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Abstract— A systematic synthesis procedure is presented
to obtain a Proportional+Integral+Derivative (PID) controller
for a class of linear time-invariant multi-input multi-output
(MIMO) plants, which achieves the closed-loop stabilization
with guaranteed stability margin. Numerical examples are given
to illustrate its feasibility.
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I. INTRODUCTION

The Proportional+Integral+Derivative (PID) controllers

are widely used in applications. Recently, rigorous PID

synthesis methods are explored (please see [1] and its refer-

ences). In [1], sufficient conditions are given to guarantee the

stability of MIMO systems with PID controllers, and several

plants classes that admit PID controllers were identified. By

extending the work in [1], a systematic synthesis procedure

is presented in [2] to design PID controllers with guaran-

teed stability for given stable MIMO systems. A sufficient

condition is also given for the existence for such a controller.

The goal of this paper is to study closed-loop stabiliza-

tion with guaranteed stability margins using PID-controllers.

Along the same line as that in [2], some results in [1] are

extended to include the systematic synthesis procedures of

PID controller design for certain classes of stable or unstable

MIMO systems. Numerical examples are given to illustrate

its feasibility.

Section II shows the main results, where sufficient condi-

tions are given for the existence of PID controllers. Sec-

tion III presents the systematic synthesis procedures for

synthesizing PID controllers. Some examples are used to

illustrate their feasilbity. Section IV gives a short discussion.

II. SUFFICIENT CONDITIONS

Let CI , IR, IR+ denote complex, real, positive real num-

bers. The extended closed right-half complex plane is U =
{s ∈ CI | Re(s) ≥ 0} ∪ {∞}; Rp denotes real proper

rational functions of s; S ⊂ Rp is the stable subset with

no poles in U ; M(S) is the set of matrices with entries

in S ; In is the n × n identity matrix. The H∞-norm of

M(s) ∈ M(S) is ‖M‖ := sup
s∈∂U

σ̄(M(s)), where σ̄ is the

maximum singular value and ∂U is the boundary of U . We

drop (s) in transfer-matrices such as G(s) wherever this

causes no confusion. We use coprime factorizations over S ;
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i.e., for G ∈ Rp

ny×nu , G = Y −1X denotes a left-coprime-

factorization (LCF), where X, Y ∈ M(S), detY (∞) 6= 0.

Consider the linear time-invariant (LTI) MIMO unity-

feedback system Sys(G, C) shown in Fig. 1, where G ∈
Rp

m×m is the plant’s transfer-function and C ∈ Rp

m×m

is the controller’s transfer-function. Assume that Sys(G, C)
is well-posed, G and C have no unstable hidden-modes,

and G ∈ Rp

m×m is full (normal) rank. We consider

the realizable form of proper PID-controllers given by (1),

where Kp, Ki, Kd ∈ IRm×m are the proportional, integral,

derivative constants, respectively, and τ ∈ IR+ [3]:

Cpid = Kp +
Ki

s
+

Kd s

τs + 1
. (1)

For implementation, a (typically fast) pole is added to the

derivative term so that Cpid in (1) is proper.

Definition 2.1: a) Sys(G, C) is said to be stable iff the

transfer-function from (r, v) to (y, w) is stable. b) C is said

to stabilize G iff C is proper and Sys(G, C) is stable. △
The problem addressed here is the following: Suppose

that h ∈ IR+ is a given constant. Can we find a PID-

controller Cpid that stabilizes the system Sys(G, Cpid) with

a guaranteed stability margin, i.e., with real parts of the

closed-loop poles of the system Sys(G, Cpid) less or equal

to −h? It is clear that this goal is not achievable for some

plants. Furthermore, even when it is achievable, it may be

possible to place the closed-loop poles to the left of a shifted-

axis that goes through −h only for certain h ∈ IR+ .

To investigate the problem, let define

ŝ := s + h, or s =: ŝ − h (2)

and Ĝ(ŝ) := G(ŝ − h) . (3)

The problem is reduced to the equivalent question: Whether

the system Ĝ(ŝ) can be stabilized by the controller Ĉpid in

ŝ-space defined as

Ĉpid(ŝ) := Kp +
Ki

ŝ − h
+

Kd (ŝ − h)

τ(ŝ − h) + 1
. (4)

In the following two propositions, let G(s) have no

transmission-zeros in U other than the real-axis blocking-

zeros stated in the propositions, which can be the zero at in-

finity. However, G(s) may have any number of transmission-

zeros in the stable region. The poles of G(s) are completely

arbitrary, except that we assume G(s) has no pole at s = 0
if there is a zero close to the origin. We will use the two step

design method by first obtaining the Proportional+Derivative

(PD) controller, and then adding the Integral (I) portion to

form the overall PID controller as in [1].
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Proposition 1: (Systems with a large RHP zero)

Let G(s) have no pole at s = 0. It has one blocking-zero at

s = z1, where 0 < z1 ≤ ∞ and z1 ∈ IR. Let h ≥ 0. Choose

any kp > 0, a1 > h and 0 < τ1 < 1
h

.

Ĝ = Ŷ −1X̂ = (
x̃1

ỹ1
Ĝ−1)−1(

x̃1

ỹ1
I), where (5)

x̃1 = 1 − (ŝ − h)/z1, ỹ1 = (ŝ − h) + a1. (6)

Define

Y (∞) := lim
s→∞

(1 − s/z1)

(s + a1)
G−1(s) (7)

Ψ1(ŝ) := ỹ1Ŷ Y (∞)−1[
τ1(ŝ − h) + 1

τ1(ŝ − h) + kp

] − (ŝ − h)I (8)

If ||Ψ1(ŝ)|| < z1 ≤ ∞, then for any α satisfying

α > (1 − ||Ψ1(ŝ)||/z1)
−1(||Ψ1(ŝ)|| + h) (9)

the PD controller C1(s) below stabilizes G(s) with guaran-

teed stability margin specified by h:

C1(s) = Y (∞)
α

(1 + α/z1)
[kp +

(1 − kp)τ1s

τ1s + 1
] (10)

Proof: From (10), we can get

Ĉ1(ŝ) =
α

(1 + α/z1)
[
τ1(ŝ − h) + kp

τ1(ŝ − h) + 1
]Y (∞), (11)

Choose the RCF for Ĉ1(ŝ) as

Ĉ1 = N̂cD̂
−1
c = (Ĉ1)(I)−1. (12)

Define

yα := (ŝ − h) + α (13)

M̂1 := X̂Ĉ1 + Ŷ = (
x̃1

yα

αI +
ỹ1

yα

Ŷ αĈ−1
1 )

yα

ỹ1
α−1Ĉ1 (14)

= (I −
(1 + α/z1)(ŝ − h)

yα

I +
ỹ1

yα

Ŷ αĈ−1
1 )

yα

ỹ1
α−1Ĉ1 (15)

M̂1 = [I −
(1 + α/z1)

yα

Ψ1(ŝ)]
yα

ỹ1
α−1Ĉ1 (16)

Since

lim
(ŝ−h)→∞

Ψ1(ŝ) = a1I, (17)

Ψ1(ŝ) ∈ M(S). With the choice of α, a1, kp and τ1,

M̂1(ŝ) is unimodular. Thus, Ĉ1(ŝ) stabilizes Ĝ(ŝ), and C1(s)
stabilizes G(s) with guaranteed stability margin specified by

h. △

Proposition 2: (Systems with two large RHP zeros)

Let G(s) have no pole at s = 0. It has two blocking-zeros

0 < z1 ≤ z2 ≤ ∞, and zi ∈ IR. Let h ≥ 0. Choose any

a1 > h, a2 > h and k2 > h.

Ĝ = Ŷ −1X̂ = (
x̃

ỹ
Ĝ−1)−1(

x̃

ỹ
I), (18)

x̃ = (1 − (ŝ − h)/z1)(1 − (ŝ − h)/z2), (19)

ỹ = ((ŝ − h) + a1)((ŝ − h) + a2). (20)

Define

Y (∞) := lim
s→∞

(1 − s/z1)(1 − s/z2)

(s + a1)(s + a2)
G−1(s) (21)

= lim
(ŝ−h)→∞

Ŷ (ŝ) (22)

Define

Ψ2(ŝ) :=
ỹ

((ŝ − h) + k2)
Ŷ Y (∞)−1 − (ŝ − h)I (23)

For any α > 0 and β > 0 satisfying

α + 1/z1 < 1/h, (24)

β + 1/z2 < 1/h, (25)

η/ρ < 1/h, (26)

(ρ − ηh)

(1 − (α + 1/z1)h)(1 − (β + 1/z2)h)
< ||Ψ2(ŝ)||

−1, (27)

where

ρ = α + β + 2(1/z1 + 1/z2) (28)

η = αβ + α/z2 + β/z1, (29)

the PD controller C2(s) below stabilizes G(s) with guaran-

teed stability margin specified by h :

C2(s) = ρ−1[k2 +
(1 − k2τ2)s

τ2s + 1
]Y (∞), where τ2 =

η

ρ
.

(30)

Proof: From (30), we can get

Ĉ2(ŝ) = [
(ŝ − h) + k2

ρ + η(ŝ − h)
]Y (∞), (31)

Choose the RCF for Ĉ2(ŝ) as

Ĉ2 = N̂cD̂
−1
c = (Ĉ2)(I)−1. (32)

Define

yα := 1 + (α + 1/z1)(ŝ − h), (33)

yβ := 1 + (β + 1/z2)(ŝ − h), (34)

M̂2 := X̂Ĉ2 + Ŷ = (
x̃

yαyβ

I +
ỹ

yαyβ

Ŷ Ĉ−1
2 )

yαyβ

ỹ
Ĉ2 (35)

= (I −
(ŝ − h)(ρ + η(ŝ − h))

yαyβ

I +
ỹ

yαyβ

Ŷ Ĉ−1
4 )

yαyβ

ỹ
Ĉ4

(36)

= [I +
(ρ + η(ŝ − h))

yαyβ

Ψ2(ŝ)]
yαyβ

ỹ
Ĉ2 (37)

Since

Ψ2(ŝ)|(ŝ−h)→∞ = (a1 + a2 − k2)I, (38)

Ψ2(ŝ) ∈ M(S). With the choice of all parameters, M̂2(ŝ)
is unimodular. Thus, Ĉ2(ŝ) stabilizes Ĝ(ŝ), and C2(s)
stabilizes G(s) with guaranteed stability margin specified

by h. △

To get the PID-controller, we use the two-step design

procedure mentioned in [1]. Let Cpd(s) be a PD-controller

stabilizing G(s) with guaranteed stability margin specified by
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h, which can be either C1(s) or C2(s) in previous propo-

sitions. Equivalently, Ĉpd(ŝ) is a PD-controller stabilizing

Ĝ(ŝ), and

Ĥpd(ŝ) := Ĝ(I + ĈpdĜ)−1 ∈ M(S). (39)

Finding an I-controller for Ĥpd(ŝ) is the special case in

[2] by letting K̂p = 0 and K̂d = 0. Once ĈI(ŝ) is found,

the controller Ĉpid(ŝ) = Ĉpd(ŝ) + ĈI(ŝ) is a PID-controller

stabilizing Ĝ(ŝ) [4].

Proposition 3: (PID-controller)

Let G(s) have no pole at s = 0. Define

γ(h) := ||
Ĥpd(ŝ)Hpd(0)−1 − I

ŝ − h
||−1. (40)

For any given PD-controller Cpd(s) stabilizing G(s) with

guaranteed stability margin specified by h (≥ 0), if we can

find an α such that

h < α < γ(h) − h, (41)

the PID-controller

Cpid(s) := Cpd(s) + CI(s), (42)

where

CI(s) =
(α + h)H(0)−1

s
, (43)

stabilizes G(s) with guaranteed stability margin specified

by h.

Remark: If h = 0, the results are reduced to those corre-

sponding results in [1].

III. PID CONTROLLER SYNTHESIS

The propositions in the previous section not only give us

sufficient conditions, but also suggest a systematic synthesis

procedure for PID-controller design. We will use two

single input single output (SISO) examples to illustrate the

systematic procedure, since the design for MIMO systems

follows the same procedure but with more computation

involved.

Example 3.1: Given the plant transfer function

G(s) =
(s + 5)(s2 + 8s + 32)

(s + 2)(s − 8)(s2 − 12s + 40)
, (44)

it is an unstable plant with one RHP zero at z1 = ∞. We

use Proposition 1 to design a PID-controller.

Consider h = 1.5. Choose arbitrarily τ1 = 0.05, kp =
1 and a1 = 3. From (7), we get Y (∞) = 1. From (8),

we compute ||Ψ1(ŝ)|| = 31.61, which leads to the lower

bound 33.11 of α from (9). Choose α = 34. Then, the PD-

controller in (10) can be calculated. The closed-loop poles

are −2.41+i2.08, −2.41−i2.08, −5.59+i21.04, −5.59−
i21.04, −20.0, which satisfy the given h = 1.5.

To add the I-controller from Proposition 3, we calculate

Ĥpd(ŝ) from (39), and γ from (40). In this case, we get

Hpd(0) = 0.0333 and γ = 4.26. Since γ > 2h = 3, we

are able to choose α = 2 in (41). The PID-controller in

(42) gives the closed-loop poles at −1.91 + i2.91, −1.91−
i2.91, −2.48, −4.85+i23.17, −4.85−i23.17, −20, which

satisfy the given h = 1.5. △

Example 3.2: Given the plant transfer function

G(s) =
(s − 50)(s2 + 8s + 32)

(s + 2)(s − 8)(s2 + 12s + 40)
, (45)

it is an unstable plant with two RHP zeros at z1 = 50 and

z2 = ∞. We use Proposition 2 to design a PID-controller.

Consider h = 1.5. Choose arbitrarily k2 = 10, and a1 =
a2 = 3.1 to make sure that they are greater than h. We have

to choose α = β = 0.01 carefully, so that they satisfy the

constraints in (24) through (27). In this case, the left side

of (27), which equals to 0.0633, is less than the right side

of (27), which equals to 0.0833. From (30), we get the PD-

controller. The closed-loop poles are −4.44+i6.00, −4.44−
i6.00, −8.47 + i8.75, −8.47 − i8.75, −113.514, which

satisfy the given h = 1.5.

To add the I-controller from Proposition 3, we follow the

same procedure as that in example 3.1. The PID-controller in

(42) gives the closed-loop poles at −2.30 + i9.55, −2.30−
i9.55, −4.95 + i1.34, −4.95 − i1.34, −11.44 − 113.40,

which satisfy the given h = 1.5. △

IV. DISCUSSION

For a class of stable or unstable MIMO plants, we obtained

sufficient conditions for the existence of PID-controllers

that achieve integral-action and their closed-loop poles with

real-parts less than −h. We proposed systematic design

procedures to design such controllers, which allow freedom

in the choice of parameters. How to use these parameters to

improve system’s performance is a challenging task. Future

direction of this study will also include possible extension

to more classes of plants.
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Fig. 1. Unity-Feedback System Sys(G , C).
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