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Abstract— In this paper, a first-state contractive (FSC) model
predictive control (MPC) algorithm is developed for the trajec-
tory tracking and point stabilization problems of nonholonomic
mobile robots. Different from other stabilizing MPC methods,
which address stability by adding terminal state penalties
in the performance index and imposing constraints on the
terminal state at the end of the prediction horizon, the proposed
MPC algorithm guarantees its stability by adding a contractive
constraint on the first state at the beginning of the prediction
horizon. The resulting MPC scheme is denoted as first-state
contractive MPC (FSC-MPC). In the absence of disturbances,
it can be shown that the proposed algorithm is exponentially
stable. Simulation results are provided to verify the effectiveness
of the method. Moreover, it is shown that the FSC-MPC
algorithm has simultaneous tracking and point stabilization
capability.

I. INTRODUCTION

Unmanned ground vehicles (UGV) can provide a promis-

ing and efficient alternative to existing techniques in a wide

range of applications. Due to the advancement in electron-

ics and computing, small UGVs with satisfactory sensing

and computational capabilities now can be built within a

reasonable budget. The challenge here lies in designing

control algorithms to handle complex environments and a

wide variety of requirements.

A nonholonomic model (e.g., unicycle) is commonly

adopted to describe vehicle’s kinematics in UGV motion

coordination. Therefore, fundamental control problems, tra-

jectory tracking and point stabilization of nonholonomic

mobile robots, are inevitably encountered. During the past

decades, these problems have received a lot of attention and

numerous control algorithms can be found in the existing

literature. A detailed summary of developments in control

of nonholonomic systems can be found in [1].

The trajectory tracking problem focuses on stabilizing

robots to a time-varying trajectory. Nonlinear feedback con-

trollers are mostly found in the literature. Early results

include [2], [3], in which local asymptotic controllers are

developed. Other techniques, such as sliding mode [4] and

output feedback linearization [5] have been widely used.

However, according to the authors in [6], the nonlinear

internal dynamics of the closed-loop system under output

feedback linearization controllers exhibit unstable properties
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when robots track a trajectory moving backward. So far, in-

put constraints are usually ignored in the existing approaches.

The point stabilization problem, which considers stabi-

lizing robots to a final goal posture, is more challenging.

According to Brockett’s theorem [7], a smooth time-invariant

feedback control law doesn’t exist. Many researchers have

contributed a lot of algorithms to overcome these difficulties

and most of the existing approaches can be classified into

two categories: (i) discontinuous feedback laws, and (ii)

time-varying algorithms. To mention a few, see [3], [8]

for discontinuous feedback controllers and [9], [10] for

time-varying controllers. Other techniques, such as dynamic

feedback linearization [11] are also found in the literature.

An interesting result is reported in [12] that with a special

choice of state-space variables, smooth feedback controllers

can be designed. Some drawbacks of the existing approaches

are reported in [8], [13], such as the slow convergence

of time-varying control laws and the complex design of

discontinuous controllers. In addition, most of the existing

approaches do not consider input constraints.

Only a few controllers [14], [15], which can handle the

tracking and stabilization problems in the same control

structure, are found in the literature. Common approaches

are switching controllers between tracking and point stabi-

lization.

Recently, model predictive control (MPC) or receding

horizon control (RHC) has gained more and more attention in

the control community. The inherent ability of MPC to han-

dle constrained systems makes it a promising technique for

the control of nonholonomic mobile robots. MPC controllers

are reported in [15] for trajectory tracking and [16] for point

stabilization. However, because of the stability condition, the

MPC controller in [15] cannot track a trajectory moving

backward.

In this paper, we proposed a novel MPC approach for the

control of nonholonomic mobile robots. From the literature,

most stabilizing MPC methods address stability by adding

terminal state penalties in the performance index and/or

imposing constraints on the terminal state at the end of the

prediction horizon. However, the proposed MPC algorithm

guarantees its stability by adding a contractive constraint on

the first state at the beginning of the prediction horizon. More

specifically, the contributions of this paper are threefold: (i)

the exponential stability of our MPC controller is guaranteed

by adding a first-state contractive constraint. This means that

the convergence is faster and no terminal region calculation

is required; (ii) tracking a trajectory moving backward is

no longer a problem under our MPC controller and (iii),
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the proposed MPC controller has simultaneous tracking and

point stabilization capability, in contrast to most of the

existing controllers in the literature.

The rest of the paper is organized as follows. Section

II introduces the robot kinematic model and the trajectory

tracking and point stabilization problems of a nonholonomic

mobile robot. A first-state contractive MPC algorithm is

proposed in Section III. Stability results of the proposed

algorithm are found in Section IV. In Section V, simulation

results are provided to show the effectiveness of the method.

Finally, concluding remarks and future work are given in

Section VI.

II. PRELIMINARIES

This paper deals with the problem of designing control

laws for the motion control of nonholonomic mobile robots.

In this section, a brief introduction of the kinematic model

used for the mobile robots and the two fundamental classes

of problems, trajectory tracking and point stabilization are

given.

A. Kinematic Model

Consider the planar motion of mobile robots under the

nonholonomic constraint of pure rolling and non-slipping,

the kinematic model is given as follows (see Figure 1)





ẋ
ẏ

θ̇



 =





cos θ 0
sin θ 0

0 1





[

v
ω

]

, (1)

where (x, y) ∈ R
2 denotes the position of the robot in

a Cartesian coordinate frame, θ ∈ (−π, π] represents the

orientation of the robot with respect to the positive X axis,

and v ∈ V ⊆ R and ω ∈ W ⊆ R are the control inputs

representing linear and angular velocities, respectively.
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Fig. 1. Nonholonomic mobile robots.

Although there is no consideration of motor dynamics and

other mechanical effects, this simplified model is sufficient

to describe the nonholonomic mobile robots’ motion.

Since system (1) falls in the form of driftless systems





ẋ
ẏ

θ̇



 =





cos θ
sin θ

0



 v +





0
0
1



ω, (2)

and the accessibility rank condition is globally satisfied [17]

rank{g1, g2, [g1, g2]} = rank





cos θ 0 sin θ
sin θ 0 − cos θ

0 1 0



 = 3,

(3)

where g1 = [cos θ sin θ 0]
T

, g2 = [0 0 1]
T

and [g1, g2]
is the Lie bracket of g1 and g2, system (1) is controllable.

Note that, for nonlinear systems, the existence of continuous

time-invariant state feedback control laws cannot be implied

from the controllability.

B. Trajectory Tracking

Let a triplet zc = [x y θ]T describe the position and the

orientation of a mobile robot. The reference trajectories can

be described by a virtual reference robot with a state vector

zr = [xr yr θr]
T

, an input vector ur = [vr ωr]
T

and the

kinematic model (see Figure 1)

żr =





ẋr

ẏr

θ̇r



 =





cos θr 0
sin θr 0

0 1



ur. (4)

Then the trajectory tracking problem can be defined [3].

Definition 2.1: The trajectory tracking problem, under the

assumption that the virtual reference robot is not at rest (vr =
ωr = 0) when t → +∞, is to find a feedback control law

u = [v ω]
T

, such that

lim
t→∞

(zr − zc) = 0,

with any initial robot posture zc(0).
By transforming the reference state zr in a local coordinate

system attached to the tracking robot, an error state ze can

be defined [2]

ze :=





xe

ye

θe



 =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 (zr − zc) . (5)

Taking the derivative of (5) and rearranging with (1), (4), the

error model becomes

ẋe = ωye − v + vr cos θe,

ẏe = −ωxe + vr sin θe,

θ̇e = ωr − ω. (6)

Let us define ue,

ue :=

[

u1

u2

]

=

[

−v + vr cos θe

ωr − ω

]

, (7)

and then linearize system (6) about the the equilibrium point

(ze = 0, ue = 0). We obtain

że =





0 ωr 0
−ωr 0 vr

0 0 0



 ze +





1 0
0 0
0 1



ue. (8)

The controllability of system (8) can be easily checked.

However, when the virtual reference robot stops (vr = ωr =
0), the controllable property is lost.
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C. Point Stabilization

For the point stabilization problem, one can have the

following definition.

Definition 2.2: Given an arbitrary constant reference po-

sition and orientation zd = [xd yd θd]
T

, the point stabiliza-

tion problem is to find a feedback control law u = [v ω]
T

,

such that

lim
t→∞

(zd − zc) = 0,

with any initial robot posture zc(0).

Without loss of generality, we use zd = [0 0 0]
T

as the

constant reference posture (since by coordinate transforming,

any arbitrary posture can be transformed to [0 0 0]
T

). Then

the problem becomes to find a feedback control law which

drives the system (1) back to the origin aligning with the X
axis.

It is a well-known result that a smooth time-invariant

feedback control law does not exist for the point stabilization

problem [7]. However, with the analysis in Section II-A,

system (1) is still controllable.

Consider a Cartesian to polar coordinate transformation

[12] (see Figure 2), a polar state zq = [l φ α]T can be

defined

l =
√

x2 + y2

φ = arctan2(−y,−x)

α = φ − θ (9)

X

Y

O

l φ

θ

α

Fig. 2. Coordinate transformation.

Then the kinematic model (1) becomes

l̇ = −v cosα

φ̇ =
v sinα

l

α̇ = −ω +
v sin α

l
(10)

Note, when l = 0, which means that robot reaches the

origin, the new kinematic model is not defined.

III. FIRST-STATE CONTRACTIVE MPC

Without considering disturbances and model uncertainties,

systems like (6) and (10) can be generally expressed and

converted into the following nonlinear set of difference

equations

z(k + 1) = f(z(k),u(k)), z(0) = z0, (11)

with a state vector z(k) ∈ Z and an input vector u(k) ∈ U ,

k ∈ Z
∗. Z ⊂ R

m is the state constraints which contains

the origin in its interior. U ⊂ R
n is the input constraints

which is a compact subset of R
n containing the origin in

its interior. Usually, we have U = {u ∈ R
n : umin ≤ u ≤

umax}. umin and umax are known constants in R
n. Function

f : R
m × R

n → R
m is assumed to be continuous.

The control goal is to find u(k) which drives the system

(11) toward the equilibrium (z(k) = 0 and u(k) = 0).

To obtain the current control u(k) at time tk, where k
is a nonnegative integer (k ∈ Z

∗), a finite-horizon optimal

control problem

min
u

JH(z, k,u),

subject to: z(k + 1) = f(z(k),u(k)),

z(k) ∈ Z,

u(k) ∈ U , (12)

must be solved online for an MPC algorithm. The perfor-

mance index JH(z, k,u) is defined as

JH(z, k,u) :=
H

∑

i=1

L(z(k + i; k),u(k + i − 1; k)), (13)

where H ∈ N is the horizon length (for simplicity, the

prediction horizon equals the control horizon in this paper).

The incremental cost is defined as

L(z,u) := ‖z‖2
Q + ‖u‖2

R, (14)

where ‖z‖Q and ‖u‖R denote the weighted 2-norm, which

are defined as ‖z‖2
Q := z

T Qz and ‖u‖2
R := u

T Ru. Q and

R are positive definite symmetric matrices of appropriate

dimensions.

Since a finite horizon is used, the controller found in

(12) is not guaranteed to be stable. Many researchers have

contributed to the stability of nonlinear MPC with some

important methods (see [18] for a detailed discussion).

To achieve stability, the core idea behind the methods

mentioned above is to add terminal state penalties in the

performance index and impose constraints on the terminal

state at the end of the prediction horizon. Therefore, those

methods can be denoted as terminal-state constrained MPC

(TSC-MPC). However, in the implementation of most MPC

schemes, only the first control of the control sequence yield

by optimization is applied to the plant at each sampling

instance. All the other controls are discarded. Only the first

state at the beginning of the prediction horizon is directly

affected by this implementation.

Motivated by this observation and the contractive MPC

scheme developed in [19], a new MPC algorithm is proposed

here. To be specific, we obtain the current control u(k)
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at time tk by solving the following finite-horizon optimal

control problem online

min
u

JH(z, k,u),

subject to: z(k + 1) = f(z(k),u(k)),

z(k) ∈ Z,

u(k) ∈ U ,

‖z(k + 1)‖
P̂
≤ ρ‖z(k)‖

P̂
, (15)

where JH(z, k,u) is defined in (13) and (14). P̂ is a positive

definite symmetric matrix and ρ ∈ (0, 1).
Note, the last inequality constraint in (15) can be called

first-state contractive constraint. This means the first state

at the beginning of the prediction horizon, z(k + 1), is

contracted in norm with respect to the current state, z(k).
Therefore, the proposed MPC algorithm can be denoted as

first-state contractive MPC (FSC-MPC). The user adjustable

parameter ρ is called contractive parameter, which addresses

the contraction rate.

The FSC-MPC controller can be implemented as follows.

FSC-MPC Algorithm

Data: prediction horizon H ∈ N; sampling time δT ∈
R

+; weights Q, R, P̂ > 0; constraints umin, umax ∈ R
m;

contractive parameter ρ ∈ (0, 1); k ∈ Z
∗.

Step 0: set k = 0; set initial control prediction û(i; k) =
0, i ∈ [1, . . . , H − 1].

Step 1: measure the states z(k) at time tk; with control

prediction û(i; k), solve the optimal control problem (15)

and obtain a control sequence u
∗(i; k).

Step 2: apply the first control u
∗(1; k) in the control

sequence u
∗(i; k) to system (11) for the time interval

[tk, tk+1], where tk+1 = tk + δT .

Step 3: update the control prediction as follows

û(i; k) =

{

u
∗(i + 1; k) i ∈ [1, . . . , H − 2]

u
∗(i; k) i = H − 1

;

set k = k + 1; go back to Step 1.

Note, in Step 1, an assumption is that for all k ∈ Z
∗,

a feasible solution of the optimal control problem (15),

satisfying all the constraints, always exists. However, global

optimal solution is not strictly required here. Any feasible or

local optimal solutions is acceptable. This approach might

compromise the performance, but the stability property of

the algorithm will not be affected.

IV. STABILITY RESULTS

In this section, the stability of FSC-MPC algorithm will

be proven. Before we give the main results, let’s make the

following assumptions.

Assumption 4.1: There exists a constant β ∈ (0, ∞)
such that for all z(k) ∈ Bβ := {z ∈ Z|‖z‖

P̂
≤ β}, a

contractive parameter ρ ∈ (0, 1) can be found so that at time

tk, a feasible solution of the optimal control problem (15),

satisfying all the constraints, always exists for all k ∈ Z
∗.

Assumption 4.2: For all t ∈ [tk, tk+1], k ∈ Z
∗, there

exists a constant κ ∈ (0, ∞), such that the transient state,

z(t), satisfies ‖z(t)‖
P̂
≤ κ‖z(k)‖

P̂
.

Note, Assumption 4.2 means that systems with finite

escape time are not under consideration.

Theorem 4.3: Suppose that the optimal control problem

is feasible at time t0 and Assumptions 4.1 and 4.2 are

satisfied. The FSC-MPC algorithm described in Section III

for system (11) is exponentially stable in the sense that

the state trajectory of the closed-loop system satisfies the

following inequality

‖z(t)‖
P̂
≤ κ‖z(0)‖

P̂
e
−

(1−ρ)
δT

(t−t0), (16)

where δT is the sampling time.

Proof : Since the optimal control problem is feasible at

time t0, from Assumption 4.1, the optimal control problem

is feasible at time tk, k ∈ Z
∗. Therefore, we have

‖z(k)‖
P̂
≤ ρ‖z(k − 1)‖

P̂
≤ · · · ≤ ρk‖z(0)‖

P̂
. (17)

Now with Assumption 4.2 and (17), z(t) satisfies the fol-

lowing inequality

‖z(t)‖
P̂
≤ κρk‖z(0)‖

P̂
, (18)

where t ∈ [tk, tk+1], for all k ∈ Z
∗.

Since ρ ∈ (0, 1), we have e(ρ−1) − ρ ≥ 0, which means

e(ρ−1)k ≥ ρk ≥ 0, for all k ∈ Z
∗. Inequality (18) can be

rewritten as follows

‖z(t)‖
P̂
≤ κ‖z(0)‖

P̂
e−(1−ρ)k. (19)

Since k = (tk − t0)/δT and (t− t0)/δT ≤ (tk − t0)/δT =
k, for all t ∈ [t0, tk], we have

e−(1−ρ)k ≤ e
−

(1−ρ)
δT

(t−t0) (20)

Therefore, from inequalities (19) and (20), we conclude

‖z(t)‖
P̂
≤ κ‖z(0)‖

P̂
e
−

(1−ρ)
δT

(t−t0).

According to [20], the closed-loop system is exponentially

stable, so does the FSC-MPC algorithm. �

V. SIMULATION RESULTS

The effectiveness of the FSC-MPC algorithm presented in

Section III is investigated by numerical simulations. In the

figures, each robot is depicted by an arrow within a circle

(dotted circle for virtual reference robot). The orientation of

the robot is shown by the orientation of the arrow.

A. Trajectory Tracking

In this section, the simulation results of our FSC-MPC

controller, Kanayama’s controller proposed in [2] and Sam-

son’s controller proposed in [3] are compared. Specifically,

the controllers proposed in [2] and [3] are
[

v
ω

]

=

[

vr cos θe + Kxxe

ωr + vr(Kyye + Kθ sin θe)

]

, (21)

[

v
ω

]

=

[

vr cos θe + K1xe

ωr + K2vr
sin θe

θe
+ K3θe

]

, (22)

respectively.
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The reference trajectory starts from posture zr(0) =
[0 0 0]

T
with constant control inputs [vr ωr]

T
= [1 0]

T
.

In addition, we assume that two perturbations occur at time

10 s and 20 s which change the orientation of the virtual

reference robot from 0 rad to π/2 rad and from π/2 rad

back to 0 rad, respectively. Total simulation time is 30 s.

The initial condition of tracking robot is zc(0) =
[0 3 0]T . Controller parameters are selected as follows. For

Kanayama’s controller, Kx = 1, Ky = 4 and Kθ = 4.

For Samson’s controller, K1 = 1, K2 = 4 and K3 = 4.

Sampling time for these two controllers is δT = 0.1 s. For

FSC-MPC controller, H = 6, ρ = 0.95, Q =





5 0 0
0 5 0
0 0 1



,

R =

[

1 0
0 1

]

, P̂ =





1 0 0
0 1 0
0 0 1



. Sampling time is

δT = 0.5 s. Control input constraints are

−4(m/s) ≤ v ≤ 4(m/s), −0.8(rad/s) ≤ ω ≤ 0.8(rad/s).

The system responses of the three controllers are shown

in Figure 3. All the controllers can drive the tracking robot

back to the reference trajectory. Since constraints are put on

the control inputs, our FSC-MPC controller is outperformed

by Kanayama’s and Samson’s controllers.

0 5 10 15 20
−2

0

2

4

6

8

10

12

x(m)

y
(m

)

Tracking trajectories

 

 

Fig. 3. Tracking trajectories. Dashed: Reference. Solid: FSC-MPC. Dotted:
Samson. Dash-dot: Kanayama.

B. Point Stabilization

In this section, the simulation results of our FSC-MPC

controller and Aicardi’s controller proposed in [12] are

compared. Specifically, the controllers proposed in [12] is
[

v
ω

]

=

[

K1e cosα
k2α + K1

cos α sin α
α

(α + K3φ)

]

(23)

Three initial robot postures are used in the simulation.

They are

zc(0) =











1
0

π/2



 ,





−0.5
0.867
π/2



 ,





−0.5
−0.867

π/2











.

The final posture is zd = [0 0 0]T . Controller parameters

are selected as follows. For Aicardi’s controller, K1 = 3,

K2 = 6 and K3 = 1. Sampling time is δT = 0.05 s and

the simulation lasts 4 s. For FSC-MPC controller, controller

parameters, sampling time and control input constraints are

the same as those in Section V-A. Total simulation time is

10 s.

The trajectories generated by Aicardi’s controller and our

FSC-MPC controller from different initial postures are shown

in Figure 4. The FSC-MPC controller successfully stabilizes

the robot at the desired final posture.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x(m)

y
(m

)

Stabilization trajectories

Fig. 4. Stabilization trajectories. Solid: FSC-MPC. Dashed: Aicardi

Specifically, we use the integral of norm squared actual

control inputs (
∑k

1 ‖u‖
2δT ) as a metric to evaluate the con-

trol energy. The control energy expended by each controller

from different initial postures are shown in Table I. The FSC-

MPC requires much less control energy in comparison with

the Aicardi’s controller.

Initial Posture Aicardi FSC-MPC

[1 0 π/2]T 1772.7122 10.4999

[−0.5 0.867 π/2]T 586.2641 6.1507

[−0.5 − 0.867 π/2]T 69.7075 3.7015

TABLE I

THE INTEGRAL OF NORM SQUARED ACTUAL CONTROL INPUTS FOR

STABILIZATION.

C. Simultaneous Tracking and Stabilization

A simulation is illustrated in this section which shows

that our FSC-MPC controller has the ability of simultaneous

tracking and stabilization. Usually, simultaneous tracking

and stabilization is not considered under a single controller

approach. Most of the existing controllers for trajectory

tracking of nonholonomic mobile robots will fail when the

virtual reference robot stops or moves backward.

The virtual reference robot starts moving backward from

posture zr(0) = [0 0 π/2]T with constant control inputs

[vr ωr]
T

= [−1 0.1]
T

. Then, it stops at time t = 5
s. The initial condition of the tracking robot is zc(0) =
[10 10 π/2]

T
. We compare our FSC-MPC controller with
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Samson’s controller (22). Controller parameters, sampling

time, simulation time and control input constraints are the

same as those in Section V-A.

The results are shown in Figures 5The FSC-MPC con-

troller successfully stabilizes the tracking robot to the final

posture where the reference robot stops. Meanwhile, Sam-

son’s controller experiences some extreme maneuvers and

only stops the tracking robot to a neighboring position.

−2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

8

10

12

x(m)

y
(m

)

Trajectories

Fig. 5. Trajectories of simultaneous tracking and stabilization. Dashed:
Reference. Solid: FSC-MPC. Dash-Dot: Samson.

VI. CONCLUSIONS

In this paper, a first-state contractive model predictive

control (FSC-MPC) algorithm is developed for the trajectory

tracking and point stabilization problems of nonholonomic

mobile robots. Stability of the proposed MPC scheme is

guaranteed by adding a first-state contractive constraint. Sim-

ulation results show that the proposed FSC-MPC controller

can generate satisfactory system responses while requires

much less control energy in comparison with other well-

known controllers. In addition, the proposed FSC-MPC al-

gorithm has the ability of simultaneous tracking and stabi-

lization, in contrast to controllers available in the literature.

For all simulations, an initial feasible solution is required

for the proposed FSC-MPC controller. Like most of the MPC

schemes, a trial-and-error approach is used. The choice of

the contractive parameter is critical for the initial feasible

solution. A value close to 1 is preferred. However, a small

value will give faster convergence rate when the system

approaches the equilibrium point. As part of our future work,

we are investigating adaptive or time-varying schemes of the

contractive parameter, and experimental verifications of the

FSC-MPC on the MARHES [21] testbed.
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