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Abstract—A robust adaptive uncalibrated visual servo con-
troller is proposed to asymptotically regulate a robot end-
effector to a desired pose. A homography-based visual servo
control approach is used to address the six degrees-of-freedom
regulation problem. A high-gain robust controller is developed
to asymptotically stabilize the rotation error, and an adaptive
controller is developed to stabilize the translation error while
compensating for the unknown depth information and intrinsic
camera calibration parameters. A Lyapunov-based analysis is
used to examine the stability of the developed controller.

I. INTRODUCTION
Image-based feedback continues to be a popular sensor

modality for autonomous control applications. A camera
model (e.g., the pinhole model) is often required in these ap-
plications to relate image-based feedback to the (normalized)
Euclidean-space. The camera model is typically assumed to
be exactly known (i.e., the intrinsic calibration parameters
are assumed to be known). Despite the availability of sev-
eral popular calibration methods, camera calibration can be
time consuming, requires some level of expertise, and has
inherent inaccuracies. If the calibration parameters are not
exactly known, then performance degradation and potential
unpredictable response from the system may occur.
Motivated by the desire to incorporate robustness to

camera calibration, different control approaches that do not
depend on exact camera calibration have been proposed
(cf. [1]–[18]). Efforts such as [1]–[5] have investigated the
development of methods to estimate the image and robot
manipulator Jacobians. These methods are composed of
some form of recursive Jacobian estimation law and a control
law. Specifically, a visual servo controller is developed in [1]
based on a weighted recursive least-squares update law to
estimate the image Jacobian. In [2], a Broyden Jacobian es-
timator is applied, and a nonlinear least-square optimization
method is used for the visual servo control development. In
[3], the authors used a nullspace-biased Newton-step visual
servo strategy with a Broyden Jacobian estimation for online
singularity detection and avoidance in an uncalibrated visual
servo control problem. In [4], [5], a recursive least-squares
algorithm is implemented for Jacobian estimation, and a
dynamic Gauss-Newton method is used to minimize the
squared error in the image plane.
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Robust control approaches based on static best-guess es-
timation of the calibration matrix have been developed to
solve the uncalibrated visual servo regulation problem (cf.
[9], [16]–[18]). Specifically, under a set of assumptions on
the rotation and calibration matrix, a kinematic controller
was developed in [9] that utilizes a constant, best-guess
estimate of the calibration parameters to achieve local set-
point regulation for the six degree-of-freedom (DOF) visual
servo control problem. Homography-based visual servoing
methods using best-guess estimation are used in [16]–[18]
to achieve asymptotic or exponential regulation with respect
to both camera and hand-eye calibration errors for the six
DOF problem.
The development of traditional adaptive control methods

to compensate for uncertainty in the camera calibration
matrix is inhibited because of the time-varying uncertainty
injected in the transformation from the normalization of the
Euclidean coordinates. As a result, initial adaptive control
results such as [6]–[12] were limited to scenarios where it
was assumed that the optical axis of the camera was perpen-
dicular to the plane formed by the feature points (i.e., the
time-varying uncertainty is reduced to a constant uncertainty)
or assumed that an additional sensor (e.g., ultrasonic sensors,
laser-based sensors, additional cameras) could be used to
measure the depth information.
More recent approaches exploit geometric relationships

between multiple spatiotemporal views of an object to
transform the time-varying uncertainty into known time-
varying terms multiplied by an unknown constant [13], [14],
[16]–[19]. In [13], an on-line calibration algorithm was
developed for position-based visual servoing. In [14], an
adaptive image-based visual servo controller was developed
that regulated the feature points in an image to desired
locations. One problem with methods based on the image-
Jacobian is that the estimated image-Jacobian may contain
singularities. The development in [14] exploits an additional
potential force function to drive the estimated parameters
away from the values that result in a singular Jacobian
matrix. In [19], an adaptive homography-based controller
was proposed to address problems of uncertainty in the
intrinsic camera calibration parameters and lack of depth
measurements. Specifically, an adaptive control strategy was
developed from a Lyapunov-based approach that exploits the
triangular structure of the calibration matrix. To the best of
our knowledge, the result in [19] was the first result that reg-
ulates the robot end-effector to a desired position/orientation
through visual servoing by actively compensating for the lack
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of depth measurements and uncertainty in the camera intrin-
sic calibration matrix with regard to the six DOF regulation
problem. However, the relationship between the estimated
rotation axis and the actual rotation axis is not correctly
developed. A time-varying scaling factor was omitted which
is required to relate the estimated rotation matrix and the
actual rotation matrix. Specifically, the estimated rotation
matrix and the actual rotation matrix were incorrectly related
through eigenvectors that are associated with the eigenvalue
of 1. An unknown time-varying scalar is required to relate
these vectors, and the methods in [19] do not appear to be
suitable to accommodate for this uncertainty.
A new robust adaptive visual servo controller is developed

in this paper to asymptotically regulate the feature points
in an image to the desired feature point locations while
also regulating the six DOF position and orientation of
the camera. These dual objectives are achieved by using
a homography-based approach that exploits both image-
space and reconstructed Euclidean information in the feed-
back loop. In comparison to pure image-based feedback
approaches, some advantages of using a homography-based
method include: realizable Euclidean camera trajectories (see
[20] and [21] for a discussion of Chaumette’s Conundrum);
a nonsingular image-Jacobian; and both the camera position
and orientation and the feature point coordinates are included
in the error system. Since some image-space information is
used in the feedback-loop of the developed homography-
based controller, the image features are less likely to leave
the field-of-view in comparison with pure position-based
approaches. The developed controller is composed of the
same adaptive translation controller as in the preliminary
results in [19] and a new robust rotation controller. The
contribution of the result is the development of the robust
angular velocity controller that accommodates for the time-
varying uncertain scaling factor by exploiting the upper
triangular form of the rotation error system and the fact that
the diagonal elements of the camera calibration matrix are
positive.

II. CAMERA MODEL AND EUCLIDEAN
RECONSTRUCTION

A. Camera Geometry
Without loss of generality1, the subsequent development

is based on the assumption that four stationary coplanar and
non-collinear feature points [24] denoted by Oi ∀i = 1, 2, 3,
4 can be determined from a feature point tracking algorithm.
The plane defined by the four feature points is denoted by π
as depicted in Fig. 1. A coordinate frame F is considered to
be affixed to the single current camera viewing the object,
and a stationary coordinate frame F∗ denotes a constant (a
priori determined) desired camera position and orientation
that is defined by a desired image. The Euclidean coordinates

1Image processing techniques can be used to select coplanar and non-
collinear feature points within an image. However, if four coplanar target
points are not available, then the subsequent development can also exploit
the virtual parallax algorithm (cf. [22], [23]) with no four of the eight target
points being coplanar.
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Fig. 1. Coordinate frame relationships between a camera viewing a planar
patch at different spatiotemporal instances.

of the feature points Oi expressed in the frames F and F∗
are denoted by xi(t), yi(t), zi(t) ∈ R and x∗i , y

∗
i , z
∗
i ∈ R,

respectively. The normalized Euclidean coordinate vectors,
denoted by mi (t) ∈ R3 and m∗i ∈ R3, are defined as

mi ,
h xi

zi

yi
zi

1
iT

m∗i ,
∙

x∗i
z∗i

y∗i
z∗i

1

¸T
(1)

in F and F∗, respectively.
From standard Euclidean geometry, relationships between

mi(t) and m∗i can be determined as [24]

mi =
z∗i
zi|{z}

³
R+

xf
d∗

n∗T
´

| {z }m∗i
αi H

, (2)

where αi(t) ∈ R is a scaling term, and H(t) ∈ R3×3 denotes
the Euclidean homography. The Euclidean homography is
composed of a scaled translation vector, which is equal to the
translation vector xf (t) ∈ R3 divided by the distance d∗ ∈ R
from the origin of F∗ to the plane π, the rotation between
F and F∗, denoted by R (t) ∈ SO(3), and a constant unit
normal to the plane π, denoted by n∗ ∈ R3.
Each feature point Oi on π also has a pixel coordinate

pi (t) ∈ R3 and p∗i ∈ R3 expressed in the image coordinate
frame for the current image and the desired image denoted
by

pi ,
£
ui vi 1

¤T
p∗i ,

£
u∗i v∗i 1

¤T
, (3)

where ui(t), vi(t), u∗i , v∗i ∈ R. The pixel coordinates pi (t)
and p∗i are related to the normalized task-space coordinates
mi (t) and m∗i by the following global invertible transfor-
mation (i.e., the pinhole camera model)

pi = Ami p∗i = Am∗i , (4)

where A ∈ R3×3 is a constant, upper triangular, invertible
intrinsic camera calibration matrix that is explicitly defined
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as [25]

A ,

⎡⎢⎣ α −α cotφ u0

0
β

sinφ
v0

0 0 1

⎤⎥⎦ =
⎡⎣ a11 a12 a13
0 a22 a23
0 0 1

⎤⎦ . (5)
In (5), u0, v0 ∈ R denote the pixel coordinates of the
principal point (i.e., the image center that is defined as the
frame buffer coordinates of the intersection of the optical axis
with the image plane), α, β ∈ R represent the product of the
camera scaling factors and the focal length, and φ ∈ R is the
skew angle between the camera axes. Based on the physical
meaning, the diagonal calibration elements are positive (i.e.,
a11, a22 > 0).
Assumption 1: The bounds of a11 and a22 are assumed

to be known as

ζ
a11

< a11 < ζa11 ζ
a22

< a22 < ζa22 . (6)

The absolute values of a12, a13, a23 are upper bounded as

|a12| < ζa12 |a13| < ζa13 |a23| < ζa23 . (7)

In (6) and (7), ζ
a11

, ζa11 , ζa22
, ζa22 , ζa12 , ζa13 and ζa23

are known positive constants.
Assumption 2: The reference plane is within the camera’s

field of view and not at infinity. That is, there exist positive
constants ζ

zi
and ζzi such that

ζ
zi
< zi(t) < ζzi . (8)

B. Reconstruction Using Vanishing Points
Based on (2)-(4), the homography relationship based on

measurable pixel coordinates is

pi = αiAHA−1p∗i . (9)

Since A is unknown, standard homography computation and
decomposition algorithms can’t be applied to extract the
rotation and translation from the homography. As stated in
[16], if some additional information is known, such as four
vanishing points, the rotation matrix can be obtained. For
the vanishing points (see [26] for a description of how to
determine vanishing points in an image), d∗ =∞, so that

H = R+
xf
d∗

n∗T = R. (10)

Based on (10), the relationship in (9) can be expressed as

pi = αiR̄p
∗
i , (11)

where R̄ (t) ∈ R3×3 is defined as

R̄ = ARA−1. (12)

For the four vanishing points, twelve linear equations can
be obtained based on (11). After normalizing R̄(t) by one
nonzero element (e.g., R̄33(t) ∈ R which is assumed to be
the third row third column element of R̄(t) without loss
of generality), twelve equations can be used to solve for
twelve unknowns. The twelve unknowns are given by the

eight unknown elements of the normalized R̄(t), denoted by
R̄n(t) ∈ R3×3, defined as

R̄n ,
R̄

R̄33
, (13)

and the four unknowns are given by R̄33(t)αi(t). From the
definition of R̄n(t) in (13), the fact that

det
¡
R̄
¢
= det(A) det(R) det(A−1) = 1 (14)

can be used to conclude that

R̄333 det
¡
R̄n

¢
= 1, (15)

and hence,

R̄ =
R̄n

3
p
det(R̄n)

. (16)

After R̄ (t) is obtained, the original four feature points on
the reference plane can be used to determine the depth ratio
αi (t) (details available upon request).

III. OPEN-LOOP ERROR SYSTEM

A. Rotation Error System

If the rotation matrix R (t) introduced in (2) were
known, then the corresponding unit quaternion q (t) ,£
q0 (t) qTv (t)

¤T can be calculated using the numerically
robust method presented in [27] and [28] based on the
corresponding relationships

R (q) =
¡
q20 − qTv qv

¢
I3 + 2qvq

T
v − 2q0q×v , (17)

where q0(t) ∈ R, qv(t) ∈ R3, I3 is the 3×3 identity matrix,
and the notation q×v (t) denotes the following skew-symmetric
form of the vector qv(t):

q×v =

⎡⎣ 0 −qv3 qv2
qv3 0 −qv1
−qv2 qv1 0

⎤⎦ , ∀qv =
⎡⎣ qv1

qv2
qv3

⎤⎦ .
Given R(t), the quaternion q(t) can also be written as

q0 =
1

2

p
1 + tr(R) (18)

qv =
1

2
u
p
3− tr(R), (19)

where u(t) ∈ R3 is a unit eigenvector of R(t) with respect
to the eigenvalue 1, and the notation tr (·) denotes the trace
of a matrix. The open-loop rotation error system for q(t) can
be obtained as [29]∙

q̇0
q̇v

¸
=
1

2

∙
−qTv

q0I3 + q×v

¸
ωc, (20)

where ωc(t) ∈ R3 defines the angular velocity of the camera
expressed in F .
The quaternion q (t) given in (17)-(20) is not measurable

since R(t) is unknown. However, since R̄(t) can be deter-
mined as described in (16), the same algorithm as shown
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in equations (18) and (19) can be used to determine a
corresponding measurable quaternion

¡
q̄0(t), q̄

T
v (t)

¢T as
q̄0 =

1

2

q
1 + tr(R̄) (21)

q̄v =
1

2
ū
q
3− tr(R̄), (22)

where ū(t) ∈ R3 is a unit eigenvector of R̄(t) with respect
to the eigenvalue 1. Based on (12), tr

¡
R̄
¢
= tr

¡
ARA−1

¢
=

tr(R). Since R(t) and R̄(t) are similar matrices, the rela-
tionship between

¡
q0(t), q

T
v (t)

¢T and ¡q̄0(t), q̄Tv (t)¢T can be
determined as

q̄0 = q0 q̄v =
kqvk
kAqvk

Aqv , γAqv, (23)

where γ(t) ∈ R is a positive, unknown, time-varying scalar
that satisfies the following inequalities (details available upon
request)

ζ
γ
< γ(t) < ζγ , (24)

where ζ
γ
, ζγ ∈ R are positive bounding constants. The

inverse of the relationship between q̄v(t) and qv(t) in (23)
can be developed as

qv =
1

γ
A−1q̄v (25)

=
1

γ

⎡⎢⎢⎢⎣
1

a11
q̄v1 −

a12
a11a22

q̄v2 −
µ
a13
a11
− a12a23

a11a22

¶
q̄v3

1

a22
q̄v2 −

a23
a22

q̄v3

q̄v3

⎤⎥⎥⎥⎦ .
B. Translation Error System

The translation error, denoted by e(t) ∈ R3, is defined as

e(t) = pe(t)− p∗e, (26)

where pe (t), p∗e ∈ R3 are defined as

pe =
£
ui vi − ln (αi)

¤T
p∗e =

£
u∗i v∗i 0

¤T
,

(27)
where i ∈ {1, · · · , 4}. The translation error e(t) is mea-
surable since the first two elements are image coordinates,
and αi(t) is obtained from the homography decomposition
(details available upon request). The open-loop translation
error system can be obtained by taking the time derivative
of e(t) and multiplying the resulting expression by z∗i as [19]

z∗i ė = −αiAevc + z∗iAe

¡
A−1pi

¢×
ωc, (28)

where vc(t) ∈ R3 defines the linear velocity of the camera
expressed in F , and Ae(t) ∈ R3×3 is defined as

Ae =

⎡⎣ a11 a12 a13 − ui
0 a22 a23 − vi
0 0 1

⎤⎦ .

To facilitate the control development, the translation error
system can be linearly parameterized as

z∗i

⎡⎣ ė1
ė2
ė3

⎤⎦ = −αi

⎡⎢⎢⎣
a11vc1 + a12vc2

+vc3 (a13 − ui)
a22vc2 + vc3 (a23 − vi)

vc3

⎤⎥⎥⎦
+z∗i

⎡⎢⎣ Ȳ1 (ui, vi, ωc)
_
φ

Ȳ2 (ui, vi, ωc)
_
φ

Ȳ3 (ui, vi, ωc)
_
φ

⎤⎥⎦ , (29)

where Ȳi (·) ∈ R1×m, i = 1, 2, 3, are known regressor
vectors that do not depend on the calibration parameters,
and φ̄ ∈ Rm is a vector of constant unknown parameters.

IV. CONTROL DEVELOPMENT
A. Rotation Control Development and Stability Analysis
Based on the relationship in (23), the open-loop error

system in (20), and the subsequent stability analysis, the
rotation controller is designed as

ωc1 = −kω1q̄v1 = − (kω11 + 2) q̄v1 (30)
ωc2 = −kω2q̄v2 = − (kω21 + kω22 + 1) q̄v2

ωc3 = −kω3q̄v3 = − (kω31 + kω32 + kω33) q̄v3,

where kωi ∈ R, i = 1, 2, 3 and kωij ∈ R, i, j = 1, 2, 3, j ≤
i, are positive gain constants. The expressed form of the
controller in (30) is motivated by the use of completing
the squares in the subsequent stability analysis. In (30), the
damping control gains kω21, kω31, kω32 are selected accord-
ing to the following sufficient conditions to facilitate the
subsequent stability analysis

kω21 >
1

4
k2ω1

ζ
2

a12

ζ
a11

ζ
a22

(31)

kω31 >
1

4
k2ω1

1

ζ
a11

Ã
ζa12ζa23
ζ
a22

+ ζa13

!2

kω32 >
1

4
k2ω2

ζ
2

a23

ζ
a22

,

where ζ
a11

, ζa11 , ζ
a22

, ζa22 , ζa12 , ζa13 and ζa23 are
defined in (6) and (7), and kω11, kω22, kω33 are feedback
gains that can be selected to adjust the performance of the
rotation control system.

Proposition 1: Provided the sufficient gain conditions
given in (31) are satisfied, the controller in (30) ensures
asymptotic regulation of the rotation error in the sense that

kqv (t)k→ 0, as t→∞. (32)
Proof: Let V1(qv, q0) ∈ R denote the following non-

negative function:

V1 , qTv qv + (1− q0)
2. (33)

Based on the open-loop error system in (20), the time-
derivative of V1(t) can be determined as

V̇1 = 2qTv q̇v − 2(1− q0)q̇0 = qTv ωc

= qv1ωc1 + qv2ωc2 + qv3ωc3. (34)
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After substituting (25) for qv(t) and substituting (30) for
ωc(t), the expression in (34) can be simplified as

γV̇1 = −
µ
kω11

1

a11
q̄2v1 + kω22

1

a22
q̄2v2 + kω33q̄

2
v3

¶
− 1

a11

µ
q̄2v1 − kω1

a12
a22

q̄v1q̄v2 + kω21
a11
a22

q̄2v2

¶
− 1

a11

∙
q̄2v1 + kω1

µ
a12a23
a22

− a13

¶
q̄v1q̄v3

+kω31a11q̄
2
v3

¤
− 1

a22

¡
q̄2v2 − kω2a23q̄v2q̄v3 + kω32a22q̄

2
v3

¢
.(35)

After completing the squares on each of the bracketed terms
in (35), the expression in (35) can be written as

γV̇1 = −
µ
kω11

1

a11
q̄2v1 + kω22

1

a22
q̄2v2 + kω33q̄

2
v3

¶
− 1

a11

µ
q̄v1 − kω1

a12
2a22

q̄v2

¶2
− 1

a22

µ
kω21 −

1

4
k2ω1

a212
a11a22

¶
q̄2v2

− 1

a11

∙
q̄v1 +

1

2
kω1

µ
a12a23
a22

− a13

¶
q̄v3

¸2
−
"
kω31 −

1

4
k2ω1

1

a11

µ
a12a23
a22

− a13

¶2#
q̄2v3

− 1

a22

µ
q̄v2 −

1

2
kω2a23q̄v3

¶2
−
µ
kω32 −

1

4
k2ω2

a223
a22

¶
q̄2v3. (36)

Provided the sufficient gain conditions given in (31) are
satisfied, then (36) can be upper bounded as

γV̇1 < −
µ
kω11

1

a11
q̄2v1 + kω22

1

a22
q̄2v2 + kω33q̄

2
v3

¶
. (37)

Based on (24), the inequality in (37) can be further upper
bounded as

V̇1 < −
1

ζγ

µ
kω11

1

a11
q̄2v1 + kω22

1

a22
q̄2v2 + kω33q̄

2
v3

¶
. (38)

The Lyapunov function given in (33) and its time derivative
in (38) can be used to conclude that qv(t), q0(t) ∈ L∞ and
q̄v(t) ∈ L2 (of course, qv(t), q0(t) ∈ L∞ by definition also).
The expressions in (23) and (25) and the fact that q̄v(t) ∈ L2
can be used to conclude that qv(t) ∈ L2. Since qv(t), q0(t) ∈
L∞, then R(t), R̄(t), q̄v(t) and q̄0(t) ∈ L∞. Hence, (30) can
be used to conclude that ωc(t) ∈ L∞. Based on the rotation
error system in (20), q̇v(t), q̇0(t) ∈ L∞; hence, qv(t), q0(t)
are uniformly continuous. Barbalat’s lemma can now be used
to conclude that kqv(t)k→ 0 as t→∞.

B. Translation Control Development and Stability Analysis
For completeness of the result, the same translation con-

troller as in [19] is provided. After some algebraic manipu-
lation, the translation error system in (29) can be rewritten

as
z∗i
a11

ė1 = −αivc1 + Y1 (αi, ui, vi, ωc, vc2, vc3)φ1(39)

z∗i
a22

ė2 = −αivc2 + Y2 (αi, ui, vi, ωc, vc3)φ2

z∗i ė3 = −αivc3 + Y3 (αi, ui, vi, ωc)φ3,

where φ1 ∈ Rn1 , φ2 ∈ Rn2 , φ3 ∈ Rn3 are vectors
of constant unknown parameters, and the known vectors
Y1 (·) ∈ R1×n1 , Y2 (·) ∈ R1×n2 , Y3 (·) ∈ R1×n3 denote
the corresponding regression vectors. The control strategy is
to design vc3(t) to stabilize e3(t), and then design vc2(t)
to stabilize e2(t) given vc3(t), and then design vc1(t) to
stabilize e1(t) given vc3(t) and vc2(t). Following this design
strategy, the translation controller vc(t) is designed as [19]

vc3 =
1

αi

³
kv3e3 + Y3 (αi, ui, vi, ωc) φ̂3

´
(40)

vc2 =
1

αi

³
kv2e2 + Y2 (αi, ui, vi, ωc, vc3) φ̂2

´
vc1 =

1

αi

³
kv1e1 + Y1 (αi, ui, vi, ωc, vc2, vc3) φ̂1

´
,

where the depth ratio αi(t) > 0 ∀t. In (40), φ̂1 (t) ∈
Rn1 , φ̂2 (t) ∈ Rn2 , φ̂3 (t) ∈ Rn3 denote adaptive estimates
that are designed according to the following adaptive update
laws to cancel the respective terms in the subsequent stability
analysis
·
φ̂1 = Γ1Y

T
1 e1

·
φ̂2 = Γ2Y

T
2 e2

·
φ̂3 = Γ3Y

T
3 e3, (41)

where Γ1 ∈ Rn1×n1 ,Γ2 ∈ Rn2×n2 ,Γ3 ∈ Rn3×n3 are diago-
nal matrices of positive constant adaptation gains. Based on
(39) and (40), the closed-loop translation error system is

z∗i
a11

ė1 = −kv1e1 + Y1 (αi, ui, vi, ωc, vc2, vc3) φ̃1(42)

z∗i
a22

ė2 = −kv2e2 + Y2 (αi, ui, vi, ωc, vc3) φ̃2

z∗i ė3 = −kv3e3 + Y3 (αi, ui, vi, ωc) φ̃3,

where φ̃1 (t) ∈ Rn1 , φ̃2 (t) ∈ Rn2 , φ̃3 (t) ∈ Rn3 denote the
intrinsic calibration parameter mismatch defined as

φ̃1 (t) = φ1 − φ̂1 (t) φ̃2 (t) = φ2 − φ̂2 (t)

φ̃3 (t) = φ3 − φ̂3 (t) .

Proposition 2: The controller given in (40) along with the
adaptive update law in (41) ensures asymptotic regulation of
the translation error system in the sense that

ke(t)k→ 0 as t→∞.
Proof: Let V2(e, φ̃1, φ̃2, φ̃3) ∈ R denote the following

non-negative function:

V2 =
1

2

z∗i
a11

e21 +
1

2

z∗i
a22

e22 +
1

2
z∗i e

2
3 (43)

+
1

2
φ̃
T

1 Γ
−1
1 φ̃1 +

1

2
φ̃
T

2 Γ
−1
2 φ̃2 +

1

2
φ̃
T

3 Γ
−1
3 φ̃3.
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After taking the time derivative of (43) and substituting for
the closed-loop error system developed in (42), the following
simplified expression can be obtained:

V̇2 = −kv1e21 − kv2e
2
2 − kv3e

2
3. (44)

Based on (43) and (44), e1(t), e2(t), e3(t) ∈ L∞ ∩ L2, and
φ̃1 (t) , φ̂1 (t) , φ̃2 (t) , φ̂2 (t) , φ̃3 (t) , φ̂3 (t) ∈ L∞. Based on
the assumption that ζ

zi
< zi(t) < ζzi , the expression in

(40) can be used to conclude that vc(t) ∈ L∞. Based on
the previous stability analysis for the rotation controller,
ωc(t) ∈ L∞; hence, (42) can be used to conclude that
ė1(t), ė2(t), ė3(t) ∈ L∞ (i.e., e1(t), e2(t), e3(t) are uni-
formly continuous). Barbalat’s lemma can now be used to
show that e1(t), e2(t), e3(t) → 0 as t→∞.
Based on Propositions 1 and 2, the main result can be

stated as follows.
Theorem 1: The controller given in (30) and (40) along

with the adaptive update law in (41) ensures asymptotic
translation and rotation regulation in the sense that

kqv(t)k→ 0 and ke(t)k→ 0 as t→∞,

provided the control gains satisfy the sufficient conditions
given in (31).

Proof: See proofs in Propositions 1 and 2.

V. CONCLUSION
A robust adaptive visual servo controller was proposed to

asymptotically regulate a robot end-effector to a desired pose
despite uncertainty in the distance from the camera to the
target and parametric uncertainty in the camera calibration
matrix. To achieve the result, a high-gain robust controller
was developed to asymptotically stabilize the rotation error
system, whereas, an adaptive controller was developed to
stabilize the translation error by compensating for the un-
known depth information and intrinsic camera calibration
parameters. A Lyapunov-based stability analysis was used
to prove asymptotic stability for the six DOF homography-
based visual servo controller. Future work will include ex-
perimental evaluation of the presented controller, including
evaluating performance against similar controllers with well
calibrated and poorly calibrated cameras.
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