation

with the frequency range of interest given by

ω ∈ Ω0 =
[

−
a

2
,
a

2

]

. (28)

These transfer functions will be used to analyse the closed-

loop gain and the speed of convergence in Section VI.

V. NUMERICAL STABILITY

To prove stability for the measurement system, the well-

known Floquet Theory can be applied. It states that every

(autonomous) LTP system can be reduced to a Linear Time

Invariant (LTI) system via a stability preserving coordinate

transformation. This way, stability for the LTP system is

equivalent to that of the LTI system.

The difficulty with the Floquet theory is finding an analyt-

ical expression for the coordinate transformation matrix. At

this point, literature provides several solution directions. For

example, Van der Kloet [14] proposes a Floquet decomposi-

tion by applying a Riccati transform. However, this requires

an explicit solution of the Riccati differential equation which

is not straight forward. Instead of searching for an analytical

description, one can also rely on a numerical approximation,

see e.g., [3], [16].

For the work presented here, the method from Friedmann

et al [3] is adopted. The state transition matrix Φ(t, t0) of the

LTP system (7) is numerically approximated over exactly one

period T , using a fourth order Runge-Kutta scheme with Gill

coefficients. This yields the transition matrix Φ(t0 + T, t0).
At this point it is important to select sufficient grid points M ,

to keep the step size ∆t = T/M small. Now stability of the

LTP system is determined by the eigenvalues of Φ(t0+T, t0),
which are known as the Floquet Characteristic Multipliers

(FCM). The LTP system is asymptotically stable iff all FCMs

appear in the open unit disk. Numerical results for this

approximation can be found in the next section.

VI. SIMULATION RESULTS

The preliminary simulation results presented in this section

are related to the LTP system shown in Fig. 2. The selected

model parameters are listed in Table I. The equivalent inertia

J corresponds to a mid-sized vehicle travelling at a constant

speed of 50 [km/h]. For convenience, the damping d is

chosen to be zero. The reduced system in Fig. 2 uses

KICE = KGen = 1, so λ should converge to λ̂ = 1.
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TABLE I

PARAMETER SETTINGS VEHICLE MODEL

Symbol Quantity Value Unit

J Equivalent vehicle inertia 24 [kgm2]
d Friction coefficient 0 [Nms/rad]
a Harmonic frequency 20π [rad/s]

0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
K = 50

t [s]

λ
 [

g
/J

]

0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
K = 250

t [s]

λ
 [

g
/J

]

0 1 2 3
−0.5

0

0.5

1

1.5
K = 500

t [s]

λ
 [

g
/J

]

0 1 2 3
−60

−40

−20

0

20

40

60
K = 750

t [s]

λ
 [

g
/J

]

HTF approx.
Original Simulink

HTF approx.
Original Simulink

HTF approx.
Original Simulink

HTF approx.
Original Simulink

Fig. 4. Response λ(t) for K ∈ {50, 250, 500, 750}

Simulations are executed in Matlab/Simulink with differ-

ent gains K for controller HC(s). For the reference input

r(t), a sinusoidal signal is selected: r(t) = 2 sin(at), t ≥ 0.

The output λ(t) is drawn in Fig. 4. It turns out that the system

exhibits non-minimum phase behavior and instability occurs

for K > 714.77.

A truncated HTF is used to approximate the simulation

results from above. The HTF from (26) is calculated with

N = 2. This means that only the first two harmonics are

included although the order of the non-zero entries from

Ĥ2(s) equals 7. Again, the sinusoidal reference signal r(t) =
2 sin(at) is studied. With r(t) = 0 for t < 0, its Laplace

transform is equal to R(s) = 2a
s2+a2 . This signal is applied

to Ĥ2(s):

Ŷ2(s) = Ĥ2(s)Û2(s), (29)

with

Ŷ2(s) =













Y (s− 2a)
Y (s− 1a)
Y (s)
Y (s+ 1a)
Y (s+ 2a)













; Û2(s) =













R(s− 2a)
R(s− a)
R(s)
R(s+ a)
R(s+ 2a)













. (30)

From all harmonic signals in Ŷ2(s), especially Y (s) is of

interest. This signal has been isolated and for different values

of K, the time response is also shown in Fig. 4.

Comparing the simulation results with the HTF, it can be

seen that N = 2 yields a good approximation for the original

LTP system, provided that K is sufficiently small. However,

TABLE II

NUMERICAL STABILITY

Model Stability region

Simulink model K ≤ 714.78
HTF approximation K ≤ 733.61
FCM approximation K ≤ 714.05

for K close to or above the instability point, differences in

amplitude emerge.

From the results in Fig. 4 it is also clear that the selected

gain K has a significant influence on the performance of

the measurement system. When a small gain is selected, the

system suffers from a large settling time, but there is no

overshoot. Conversely, a large gain yields a faster response

but it is accompanied by overshoot. Good results are obtained

when the system is critically damped with K = 390. A

moderate value for K also preserves stability in practical

situations when KICE changes over time.

The influence of noise is briefly considered by adding a

band-limited white noise signal ψ to the input signal r(t).
The amplitude of the noise spectrum is defined as:

Ψ(ω) =

{

1.0 × 10−3 for |ω| ≤ 1000π rad/s

0 for |ω| > 1000π rad/s
(31)

This signal has a serious impact on the input signal r(t) =
2 sin(at) + ψ, as can be seen in Fig. 5. Nevertheless,

the disturbance on λ remains limited to a zero-mean slow

varying signal. This means that measuring over a longer time

period is sufficient to obtain a correct estimate for λ. This

method will not work if dominant noise is present around

harmonic frequency a. In this case, λ(t) suffers from an

offset error. An offset can also be created by signals passing

through the loop more than once. For example disturbances

at odd harmonics of a (i.e. 3a, 5a, ...) in the input signal

r(t) will cause an offset for λ(t).
Numerical stability of the system is considered in three

ways. First, the Simulink model is used to determine the

value for K which leads to instability. Next, the truncated

HTF from Section IV is used to verify if similar results

emerge. Finally, the transition matrix Φ(t0 + T, t0) is nu-

merically calculated using M = 1000 steps for period T .

The FCMs from Floquet Theory are computed to determine

stability of the system. The corresponding results are sum-

marized in Table II.

According to the results in Table II, the stability bound

estimated by the HTF is too optimistic. It follows that the

omitted higher order harmonics have still some influence in

the approximated HTF. The numerical approximation of the

FCMs yields excellent results to determine stability.

VII. DISCUSSION

The measurement system only uses one frequency a for

identification of λ. Consequently, the applied method is only

valid if λ is not frequency dependent (=λ(a) constant). This

needs to be proven by experimental data. The advantage of

only using frequency a for signal correlation is that the model
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Fig. 5. Response λ(t) with additive noise and K = 390

needs to be accurate only at this frequency, whereas model

errors at other frequencies will not degrade the quality of λ.

The results in Fig. 4 indicate that the selected gain K
influences the speed of convergence of the measurement

system. Eventually, the speed of convergence is limited

by the characteristics of the band-pass filter HF (s). This

filter introduces two poles with time constant equal to τ =
2π/a = 0.1 [s]. The filter design is selected according to

the intended input signal r(t), so it follows that a higher

harmonic frequency a can lead to a faster convergence speed.

Unfortunately, selecting a higher harmonic frequency leads

to more attenuation in the measurement system, due to the

low-pass characteristics of HV (s). This can be compensated

by a higher gain K, but small variations for the engine

speed are difficult to measure. Moreover, frequency a should

always be sufficiently low compared to the dynamics of

the ICE and the generator, to allow for static gains when

modelling these components.

To select a suitable value for the harmonic frequency

a, also the influence of sensor noise needs to be further

analyzed. This will be a topic for future research. This

research should also consider the current filter design for

HF (s). Possibly other filters exist to optimize the system

for better disturbance rejection.

Another method to improve the speed of convergence,

is by using old data as an initial guess. Starting from

a well defined initial value, conversion towards the final

value becomes possible within 0.1 [s]. This result offers

possibilities to apply the measurement system under many

operating conditions, e.g., in transient situations where the

vehicle is accelerating or decelerating, but also during gear

changes, or after a cold start of the ICE and analyse the

impact of the engine temperature on λ.

VIII. CONCLUSIONS

By recognizing the wish for accurate model parameters

for an EM system, this paper presents a novel measurement

system to estimate the fuel cost for generating electric power

on-line in the vehicle. A correlation technique is introduced

covering two multiplications with a sinusoidal signal. With

this measurement scheme it is possible to equip existing EM

strategies with accurate values of the incremental fuel cost.

Since this parameter gets updated along the vehicle life cycle,

vehicle wear is automatically diagnosed.

It is shown that the control scheme satisfies the class of

LTP systems. This allows Harmonic Analysis to investigate

the dynamic behavior of the proposed measurement system.

An analytical transfer function is found which approximates

the LTP system in most situations. Stability bounds are more

accurately calculated by Floquet theory.

Simulation results illustrate how to optimize the speed of

convergence, by selecting a suitable gain for the controller.

These results also show robustness of the measurement

system against noise on the applied excitation signal.
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