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Abstract—This paper presents a novel adaptive nonlinear
control design which achieves modularity between the con-
troller and the adaptive update law. Modularity between the
controller/update law design provides flexibility in the selection
of different update laws that could potentially be easier to
implement or used to obtain faster parameter convergence
and/or better tracking performance. For a class of linear-in-
the-parameters (LP) uncertain Euler-Lagrange systems subject
to additive bounded non-LP disturbances, the result in this
(Part I) paper is based on a controller that uses a model-based
feedforward adaptive term in conjunction with the recently
developed Robust Integral of the Sign of the Error (RISE)
feedback term. Modularity in the adaptive feedforward term
is made possible by considering a generic form of the adaptive
update law and its corresponding parameter estimate. This
generic form of the update law is used to develop a new closed-
loop error system and stability analysis that does not depend
on nonlinear damping to yield the modular adaptive control
result.

I. INTRODUCTION
A variety of adaptive control results have been developed

to compensate for linear-in-the-parameters (LP) uncertainty
in nonlinear systems. Most of this research has exploited
Lyapunov-based techniques (i.e., the controller and the adap-
tive update law are designed based on a Lyapunov analysis);
however, Lyapunov-based methods restrict the design of the
adaptive update law. For example, many of the previous
adaptive controllers are restricted to utilizing gradient update
laws to cancel cross terms in a Lyapunov-based stability
analysis. Gradient update laws often exhibit slow parameter
convergence which leads to a degraded transient performance
of the tracking error in comparison to other possible adaptive
update laws (e.g., least-squares update law). Several results
have been developed in literature that aim to augment the
typical position/velocity tracking error based gradient update
law including: composite adaptive update laws [1]–[3]; pre-
diction error based update laws [4]–[8]; and various least-
squares update laws [9]–[11]. The adaptive update law in
these results are all still designed to cancel cross terms in
the Lyapunov-based stability analysis. In contrast to these
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results, researchers have also developed a class of modu-
lar adaptive controllers (cf. [4], [6]–[8]) where a feedback
mechanism is used to stabilize the error dynamics provided
certain conditions are satisfied on the adaptive update law.
For example, nonlinear damping [5], [12] is typically used to
yield an input-to-state stability (ISS) result with respect to the
parameter estimation error where it is assumed a priori that
the update law yields bounded parameter estimates. Often the
modular adaptive control development exploits a prediction
error in the update law (e.g., see [1], [4]–[7]), where the
prediction error is often required to be square integrable (e.g.,
[4], [6], [7]). A brief survey of modular adaptive control
results is provided in [4].
Recently, a new high gain feedback control strategy coined

the Robust Integral of the Sign of the Error (RISE) in [13]
was developed that contains a unique integral signum term
which can accommodate for sufficiently smooth bounded dis-
turbances. A significant outcome of this new control structure
is that asymptotic stability is obtained despite a fairly general
uncertain disturbances. In fact, the early work in [14]–[24]
illustrate how different RISE-based controllers/estimation
methods can be used to yield an asymptotic result for non-
linear systems with LP or non-LP uncertainty and additive
bounded disturbances without an adaptive feedforward com-
ponent. Since the RISE method exploits high gain feedback,
results such as [13], [25], [26] were developed with various
modifications to the stability analysis to amalgamate the
RISE feedback with model-based adaptive or neural network
feedforward components. The results in [13] experimentally
demonstrate the well accepted paradigm that the inclusion
of an adaptive feedforward term can reduce the control
effort, improve the transient performance, and reduce the
steady-state error over feedback only methods. However,
the results in [13], [25], [26] were developed using the
typical Lyapunov-based gradient adaptive update law. Since
the RISE feedback mechanism alone can yield an asymptotic
result without a feedforward component to cancel cross
terms in the stability analysis, the research in this paper is
motivated by the following question: Can the RISE control
method be used to yield a new class of modular adaptive
controllers?
The results in this work provide the first investigation of

the ability to yield controller/update law modularity using
the RISE feedback. Specifically in this (Part I) paper, we
consider dynamic systems with structured (i.e., LP) and
unstructured uncertainties and develop a controller with mod-
ularity between the controller/update law, where a model-
based adaptive feedforward term is used in conjunction with
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the RISE feedback term [13], [25]. Part II of this paper [27],
presents a neural network extension of the result for non-LP
systems [26].
The RISE-based modular adaptive approach is different

than previous work (cf. [4], [5], [7]) in the sense that it
does not rely on nonlinear damping. The use of the RISE
method in lieu of nonlinear damping has several potential
advantages that motivate this investigation including: an
asymptotic modular adaptive tracking result can be obtained
for nonlinear systems with non-LP additive bounded dis-
turbances; the dual objectives of asymptotic tracking and
controller/update law modularity are achieved in a single
step unlike the two stage analysis required in some results
(cf., [4], [7]); the development does not require that the
adaptive estimates are a priori bounded; and the development
does not require a positive definite estimate of the inertia
matrix or a square integrable prediction error as in [4], [7].
Modularity in the adaptive feedforward term is made possible
by considering a generic form of the adaptive update law and
its corresponding parameter estimate. The general form of
the adaptive update law includes examples such as gradient,
least-squares, and etc. This generic form of the update law
is used to develop a new closed-loop error system, and the
typical RISE stability analysis is modified to accommodate
the generic update law. New sufficient gain conditions are
derived to prove an asymptotic tracking result.
While the current result encompasses a large variety of

adaptive update laws, an update law design based on the
prediction error is not possible because the formulation
of a prediction error requires the system dynamics to be
completely LP. Future efforts can be focussed on develop-
ing a RISE-based adaptive controller for a completely LP
system that could also use a prediction error/torque filtering
approach. Also, one of the shortcomings of current work is
that only a semi-global asymptotic stability is achieved, and
further investigation is needed to achieve a global stability
result [28].

II. DYNAMIC MODEL AND PROPERTIES

The class of nonlinear dynamic systems considered in
this paper can be described by the following Euler-Lagrange
formulation:

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + F (q̇) + τd (t) = τ(t). (1)

In (1), M(q) ∈ Rn×n denotes the inertia matrix, Vm(q, q̇) ∈
Rn×n denotes the centripetal-Coriolis matrix, G(q) ∈ Rn
denotes the gravity vector, F (q̇) ∈ Rn denotes friction,
τd (t) ∈ Rn denotes a general nonlinear disturbance (e.g.,
unmodeled effects), τ(t) ∈ Rn represents the torque input
control vector, and q(t), q̇(t), q̈(t) ∈ Rn denote the link
position, velocity, and acceleration vectors, respectively. The
subsequent development is based on the assumption that q(t)
and q̇(t) are measurable and that M(q), Vm(q, q̇), G(q),
F (q̇) and τd (t) are unknown. Moreover, the following prop-
erties and assumptions will be exploited in the subsequent
development.

Property 1: The inertia matrix M(q) is symmetric, positive
definite, and satisfies the following inequality ∀ξ(t) ∈ Rn:

m1 kξk2 ≤ ξTM(q)ξ ≤ m̄(q) kξk2 (2)

where m1 ∈ R is a known positive constant, m̄(q) ∈ R
is a known positive function, and k·k denotes the standard
Euclidean norm.
Property 2: If q(t), q̇(t) ∈ L∞, then Vm(q, q̇), F (q̇) and
G(q) are bounded. Moreover, if q(t), q̇(t) ∈ L∞, then the
first and second partial derivatives of the elements of M(q),
Vm(q, q̇), G(q) with respect to q (t) exist and are bounded,
and the first and second partial derivatives of the elements of
Vm(q, q̇), F (q̇) with respect to q̇(t) exist and are bounded.
Property 3: The nonlinear disturbance term and its first two
time derivatives, i.e. τd (t) , τ̇d (t) , τ̈d (t) are bounded by
known constants.
Property 4: Part of the dynamics in (1) can be linearly
parameterized as

Ydθ ,M(qd)q̈d + Vm(qd, q̇d)q̇d +G(qd) + F (q̇d) (3)

where θ ∈ Rp contains the constant unknown system
parameters, and Yd (qd, q̇d, q̈d) ∈ Rn×p is the desired re-
gression matrix that contains known nonlinear functions of
the desired link position, velocity, and acceleration, qd (t) ,
q̇d (t) , q̈d (t) ∈ Rn, respectively.
Property 5: The desired trajectory is assumed to be designed
such that q(i)d (t) ∈ Rn (i = 0, 1, ..., 4) exist and are bounded.

III. CONTROL OBJECTIVE
The objective is to design a continuous modular adap-

tive controller which ensures that the system tracks a de-
sired time-varying trajectory qd(t) despite uncertainties and
bounded disturbances in the dynamic model. To quantify this
objective, a position tracking error, denoted by e1(t) ∈ Rn,
is defined as

e1 , qd − q. (4)

To facilitate the subsequent analysis, filtered tracking errors
[29], denoted by e2(t), r(t) ∈ Rn, are also defined as

e2 , ė1 + α1e1 (5)

r , ė2 + α2e2 (6)

where α1, α2 ∈ R denote positive constants. The filtered
tracking error r(t) is not measurable since the expression in
(6) depends on q̈(t).

IV. CONTROL DEVELOPMENT
The open-loop tracking error system can be developed by

premultiplying (6) by M(q) and utilizing the expressions in
(1), (4), and (5) to obtain the following expression:

M(q)r = Ydθ + S + τd − τ (7)

where the auxiliary function Yd (t) θ ∈ Rn was defined in
(3), and the auxiliary function S (q, q̇, t) ∈ Rn is defined as
S , M (q) (α1ė1 + α2e2) +M (q) q̈d −M(qd)q̈d (8)

+Vm(q, q̇)q̇ − Vm(qd, q̇d)q̇d

+G(q)−G(qd) + F (q̇)− F (q̇d) .
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Based on the open-loop error system in (7), the control torque
input is composed of an adaptive feedforward term plus the
RISE feedback term as

τ , Ydθ̂ + μ. (9)

In (9), μ(t) ∈ Rn denotes the RISE feedback term defined
as [13]–[15], [25]

μ (t) , (ks + 1)e2(t)− (ks + 1)e2(0) (10)

+

tZ
0

[(ks + 1)α2e2(σ) + β1sgn(e2(σ))]dσ

where ks, β1 ∈ R are positive constant control gains, Yd (t)
was introduced in (3), and θ̂ (t) ∈ Rp denotes a subsequently
designed parameter estimate vector. The closed-loop tracking
error system can be developed by substituting (9) into (7) as

M(q)r = Yd(θ − θ̂) + S + τd − μ. (11)

To facilitate the subsequent modular adaptive control devel-
opment and stability analysis, the time derivative of (11) is
expressed as

M(q)ṙ = −1
2
Ṁ(q)r + Ñ(t) +NB (t) (12)

−(ks + 1)r − β1sgn(e2)− e2

where the fact that the time derivative of (10) is given as

μ̇(t) = (ks + 1)r + β1sgn(e2) (13)

was utilized. In (12), the unmeasurable/unknown auxiliary
terms Ñ(e1, e2, r, t), NB (t) ∈ Rn are defined as

Ñ(t) , −1
2
Ṁ(q)r + Ṡ + e2 + Ñ0 (14)

NB (t) , NB1 (t) +NB2 (t) (15)

where NB1 (t) ∈ Rn is given by
NB1 , Ẏdθ + τ̇d, (16)

and the sum of the auxiliary terms Ñ0(t), NB2 (t) ∈ Rn is
given by

NB2 (t) + Ñ0 = −Ẏdθ̂ − Yd

·
θ̂. (17)

Specific definitions for Ñ0(t), NB2 (t) are subsequently
defined based on the definition of the adaptive update law
for θ̂ (t). The structure of (12) and the introduction of
the auxiliary terms in (14)-(17) is motivated by the desire
to segregate terms that can be upper bounded by state-
dependent terms and terms that can be upper bounded
by constants. Specifically, depending on how the adaptive
update law is designed, analysis is provided in the next
section to upper bound Ñ(t) by state-dependent terms and
NB (t) by a constant. The need to further segregate NB (t),
is that some terms in NB (t) have time derivatives that are
upper bounded by a constant, while other terms have time-
derivatives that are upper-bounded by state dependent terms.
The segregation of these terms based on the structure of the
adaptive update law (see (17)), is key for the development
of a stability analysis for the modular RISE-based adaptive
update law/controller.

V. MODULAR ADAPTIVE UPDATE LAW DEVELOPMENT

A key difference between the traditional modular adaptive
controllers that use nonlinear damping (cf., [5], [8], [30])
and the current RISE-based approach is that the RISE-based
method does not exploit the ISS property with respect to
the parameter estimation error. The current approach does
not rely on nonlinear damping, but instead uses the ability
of the RISE technique to compensate for smooth bounded
disturbances. In general, previous nonlinear damping-based
modular adaptive controllers first prove an ISS stability result
provided the adaptive update law yields bounded parameter
estimates (e.g., θ̂ (t) ∈ L∞ via a projection algorithm), and
then use additional analysis along with assumptions (PD es-
timate of the inertia matrix, and square integrable prediction
error, etc.) to conclude asymptotic convergence. In contrast,
since the RISE-based modular adaptive control approach in
this paper does not exploit an ISS analysis, the assumptions
regarding the parameter estimate are modified. The following
development requires some general bounds on the structure
of the adaptive update law and the corresponding parameter
estimate to segregate the components of the auxiliary terms
introduced in (14)-(17). Specifically, instead of assuming that
θ̂ (t) ∈ L∞, the subsequent development is based on the less
restrictive assumption that the parameter estimate θ̂ (t) can
be described as

θ̂ (t) = f1 (t) +Φ (q, q̇, e1, e2, t) . (18)

In (18), f1 (t) ∈ Rp is a known function such that

kf1 (t)k ≤ γ1 (19)°°°ḟ1 (t)°°° ≤ γ2 + γ3 ke1k+ γ4 ke2k+ γ5 krk

where γi ∈ R, (i = 1, 2, ..., 5) are known non-negative
constants (i.e., the constants can be set to zero for different
update laws), and Φ (q, q̇, e1, e2, t) ∈ Rp is a known function
that satisfies the following bound:

kΦ(t)k ≤ ρ1(
°°°£eT1 eT2

¤T°°°)°°°£eT1 eT2
¤T°°° (20)

where the bounding function ρ1(·) ∈ R is a positive, globally
invertible, nondecreasing function. The estimate in (18) is
assumed to be generated according to an update law of the
following general form

·
θ̂ (t) = g1 (t) +Ω (q, q̇, e1, e2, r, t) . (21)

In (21), g1 (t) ∈ Rp is a known function such that

kg1 (t)k ≤ δ1 (22)

kġ1 (t)k ≤ δ2 + δ3 ke1k+ δ4 ke2k+ δ5 krk

where δi ∈ R, (i = 1, 2, ..., 5) are known non-negative con-
stants, and Ω (q, q̇, e1, e2, r, t) ∈ Rp satisfies the following
bound:

kΩ(t)k ≤ ρ2 (kzk) kzk (23)
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where the bounding function ρ2(·) ∈ R is a positive, globally
invertible, nondecreasing function, and z(t) ∈ R3n is defined
as

z(t) ,
£
eT1 eT2 rT

¤T
. (24)

Remark 1: The update law in (21) depends on the unmea-
surable signal r. But it is assumed that the update law in (21)
is of the form which upon integration yields an estimate θ̂ (t)
that is independent of r. Thus the controller needs only the
measurable signals for implementation.
The structure of the adaptive estimate and the adaptive

update law is flexible in the sense that any of the terms in
(18) and (21) can be removed for any specific update law and
estimate. For example if all the error-dependent terms in (18)
are removed, then the condition on θ̂ (t) is the same as in the
standard nonlinear damping-based modular adaptive methods
(i.e., θ̂ (t) ∈ L∞). In this sense, the ISS property with respect
to the parameter estimation error is automatically proven by
considering this special case of θ̂ (t). The results in this paper
are not proven for estimates or update laws with additional
terms that are not included in the generic structure in (18)
and (21). For example, a standard gradient-based update law
is of the form (21), but the corresponding estimate (obtained
via integration by parts) is not of the form (18) due to the
presence of some terms that are bounded by the integral of
the error instead of being bounded by the error. However,
the same gradient-based update law and its corresponding
estimate can be used in (9) if a smooth projection algorithm
is used that keeps the estimates bounded. As shown in
[13], and [25], the standard gradient-based update law can
be used in (9) without a projection algorithm, yet including
this structure in the modular adaptive analysis is problematic
because the integral of the error could be unbounded (so this
update law could not be used in nonlinear damping based-
modular adaptive laws without a projection either). Since
the goal in this paper is to develop a modular update law,
a specific update law cannot be used to inject terms in the
stability analysis to cancel the terms containing the parameter
mismatch error. Instead, the terms containing the parameter
mismatch error are segregated depending on whether they
are state-dependent or bounded by constant (see (17)).
Based on the development given in (18)-(22), the terms

Ñ0(t) and NB2 (t) introduced in (14)-(17) are defined as

Ñ0(t) , −ẎdΦ− YdΩ (25)

NB2 (t) , −Ẏdf1 − Ydg1. (26)

In a similar manner as in [14], the Mean Value Theorem
can be used along with the inequalities in (20) and (23) to
develop the following upper bound for the expression in (14):°°°Ñ(t)°°° ≤ ρ (kzk) kzk (27)

where the bounding function ρ(·) ∈ R is a positive, globally
invertible, nondecreasing function. The following inequalities
can be developed based on the expressions in (15), (16), (26),

their time derivatives, and the inequalities in (19) and (22):

kNB(t)k ≤ ζ1

°°°ṄB1(t)
°°° ≤ ζ2 (28)°°°ṄB2(t)

°°° ≤ ζ3 + ζ4 ke1k+ ζ5 ke2k+ ζ6 krk

where ζi ∈ R, (i = 1, 2, ..., 6) are known positive constants.

VI. STABILITY ANALYSIS

Theorem: The controller given in (9), (18) and (21)
ensures that all system signals are bounded under closed-loop
operation and that the position tracking error is regulated in
the sense that

ke1(t)k→ 0 as t→∞

provided the control gain ks introduced in (10) is selected
sufficiently large (see the subsequent proof), α1 and α2 are
selected according to the following sufficient conditions:

α1 >
β2
4
+
1

2
(29)

α2 >
β2
2
+ β3 +

β4
2
+ 1

and βi (i = 1, 2, 3, 4) are selected according to the following
sufficient conditions:

β1 > ζ1 +
1

α2
ζ2 +

1

α2
ζ3 (30)

β2 > ζ4 β3 > ζ5 β4 > ζ6

where β1 was introduced in (10), and β2-β4 are introduced
in (33).
Proof: Let D ⊂ R3n+1 be a domain containing y(t) = 0,

where y(t) ∈ R3n+1 is defined as

y(t) , [zT (t)
p
P (t)]T . (31)

In (31), the auxiliary function P (t) ∈ R is defined as

P (t) , β1 ke2(0)k− e2(0)
TNB(0)−

tZ
0

L(τ)dτ (32)

where the auxiliary function L(t) ∈ R is defined as

L(t) , rT (NB(t)− β1sgn(e2)) (33)
−β2 ke1(t)k ke2(t)k− β3 ke2(t)k

2

−β4 ke2(t)k kr(t)k

where βi ∈ R (i = 1, 2, 3, 4) are positive constants chosen
according to the sufficient conditions in (30). Provided the
sufficient conditions introduced in (30) are satisfied, the
following inequality can be obtained in a similar manner
as in [25]:

tZ
0

L(τ)dτ ≤ β1 ke2(0)k− e2(0)
TNB(0). (34)

Hence, (34) can be used to conclude that P (t) ≥ 0.
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Let VL(y, t) : D × [0,∞) → R be a continuously
differentiable positive definite function defined as

VL(y, t) , eT1 e1 +
1

2
eT2 e2 +

1

2
rTM(q)r + P, (35)

which satisfies the following inequalities:

U1(y) ≤ VL(y, t) ≤ U2(y) (36)

provided the sufficient conditions introduced in (29)-(30) are
satisfied. In (36), the continuous positive definite functions
U1(y), and U2(y) ∈ R are defined as U1(y) , λ1 kyk2, and
U2(y) , λ2(q) kyk2, where λ1, λ2(q) ∈ R are defined as

λ1 ,
1

2
min {1,m1} λ2(q) , max

½
1

2
m̄(q), 1

¾
where m1, m̄(q) are introduced in (2). After taking the time
derivative of (35), V̇ (y, t) can be expressed as

V̇L(y, t) = rTM(q)ṙ +
1

2
rT Ṁ(q)r

+eT2 ė2 + 2e
T
1 ė1 + Ṗ .

The derivative Ṗ (t) ∈ R can be expressed as

Ṗ (t) = −L(t) = −rT (NB − β1sgn(e2))

+β2 ke1(t)k ke2(t)k+ β3 ke2(t)k
2 (37)

+β4 ke2(t)k kr(t)k .

After utilizing (5), (6), (12), (13), (21), and (37), V̇ (y, t) can
be simplified as follows:

V̇L(y, t) = rT Ñ − (ks + 1) krk2 − α2 ke2k2 (38)
−2α1 ke1k2 + 2eT2 e1 + β2 ke1k ke2k
+β3 ke2k

2
+ β4 ke2k krk .

Based on the fact that

2eT2 e1 ≤ ke1k
2 + ke2k2

V̇L(y, t) can be upper bounded using the squares of the
components of z(t) as follows:

V̇L(y, t) ≤ rT Ñ − (ks + 1) krk2 − α2 ke2k2 − 2α1 ke1k2

+ ke1k2 + ke2k2 +
β2
2
ke1k2 +

β2
2
ke2k2 (39)

+β3 ke2k
2 +

β4
2
ke2k2 +

β4
2
krk2 .

By using (27), the expression in (39) can be rewritten as
follows:

V̇L(y, t) ≤ −λ3 kzk2−
∙µ

ks −
β4
2

¶
krk2 − ρ(kzk) krk kzk

¸
(40)

where λ3 , min{2α1 − β2
2 − 1, α2 −

β2
2 − β3 −

β4
2 − 1, 1};

hence, α1, and α2 must be chosen according to the sufficient
condition in (29). After completing the squares for the terms
inside the brackets in (40), the following expression can be
obtained:

V̇L(y, t) ≤ −λ3 kzk2 +
ρ2(kzk) kzk2

4
³
ks − β4

2

´ ≤ −U(y) (41)

where U(y) = c kzk2, for some positive constant c, is a
continuous, positive semi-definite function that is defined on
the following domain:

D ,
(
y ∈ R3n+1 | kyk ≤ ρ−1

Ã
2

s
λ3

µ
ks −

β4
2

¶!)
.

The inequalities in (36) and (41) can be used to show that
VL(y, t) ∈ L∞ in D; hence, e1(t), e2(t), and r(t) ∈ L∞ in
D. Given that e1(t), e2(t), and r(t) ∈ L∞ in D, standard
linear analysis methods can be used to prove that ė1(t),
ė2(t) ∈ L∞ in D from (5) and (6). Since e1(t), e2(t),
r(t) ∈ L∞ in D, the assumption that qd(t), q̇d(t), q̈d(t) exist
and are bounded can be used along with (4)-(6) to conclude
that q(t), q̇(t), q̈(t) ∈ L∞ in D. Since q(t), q̇(t) ∈ L∞ in

D, (18)-(22) can be used to prove that θ̂(t),
·
θ̂(t) ∈ L∞ in

D. Since q(t), q̇(t) ∈ L∞ in D, Property 2 can be used to
conclude that M(q), Vm(q, q̇), G(q), and F (q̇) ∈ L∞ in D.
Thus from (1) and Property 3, we can show that τ(t) ∈ L∞
in D. Given that r(t) ∈ L∞ in D, (13) can be used to
show that μ̇(t) ∈ L∞ in D. Since q̇(t), q̈(t) ∈ L∞ in D,
Property 2 can be used to show that V̇m(q, q̇), Ġ(q), Ḟ (q)
and Ṁ(q) ∈ L∞ in D; hence, (12) can be used to show that
ṙ(t) ∈ L∞ in D. Since ė1(t), ė2(t), ṙ(t) ∈ L∞ in D, the
definitions for U(y) and z(t) can be used to prove that U(y)
is uniformly continuous in D.
Let S ⊂ D denote a set defined as follows:

S , {y(t)⊂ D | U2(y(t)) (42)

< λ1

Ã
ρ−1

Ã
2

s
λ3

µ
ks −

β4
2

¶!!2
}.

The region of attraction in (42) can be made arbitrarily large
to include any initial conditions by increasing the control
gain ks (i.e., a semi-global type of stability result) [14].
Theorem 8.4 of [30] can now be invoked to state that

c kz(t)k2 → 0 as t→∞ ∀y(0) ∈ S. (43)

Based on the definition of z(t), (43) can be used to show
that

ke1(t)k→ 0 as t→∞ ∀y(0) ∈ S. (44)

VII. CONCLUSION
A RISE-based approach was presented to achieve mod-

ularity in the controller/update law for Euler-Lagrange sys-
tems. Specifically, for systems with structured and unstruc-
tured uncertainties, a controller was employed that uses
a model-based feedforward adaptive term in conjunction
with the RISE feedback term (see [13], [25]). The adap-
tive feedforward term was made modular by considering a
generic form of the adaptive update law and its corresponding
parameter estimate. This generic form of the update law was
used to develop a new closed-loop error system, and the
typical RISE stability analysis was modified. New sufficient
gain conditions were derived to show asymptotic tracking of
the desired link position.
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