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Abstract— The method of covariance and cross-covariance
matching is considered for errors-in-variables identification
where the measurement noises are colored. The covariance
and cross-covariance functions are estimated from the noise-
corrupted data and the corresponding theoretical functions,
parameterized by the unknown parameters, are matched to
the estimated functions. The main contribution of the paper is
a step-by-step algorithm for the computation of the covariance
matrix of the estimated system parameters.

I. INTRODUCTION

Consider the errors-in-variables (EIV) [1], [2], [3], [4]

system

A(q−1)y0(t) = B(q−1)u0(t),

A(q−1) = 1 + a1q
−1 + . . . + anq−n,

B(q−1) = b1q
−1 + . . . + bnq−n,

where q−1 is the backward shift operator, and where u0(t)
and y0(t) denote the noise-free input and output signals,

respectively. It is assumed that u0(t) is a stationary stochastic

process with rational spectrum and it is therefore represented

as

C(q−1)u0(t) = D(q−1)e(t),

C(q−1) = 1 + c1q
−1 + . . . + cmq−m,

D(q−1) = d1q
−1 + . . . + dmq−m,

where the white noise source e(t) is of zero mean and

variance λ2

e. The measurements

u(t) = u0(t) + ũ(t), (1)

y(t) = y0(t) + ỹ(t) (2)

are available for t = 1, . . . , N , where ũ(t) and ỹ(t) are

independent colored noise sequences given by

G(q−1)ũ(t) = v(t),

G(q−1) = 1 + g1q
−1 + . . . + gαq−α (3)

and

H(q−1)ỹ(t) = w(t),

H(q−1) = 1 + h1q
−1 + . . . + hβq−β , (4)

where v(t) and w(t) are independent white noise sources of

zero mean and variances λ2

v and λ2

w, respectively, indepen-

dent of e(t). The case with white measurement noises was
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considered in [5]. The problem is to estimate the unknown

system parameters

θ0 =
[

a1 · · · an b1 · · · bn

]T

from the data {u(t), y(t)}N
t=1

. The parameters

ψ
0

=
[

c1 · · · cm d1 · · · dm

]T

are also unknown, but are not of primary interest.

The solution considered in this paper is to estimate

covariance and cross-covariance functions from the noise

corrupted data and to match the corresponding theoretical

functions, parameterized by the unknown parameters, to the

estimated functions. The estimate of the cross-covariance

function based on colored noise-corrupted measurements

u(t) and y(t) is consistent, provided that the measurement

noises (1) and (2) are independent. This makes the method

of cross-covariance matching an interesting choice for EIV

identification. The main contribution of the paper is the

derivation of the covariance matrix of the estimate of θ0

given by the cross-covariance matching method. The expres-

sion is approximative and valid for a large number of data

N . A detailed description on how to compute the involving

elements is given in the paper.

The outline of the paper is as follows. In the next section,

some preliminaries regarding the theoretical expressions for

the covariance and cross-covariance functions are given

together with definitions of some of their estimates and

the asymptotic properties of these estimates. The estimators

based on covariance and cross-covariance matching are de-

scribed in Section III, including discussions on consistency

of these estimators. Section IV is devoted to the covariance

matrix of the estimate of θ0, and a step-by-step algorithm

for its computation is given in Algorithm 2 in the end of

the section. An example in which the theoretical variances

are compared with empirical variances from a Monte Carlo

simulation is presented in Section V, and conclusions are

drawn in Section VI.

II. PRELIMINARIES

Some material on covariance and cross-covariance func-

tions, important for the coming sections of the paper, is

presented in this section. First, the covariance and cross-

covariance functions for the signals u0(t) and y0(t) are

given. Represent the system from u0(t) to y0(t) as

x(t + 1) = A(θ0,ψ0
)x(t) + B(ψ

0
)e(t),

z0(t) = Cx(t) + De(t),
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where

z0(t) =
[

u0(t) y0(t)
]T

.

The following result can now be stated.

Result 1. The covariance function Rz0
(τ,θ0,ψ0

) of z0(t)
is given as

Rz0
(τ,θ0,ψ0

) =

[

ru0
(τ,ψ

0
) ru0y0

(τ,θ0,ψ0
)

ry0u0
(τ,θ0,ψ0

) ry0
(τ,θ0,ψ0

)

]

= E{z0(t + τ)zT
0
(t)}

=







CP(θ0,ψ0
)CT + λ2

eDDT , τ = 0,

CAτ−1(θ0,ψ0
)
(

A(θ0,ψ0
)

· P(θ0,ψ0
)CT + λ2

eB(ψ
0
)DT

)

,
τ > 0,

(5)

where P(θ0,ψ0
) is the unique and non-negative definite

solution to the Lyapunov equation

P(θ0,ψ0
) = A(θ0,ψ0

)P(θ0,ψ0
)AT (θ0,ψ0

)

+ λ2

eB(ψ
0
)BT (ψ

0
).

(6)

Proof: See [6].

An estimate of Rz0
(τ,θ0,ψ0

) is suggested in the following

proposition.

Proposition 1. If the mean values of u(t) and y(t) are zero,

a possible estimator R̂z(τ) of Rz0
(τ,θ0,ψ0

) is

R̂z(τ) =

[

r̂u(τ) r̂uy(τ)
r̂yu(τ) r̂y(τ)

]

=
1

N − τ

N−τ
∑

t=1

z(t + τ)zT (t), τ > 0,

where

z(t) =
[

u(t) y(t)
]T

.

The data are stationary and ergodic under the given assump-

tions, and

E{y0(t1)ũ(t2)} = 0, ∀t1, t2,

E{ỹ(t1)u0(t2)} = 0, ∀t1, t2,

E{ỹ(t1)ũ(t2)} = 0, ∀t1, t2,

so

lim
N→∞

r̂yu(τ) = ry0u0
(τ,θ0,ψ0

), τ > 0, (7)

lim
N→∞

r̂uy(τ) = ru0y0
(τ,θ0,ψ0

), τ > 0.

For the diagonal elements of R̂z(τ), it holds that

lim
N→∞

r̂u(τ) = ru0
(τ,ψ

0
) + rũ(τ,γ

0
), τ > 0, (8)

lim
N→∞

r̂y(τ) = ry0
(τ,θ0,ψ0

) + rỹ(τ,κ0), τ > 0,

where rũ(τ,γ
0
) and rỹ(τ,κ0) are, respectively, the covari-

ance functions of ũ(t) and ỹ(t). Here,

γ
0

=
[

g1 · · · gα

]

and

κ0 =
[

h1 · · · hβ

]

contain the filter parameters of (3) and (4), respectively. This

information about the asymptotic properties of the estimators

of the covariance and cross-covariance functions is needed

in the discussion on consistency of the proposed estimators

of ψ
0

and θ0 in Section III as well as in the expression for

the covariance matrix for the estimate of θ0 in Section IV.

The covariance functions rũ(τ,γ
0
) and rỹ(τ,κ0) are

found next. To find rũ(τ,γ
0
), represent ũ(t) in state space

form as

xg(t + 1) = Ag(γ0
)xg(t) + Bgv(t),

ũ(t) = Cgxg(t).

The covariance function is given by the following result.

Result 2. The covariance function rũ(τ,γ
0
) of ũ(t) is given

as

rũ(τ,γ
0
) = CgA

τ
g(γ

0
)Pg(γ0

)CT
g , τ > 0,

where Pg(γ0
) is the unique and non-negative definite solu-

tion to the Lyapunov equation

Pg(γ0
) = Ag(γ0

)Pg(γ0
)AT

g (γ
0
) + λ2

vBgB
T
g .

Proof: The result follows from Result 1.

Alternatively, consider the Yule-Walker equation

rũ(τ,γ
0
) + g1rũ(τ − 1,γ

0
) + . . . + gαrũ(τ − α,γ

0
)

=

{

0, τ > 0,

λ2

v, τ = 0

for τ = 0, . . . , α, provided that λ2

v is known, in order to de-

termine rũ(0,γ
0
), . . . , rũ(α,γ

0
). The Yule-Walker equation

can then be iterated for τ > α to find rũ(τ,γ
0
), τ > α.

Analogously, to find rỹ(τ,κ0), first represent ỹ(t) in state

space form as

xh(t + 1) = Ah(κ0)xh(t) + Bhw(t),

ỹ(t) = Chxh(t).

The covariance function is given by the following result.

Result 3. The covariance function rỹ(τ,κ0) of ỹ(t) is found

by solving the Lyapunov equation

Ph(κ0) = Ah(κ0)Ph(κ0)A
T
h (κ0) + λ2

wBhB
T
h ,

and computing

rỹ(τ,κ0) = ChA
τ
h(κ0)Ph(κ0)C

T
h , τ > 0.

Proof: The result follows from Result 1.
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III. ESTIMATION

In this section, estimators of ψ
0

and θ0 based on co-

variance and cross-covariance matching are suggested. Two

different estimators for ψ
0

and one estimator for θ0 are

given, and consistency of these estimators are discussed. It

is assumed that R̂z(τ) from Proposition 1 is available for

τ = 0, . . . , ℓ.

Proposition 2. Define the loss function

V (ψ) =

j2
∑

τ=j1

(

r̂u(τ) − ru0
(τ,ψ)

)2
,

where 0 6 j1 6 j2 6 ℓ, from which an estimate ψ̂ is

obtained as

ψ̂ = arg min
ψ

V (ψ). (9)

The estimate ψ̂ from (9) is not consistent due to the colored

measurement noise. Consider

lim
N→∞

V (ψ) =

j2
∑

τ=j1

{ lim
N→∞

r̂2

u(τ) + r2

u0
(τ,ψ)

− 2
(

ru0
(τ,ψ

0
) + rũ(τ,γ

0
)
)

ru0
(τ,ψ)},

(10)

where (8) is used. Note that nothing is said about

limN→∞ r̂2

u(τ) since this information is not needed. It is

seen that (10) is minimized by
(

ru0
(τ,ψ)

)

min
= ru0

(τ,ψ
0
) + rũ(τ,γ

0
),

i.e., not by ψ = ψ
0
. This means that

∣

∣

(

ru0
(τ,ψ)

)

min
− ru0

(τ,ψ
0
)
∣

∣ = |rũ(τ,γ
0
)|

in the limiting case. The following proposition is an alterna-

tive if α in (3) is known.

Proposition 3. Define the loss function

S(ψ,γ) =

j2
∑

τ=j1

(

r̂u(τ) − ru0
(τ,ψ) − rũ(τ,γ)

)2
,

where 0 6 j1 6 j2 6 ℓ, from which estimates ψ̂ and γ̂ are

obtained as

{ψ̂, γ̂} = arg min
ψ,γ

S(ψ,γ). (11)

The estimates ψ̂ and γ̂ from (11) are consistent since

lim
N→∞

S(ψ,γ) =

j2
∑

τ=j1

{ lim
N→∞

r̂2

u(τ) + r2

u0
(τ,ψ) + r2

ũ(τ,γ)

− 2
(

ru0
(τ,ψ

0
) + rũ(τ,γ

0
)
)

ru0
(τ,ψ)

− 2
(

ru0
(τ,ψ

0
) + rũ(τ,γ

0
)
)

rũ(τ,γ)

+ 2ru0
(τ,ψ)rũ(τ,γ)}

(12)

is minimized by

(

ru0
(τ,ψ)

)

min
= ru0

(τ,ψ
0
)

and

(

rũ(τ,γ)
)

min
= rũ(τ,γ

0
),

i.e., by ψ = ψ
0

and γ = γ
0
. In (12), just as in (10), (8) is

used and information about limN→∞ r̂2

u(τ) is not needed.

After an estimate ψ̂ is obtained, for example as described

in Proposition 2 or in Proposition 3, an estimate of θ0 can

be found as described next.

Proposition 4. Consider the loss function

W (θ) =
k

∑

τ=0

(

r̂yu(τ) − ry0u0
(τ,θ, ψ̂)

)2
, (13)

where k 6 ℓ, from which an estimate θ̂ is given as

θ̂ = arg min
θ

W (θ). (14)

It holds that the estimate θ̂ from (14) is consistent, provided

that ψ̂ is a consistent estimate of ψ
0
. Consider

lim
N→∞

W (θ) =

k
∑

τ=0

{ lim
N→∞

r̂2

yu(τ) + r2

y0u0
(τ,θ, ψ̂)

− 2ry0u0
(τ,θ0,ψ0

)ry0u0
(τ,θ, ψ̂)},

(15)

where (7) is used. Here, information about limN→∞ r̂2

yu(τ)
is not needed. It holds that (15) is uniquely minimized by

(

ry0u0
(τ,θ, ψ̂)

)

min
= ry0u0

(τ,θ0,ψ0
),

i.e., by θ = θ0, provided that ψ̂ is a consistent estimate of

ψ
0
.

The estimation method is now summarized in Algorithm 1.

Algorithm 1. Summary of the estimation method.

1) Estimate the covariance function Rz0
(τ,θ0,ψ0

) as

described in Proposition 1.

2) Compute the estimate ψ̂ as suggested in Proposition 2

or in Proposition 3.

3) Compute the estimate θ̂ as described in Proposition 4.

IV. COVARIANCE MATRIX

An approximative expression, valid for large N , for the

covariance matrix of the estimate of θ0 described in Propo-

sition 4 is given in this section. The computation of the

involving elements is the main contribution of the paper, and

a step-by-step algorithm is given in the end of the section.

Since θ̂ minimizes W (θ), it holds that Ẇ (θ̂) = 0, where

Ẇ (θ) denotes the first order derivative of W (θ). By the

mean value theorem, Ẇ (θ̂) = 0 can be written as

0 = Ẇ (θ0) + Ẅ (θξ)(θ̂ − θ0),
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where Ẅ (θ) denotes the second order derivative of W (θ),
and where θξ is between θ0 and θ̂. Due to consistency of

θ̂,

lim
N→∞

θξ = θ0.

Let

¨̄W (θ) = lim
N→∞

Ẅ (θ)

and use the triangle inequality to get

||Ẅ (θξ) −
¨̄W (θ0)||2 6 ||Ẅ (θξ) − Ẅ (θ0)||2

+ ||Ẅ (θ0) −
¨̄W (θ0)||2.

Since the right-hand side tends to zero as N → ∞,

lim
N→∞

Ẅ (θξ) = ¨̄W (θ0) = H.

This gives the approximation

θ̂ − θ0 ≈ −H−1Ẇ (θ0)

for large N , provided that H−1 exists. The following result

can now be given.

Result 4. For large N , the covariance matrix of θ̂ is ap-

proximately given as

K = E{(θ̂ − θ0)(θ̂ − θ0)
T } ≈ H−1QH−1, (16)

provided that H−1 exists, where

Q = E{Ẇ (θ0)Ẇ
T (θ0)},

H = lim
N→∞

Ẅ (θ0).

Next, the matrices Q and H are to be found. Section IV-A

is devoted to the computation of Q, whereas Section IV-B

describes the computation of H.

A. Computation of Q

To find Q, it is first noted that

Ẇ (θ) = 2
k

∑

τ=0

(

ry0u0
(τ,θ, ψ̂) − r̂yu(τ)

)

ṙy0u0
(τ,θ, ψ̂),

where ṙy0u0
(τ,θ, ψ̂) denotes the derivative of ry0u0

(τ,θ, ψ̂)
with respect to θ. The elements of

ṙy0u0
(τ,θ, ψ̂) =

=

[

∂ry0u0
(τ,θ, ψ̂)

∂θ1

· · ·
∂ry0u0

(τ,θ, ψ̂)

∂θ2n

]T

,
(17)

where θi is the ith element of the vector θ, are found by

differentiating (5). More exactly, the ith element of (17) is

found as element (2, 1) of the matrix

∂Rz0
(τ,θ, ψ̂)

∂θi

=















































C
∂P(θ, ψ̂)

∂θi

CT , τ = 0,

C
∂Aτ (θ, ψ̂)

∂θi

P(θ, ψ̂)CT

+ CAτ (θ, ψ̂)
∂P(θ, ψ̂)

∂θi

CT

+ λ2

eC
∂Aτ−1(θ, ψ̂)

∂θi

B(ψ̂)DT ,

τ > 0,

(18)

where ∂P(θ, ψ̂)/∂θi is given as the unique and non-negative

definite solution to the Lyapunov equation

∂P(θ, ψ̂)

∂θi

= A(θ, ψ̂)
∂P(θ, ψ̂)

∂θi

AT (θ, ψ̂)

+
∂A(θ, ψ̂)

∂θi

P(θ, ψ̂)AT (θ, ψ̂)

+ A(θ, ψ̂)P(θ, ψ̂)
∂AT (θ, ψ̂)

∂θi

.

(19)

Here, P(θ, ψ̂) is given from (6), and the partial derivatives

of the functions of A(θ, ψ̂) with respect to θi are straight-

forward to find from the chosen state space form.

Assume that

r̂yu(τ) = ry0u0
(τ,θ0, ψ̂) + ε(τ).

This means that

Q = 4

k
∑

τ=0

k
∑

s=0

E{ε(τ)ε(s)}ṙy0u0
(τ,θ0, ψ̂)ṙT

y0u0
(s,θ0, ψ̂).

(20)

Compute the element

E{ε(τ)ε(s)} ≈ E{r̂yu(τ)r̂yu(s)}

− ry0u0
(τ,θ0,ψ0

)ry0u0
(s,θ0,ψ0

),
(21)

where the approximation is motivated by (7), the fact that

N is large, and by the assumption that limN→∞ ψ̂ = ψ
0
.

Here,

E{r̂yu(τ)r̂yu(s)} =
1

(N − τ)(N − s)

·

N−τ
∑

t1=1

N−s
∑

t2=1

E{y(t1 + τ)u(t1)y(t2 + s)u(t2)}.

(22)

For the four jointly Gaussian variables ζ1, ζ2, ζ3, and ζ4 of

zero mean, it holds that

E{ζ1ζ2ζ3ζ4} = E{ζ1ζ2}E{ζ3ζ4} + E{ζ1ζ3}E{ζ2ζ4}

+ E{ζ1ζ4}E{ζ2ζ3}.

Hence,

E{y(t1 + τ)u(t1)y(t2 + s)u(t2)}

= ry0u0
(τ,θ0,ψ0

)ry0u0
(s,θ0,ψ0

)

+
(

ry0
(|t1 + τ − t2 − s|,θ0,ψ0

)

+ rỹ(|t1 + τ − t2 − s|,κ0)
)

·
(

ru0
(|t1 − t2|,ψ0

) + rũ(|t1 − t2|,γ0
)
)

+ f1f2,
(23)

where

f1 =

{

ry0u0
(t1 + τ − t2,θ0,ψ0

), t1 + τ − t2 > 0,

ru0y0
(t2 − t1 − τ,θ0,ψ0

), t1 + τ − t2 < 0,

(24)

f2 =

{

ry0u0
(t2 + s − t1,θ0,ψ0

), t2 + s − t1 > 0,

ru0y0
(t1 − t2 − s,θ0,ψ0

), t2 + s − t1 < 0.
(25)
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B. Computation of H

To find the Hessian H, compute

Ẅ (θ) = 2
k

∑

τ=0

ṙy0u0
(τ,θ, ψ̂)ṙT

y0u0
(τ,θ, ψ̂)

+ 2
k

∑

τ=0

(

ry0u0
(τ,θ, ψ̂) − r̂yu(τ)

)

r̈y0u0
(τ,θ, ψ̂)

to get

H ≈ 2

k
∑

τ=0

ṙy0u0
(τ,ψ

0
,θ0)ṙ

T
y0u0

(τ,ψ
0
,θ0), (26)

where the approximation is motivated by (7), the fact that N
is large, and by the assumption that limN→∞ ψ̂ = ψ

0
.

The computation of the covariance matrix is summarized

in Algorithm 2.

Algorithm 2. The computation of the covariance matrix K.

1) Compute Rz0
(τ,θ0,ψ0

) as described in Result 1.

2) Compute rũ(τ,γ
0
) and rỹ(τ,κ0) as described in Re-

sults 2 and 3, respectively.

3) Compute E{r̂yu(τ)r̂yu(s)} in (22) using (23)–(25) and

the results from Steps 1 and 2.

4) Compute E{ε(τ)ε(s)} in (21) using the results from

Steps 1 and 3.

5) Compute ṙy0u0
(τ,θ0, ψ̂) in (17) through (18) and (19).

6) Compute Q in (20) using the results from Steps 4

and 5.

7) Compute H in (26) using the results from Step 5.

8) Compute K in (16) using the results from Steps 6

and 7.

V. EXAMPLE

The system defined by

A(θ0,ψ0
)=









−a1 1 b1 0
−a2 0 b2 0
0 0 −c1 1
0 0 −c2 0









=









1 1 1 0
−0.5 0 −0.8 0

0 0 1 1
0 0 −0.5 0









,

B(ψ
0
) =









0
0
d1

d2









=









0
0
1

−0.3









,C =

[

0 0 1 0
1 0 0 0

]

,D =

[

0
0

]

,

and λ2

e = 1, where the disturbance dynamics are described

by

Ag(γ0
) = −g1 = 0.8, Bg = 1, Cg = 1, λ2

v = 1,

and

Ah(κ0) = −h1 = 0.8, Bh = 1, Ch = 1, λ2

w = 1

is considered in an example. The aim is to compare the

theoretical variances from K in (16) with empirical variances

from a Monte Carlo simulation with 100 realizations of

N = 10 000 data points. Here, ψ̂ is taken as ψ
0

in the

loss function W (θ) in (13) in the estimation of θ0 in each

realization in order to make a fair comparison between the

empirical variances and the variances from K.

The theoretical and empirical variances for the estimates

â1, â2, b̂1, and b̂2 as functions of the maximum lag k
considered in the loss function W (θ) are shown in Fig. 1. It

is seen that the empirical variances are well described by the

theoretical variances and that the validity of the theoretical

expressions is confirmed for this example.

VI. CONCLUSIONS

The EIV identification problem with colored measurement

noises was studied. The solution considered in this paper

was to estimate covariance and cross-covariance functions

from the noise corrupted data and to match the corresponding

theoretical functions, parameterized by the unknown param-

eters, to the estimated functions. A step-by-step algorithm

for the computation of the elements of an expression for the

covariance matrix of the estimated system parameters, valid

for a large amount of data points, was given. The theoretical

variances were verified by empirical variances from a Monte

Carlo simulation in an example.
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Fig. 1. The theoretical and empirical variances for the estimates â1 (upper left), â2 (upper right), b̂1 (lower left), and b̂2 (lower right) as functions of
the maximum lag k.
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