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Abstract— A new approach for the design of robust H∞ filter
for a class of discrete-time Lipschitz nonlinear systems with
time-varying uncertainties is proposed based on linear matrix
inequalities. Thanks to the linearity of the proposed LMIs
in both the admissible Lipschitz constant of the system and
the disturbance attenuation level, they can be simultaneously
optimized through convex optimization. The resulting H∞

observer guarantees exponential stability of the estimation
error dynamics with guaranteed decay rate and is robust
against time-varying parametric uncertainties. The proposed
observer has also an extra important feature, robustness against
nonlinear additive uncertainty. Explicit norm-wise and element-
wise bounds on the tolerable nonlinear uncertainty are derived.

I. INTRODUCTION

IN many practical situations, it is not possible to obtain

accurate measurements of all the system states making

the usage of state observers essential. In addition, due to

model uncertainties and disturbances, the observer often

needs to have some robustness properties. The problem of

nonlinear observer design for uncertain systems has been

tackled using various approaches [1], [2], [3], [4], [5]. To

deal with the exogenous disturbances, the H∞ filtering

was introduced. In an H∞ observer, the L2 gain from

the unknown norm-bounded exogenous disturbance to the

observer error is guaranteed to be less than a prespecified

value. The original studies in this area go back to the works

of de Souza et. al. where the authors considered a class

of continuous-time nonlinear systems with time-varying

parametric uncertainty and obtained Riccati-based sufficient

conditions for the stability of the proposed observer with

guaranteed disturbance attenuation level, [1], [6]. These

references also present general matrix inequalities helpful in

solving this type of problems. In the discrete-time domain,

Xie et. al. proposed a Riccati equation approach to the

robust H∞ observer design [2]. The class of discrete-

time systems considered was described by a linear state

space model with the addition of known state dependent
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nonlinearly satisfying a global Lipschitz condition. In order

to guarantee the robust stability of the observer in the

presence of parameter uncertainties, the authors added the

restrictive assumption that the “A” matrix of the linear part

must be non-singular. Wang and Unbenhauen considered

the robust observer design problem for the same class of

discrete systems [7]. They eliminated the aforementioned

restrictive assumption. However, the observer structure

proposed in [7] involves parameter uncertainties, making the

design of such an observer difficult in practical applications.

A second shortcoming in the observer of reference [7]

is that no disturbance attenuation (H∞ performance) is

guaranteed. In addition, in the Riccati approach, all the

H∞ regularity assumptions must be satisfied. The regularity

assumptions in the Riccati approach can be relaxed using

LMIs. An LMI solution for robust H∞ filtering has been

proposed for a class of Lipschitz nonlinear systems in

which the Lipschitz constant is fixed and predetermined,

[8]. The resulting observer is robust against time-varying

parametric uncertainties in the linear part of the model

with the guaranteed disturbance attenuation level. Recently,

we have developed a new LMI optimization approach to

the solution of this problem in the continues-time domain

[9], [10]. In our method, the linear matrix inequalities are

linear in the system Lipschitz constant making it one of the

LMI variables. Therefore, the admissible Lipschitz constant

can be the maximized through convex optimization. This

optimization adds an important extra future to the H∞ filter

over the aforementioned features, making the proposed

observer robust against some nonlinear uncertainty. In this

paper, we extend the results to the discrete-time case. The

discrete-time case of this problem has the merits to be

studied independently since most modern control systems

are implemented digitally. Besides, due to the structure

of the Lyapunov difference, the LMI formulation of the

solution in the discrete-time domain is more complicated.

The proposed H∞ filter is robust against time-varying

parametric uncertainties as well as additive nonlinear

uncertainty with the guaranteed disturbance attenuation

level. We derive norm-wise and element-wise bounds on the

tolerable nonlinear uncertainty.

Thanks to the linearity of our proposed LMIs in both the

admissible Lipschitz constant and the disturbance attenuation
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level, it is possible to consider a combined objective function.

Then, the admissible Lipschitz constant and the disturbance

attenuation level are both optimized using a multiobjective

optimization technique. The paper is organized as follows.

In section II, the problem statement and some preliminaries

are mentioned. In Section III, we propose a new method for

robust H∞ observer design for nonlinear uncertain systems.

Section IV, is devoted to robustness analysis in which explicit

bounds on the tolerable nonlinear uncertainty are derived.

Section V, contains an illustrative example showing the high

performance of our proposed method.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following class of nonlinear discrete-time

uncertain systems:

(∑
1

)
: x(k + 1) = (A + ∆A(k))x(k)

+ Φ(x, u) + Bw(k) (1)

y(k) = (C + ∆C(k))x(k) + Dw(k) (2)

where x ∈ R
n, u ∈ R

m, y ∈ R
p and Φ(x, u) contains

nonlinearities of second order or higher. We assume that the

system (1)-(2) is locally Lipschitz with respect to x in a

region D containing the origin, uniformly in u, i.e.:

‖Φ(0, u∗)‖ = 0 (3)

‖Φ(x1, u
∗) − Φ(x2, u

∗)‖ 6 γ‖x1 − x2‖ ∀x(k) ∈ D (4)

where ‖.‖ is the induced 2-norm, u∗ is any admissible control

signal and γ > 0 is called the Lipschitz constant. The region

D is our region of interest (the operating region). If the

nonlinear function Φ satisfies the Lipschitz continuity con-

dition globally in R
n, then the results will be valid globally.

w(k) ∈ ℓ2[0,∞) is an unknown exogenous disturbance and

∆A(k) and ∆C(k) are unknown matrices representing time-

varying parameter uncertainties, and are assumed to be of the

form
[

∆A(k)
∆C(k)

]
=

[
M1

M2

]
F (k)N (5)

where M1, M2 and N are known real constant matrices

and F (k) is an unknown real-valued time-varying matrix

satisfying

∀k, FT (k)F (k) ≤ I.

The parameter uncertainty in the linear terms can be regarded

as the variation of the operating point of the nonlinear

system. It is also worth noting that the structure of parameter

uncertainties in (5) has been widely used in the problems

of robust control and robust filtering for both continuous-

time and discrete-time systems and can capture uncertainty

in several practical situations [1], [11], [8]. Considering an

observer of the following form

x̂(k + 1) = Ax̂(k) + Φ(x̂, u) + L(y − Cx̂) (6)

the observer error dynamics is given by

e(k) , x(k) − x̂(k) (7)

e(k + 1) = (A − LC)e(k) + Φ(x, u) − Φ(x̂, u)

+ (B − LD)w + (∆A − L∆C)x(k). (8)

Suppose that

z(k) = He(k) (9)

stands for the controlled output for error state where H is a

known matrix. Our purpose is to design the observer parame-

ter L such that the observer error dynamics is asymptotically

stable with maximum admissible Lipschitz constant and the

following specified H∞ norm upper bound is simultaneously

guaranteed.

‖z‖ ≤ µ‖w‖. (10)

In the following, we mention some useful lemmas that

will be used later in the proof of our results.

Lemma 1. [8] For any x, y ∈ R
n and any positive definite

matrix P ∈ R
n×n, we have

2xT y ≤ xT Px + yT P−1y.

Lemma 2. [6] Let A,D,E, F and P be real matrices of

appropriate dimensions with P > 0 and F satisfying FT F ≤
I . Then for any scalar ǫ > 0 satisfying P−1−ǫ−1DDT > 0,

we have

(A + DFE)T P (A + DFE) ≤ AT (P−1 − ǫ−1DDT )−1A

+ǫET E.

A. Notation

The following matrix notation will be used throughout the

paper. For matrices A = [aij ]m×n and B = [bij ]m×n, A ¹
B means ai,j ≤ bij ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n and diag(A,B)
is a block diagonal matrix having A and B on the main

diagonal. For square A, diag(A) is a vector containing the

elements on the main diagonal of A and diag(x) where x

is a vector is a diagonal matrix with the elements of x on

the main diagonal. |A| is the element-wise absolute value of

A, i.e. [|aij |]n. A ◦ B stands for the element-wise product

(Hadamard product) of A and B.

B. Guaranteed Decay Rate

In the continuous-time domain, the decay rate of the error

dynamics is defined to be the largest β > 0 such that

lim
t→∞

exp(βt)‖e(t)‖ = 0

holds for all trajectories e. We can use the quadratic

Lyapunov function V (e) = eT Pe to establish a

lower bound on the decay rate of the error dynam-

ics. If
dV (e(t))

dt
6 −2βV (e(t)) for all trajectories,

then V (e(t)) 6 exp(−2βt)V (e(0)), so that ‖e(t)‖ 6
exp(−βt)κ(P )

1

2 ‖e(0)‖ for all trajectories, where κ(P ) is the

condition number of P and therefore the decay rate of the

(8) is at least β. In fact, decay rate is a measure of observer

speed of convergence. Here we introduce its discrete-time
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counterpart. Consider the nominal system (
∑

1) with ∆A =
∆C = 0 and w(k) = 0. The decay rate of the error dynamics

(8) is defined to be the largest β > 0 such that

lim
k→∞

exp(βk)‖e(k)‖ = 0

holds for all trajectories e. Suppose that

∆Vk = Vk+1 − Vk ≤ −(1 − exp(−2β))Vk. (11)

Then, we have

Vk+1 ≤ exp(−2β)Vk ⇒ Vk ≤ exp(−2kβ)V0

⇒ ‖e(k)‖ ≤ exp(−kβ)κ(P )
1

2 ‖e(0)‖.
(12)

III. NONLINEAR H∞ OBSERVER SYNTHESIS

In this section a new method of robust H∞ observer

design for systems of class
∑

1 is proposed based on LMIs.

Consider system (
∑

1) and observer (6). We first prove a

lemma about robust asymptotic stability in the presence of

exogenous disturbance.

Lemma 3. Consider the following nonlinear uncertain

system
(∑

2

)
: x(k + 1) = (A + ∆A(k))x(k)

+ Φ(x, u) + Bw (13)

z(k) = Hx(k). (14)

This system is asymptotically stable with ‖z‖ ≤ µ‖w‖ and

maximum admissible Lipschitz constant γ∗, if there exist

scalars α > 0, ǫ1 > 0 and ǫ2 > 0 and a matrix P > 0 such

that the following LMI optimization problem has a solution:

min(α + ǫ1)




Λ1 I AT P 0 0
⋆ −αI 0 0 0
⋆ ⋆ − 1

2P P PM1

⋆ ⋆ ⋆ P − 2ǫ1I 0
⋆ ⋆ ⋆ ⋆ −ǫ2I




< 0 (15)




−µ2I BT P BT P

⋆ − 1
2P 0

⋆ ⋆ −I


 < 0 (16)

where Λ1 = HT H − P + ǫ2N
T N . Once the problem is

solved

α∗ , min(α), ǫ∗1 , min(ǫ1)

γ∗ , max(γ) =
1√

α∗(1 + ǫ∗1)

Proof: Consider the Lyapunov function candidate:

V = xT Px. (17)

We have

∆Vk = xT (A + ∆A)T P (A + ∆A)x

+ 2xT (A + ∆A)T PΦ + ΦT PΦ − xT Px + 2wT BT PΦ

+ 2wT BT P (A + ∆A)x + wT BT PBw. (18)

Based on Lemma 1 and (3)-(4),

2xT (A + ∆A)T PΦ + ΦT PΦ = 2xT (A + ∆A)T PΦ

− ΦT WΦ + ǫ1Φ
T Φ ≤ xT (A + ∆A)T PW−1P (A + ∆A)x

+ ǫ1γ
2xT x

where W , ǫ1I − P . Thus,

xT (A + ∆A)T P (A + ∆A)x + 2xT (A + ∆A)T PΦ

+ ΦT PΦ − xT Px ≤ xT [(PA + PM1FN)T · · ·

(P−1 + W−1)(PA + PM1FN) − P + ǫ1γ
2I]x.

(19)

Using Lemma 1, it can be written

2wT BT P (A + ∆A)x + 2wT BT PΦ + wT BT PBw

≤ 2wT BT P (A + ∆A)x + wT BT PPBw + wT BT PBw

+ ΦT Φ ≤ 2wT BT P (A + ∆A)x + wT BT PPBw

+ wT BT PBw + γ2xT x ≤ xT (A + ∆A)T P (A + ∆A)x

+ wT [BT PB + BT PPB + BT PB]w + γ2xT x

= xT [(A + ∆A)T PP−1P (A + ∆A) + γ2]xT

+ wT [2BT PP−1PB + BT PPB]w.

Substituting (19) and the above into (18) yields to

∆Vk ≤ xT [(PA + PM1FN)T (2P−1 + W−1) · · ·

(PA+PM1FN)−P+(1+ǫ1)γ
2I]x+3wT BT PP−1PBw

Now, define J ,
∑

∞

k=0

[
z(k)T z(k) − µ2w(k)T w(k)

]
.

Thus,

J <

∞∑

k=0

[
z(k)T z(k) − µ2w(k)T w(k) + ∆V

]
. (20)

So, a sufficient condition for J ≤ 0 is that

xT [(PA + PM1FN)T (2P−1 + W−1)(PA · · ·

+ PM1FN) + HT H − P + (1 + ǫ1)γ
2I]x

+ wT [3BT PP−1PB − µ2I]w ≤ 0.

(21)

It can be concluded from (15) that 1
2P − (2ǫ1I −P )−1P 2 −

ǫ−1
2 PM1M

T
1 P > 0 and 2ǫ1I − P > 0. Therefore, since

P > 0, the condition W > 0 is already included in (15).

Defining the new variable

α ,
1

(1 + ǫ1)γ2
⇒ γ =

1√
α(1 + ǫ1)

, (22)

In order to maximize γ, both α and ǫ1 must be minimized.

Combining the two minimization problems, we will mini-

mize the scalarized linear objective function α + ǫ1. On the

other hand, after some matrix manipulations, we can show

that [12]:

2P−1 + (ǫ1I − P )−1 < [
1

2
P − (2ǫ1I − P )−1P 2]−1. (23)
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Hence, according to (21), a sufficient condition for J ≤ 0 is

that

xT {(PA+PM1FN)T [
1

2
P −(2ǫ1I−P )−1P 2]−1(PA · · ·

+PM1FN)+HT H−P +α−1I}x+wT [2BT PP−1PB · · ·

+ BT PPB − µ2I]w < 0.

According to Lemma 2,

xT {AT P [
1

2
P − (2ǫ1I − P )−1P 2 − ǫ−1

2 PM1M
T
1 P ]−1PA

+ ǫ2N
T N + HT H − P + α−1I}x

+ wT [2BT PP−1PB + BT PPB − µ2I]w < 0

which is by Schur complements equivalent to LMIs (15)

and (16). ¥

Remark 1. Lemma 3, provides a tool for robust stability

analysis of the aforementioned class of nonlinear systems.

Maximization of γ guarantees the stability of the system

for any Lipschitz nonlinear function with Lipschitz constant

less than or equal γ∗. It is clear that if the stability of a

systems with a given fixed Lipschitz constant is to analyzed,

the proposed LMI optimization problem will reduce to an

LMI feasibility problem and there will be no need to the

change of variable (22) anymore.

Remark 2. The proposed LMIs are linear in α, ǫ1
and ζ(= µ2). Thus, either can be a fixed constant or an

optimization variable or they might be simultaneously

optimized.

Using the above Lemma, in the following we propose

a new method for nonlinear H∞ observer design for the

aforementioned class of nonlinear discrete-time systems.

Theorem 1. Consider the Lipschitz nonlinear system (
∑

1)
along with the Luenberger type observer in (6). The observer

error dynamics is (globally) asymptotically stable with guar-

anteed decay rate β, maximum admissible Lipschitz constant,

γ∗, and guaranteed L2(w → z) gain, µ, if there exist fixed

scalars β > 0 and µ > 0, scalars ǫ1 > 0, ǫ2 > 0 and α > 0,

and matrices P1 > 0, P2 > 0 and G, such that the following

LMI optimization problem has a solution.

min(α + ǫ1)[
Ψ1 Ω
⋆ Ψ2

]
< 0 (24)

Ξ1 ,




−µ2I Λ2 BT P2 Λ2 BT P2

⋆ − 1
2P1 0 0 0

⋆ ⋆ − 1
2P2 0 0

⋆ ⋆ ⋆ −I 0
⋆ ⋆ ⋆ ⋆ −I




< 0 (25)

where Λ2 = BT P1 − DT GT , Λ3 = P1M1 − GM2 and

Ψ1 =




HT H − exp(−2β)P1 0 I

⋆ ǫ2N
T N − P2 0

⋆ ⋆ −αI




Ψ2 =




− 1
2P1 0 P1 0 Λ3

⋆ − 1
2P2 0 P2 P2M1

⋆ ⋆ P1 − 2ǫ1I 0 0
⋆ ⋆ ⋆ P2 − 2ǫ1I 0
⋆ ⋆ ⋆ ⋆ −ǫ2I




Ω =




AT P1 − CT GT 0 0 0 0
0 AT P2 0 0 0
0 0 0 0 0




Once the problem is solved

L = P−1
1 G (26)

α∗ , min(α), ǫ∗1 , min(ǫ1) (27)

γ∗ , max(γ) =
1√

α∗(1 + ǫ∗1)
(28)

Proof: We have

x̂(k + 1) = Ax̂(k) + Φ(x̂, u) + L(y − Cx̂) (29)

e(k + 1) = (A − LC)e(k) + Φ(x, u) − Φ(x̂, u)

+ (∆A − L∆C)x(k). (30)

Suppose ξ(k) ,
[

eT (k) xT (k)
]T

, it can be written

ξ(k + 1) = (Ã + ∆Ã)ξ(k) + Φ̃k(x, x̂, u) + B̃w

z = He =
[

H 0
] [

e

x

]
, H̃ξ

(31)

where

Ã =

[
A − LC 0

0 A

]
, B̃ =

[
B − LD

B

]

∆Ã =

[
0 ∆A − L∆C

0 ∆A

]
=

[
0 M1FN − LM2FN

0 M1FN

]

=

[
M1 − LM2

M1

]
F

[
0 N

]
, M̃1FÑ

Φ̃k(x, x̂, u) =

[
Φk(x, u) − Φk(x̂, u)

Φk(x, u)

]

‖Φ̃k(x, x̂, u)‖ ≤ γ‖ξ(k)‖.

System (31) is of the form
∑

2. So, Lemma 3 provides a

sufficient condition for its robust asymptotic stability. Let,

P = diag(P1, P2) and G , P1L. We have,

ǫ2Ñ
T Ñ − P =

[
−P1 0

0 ǫ2N
T N − P2

]
(32)

PM̃1 =

[
P1M1 − GM2

P2M1

]

ÃT P =

[
AT P1 − CT GT 0

0 AT P2

]

PB̃ =

[
P1B − GD

P2B

]
, H̃T H̃ =

[
HT H 0

0 0

]
.
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Note that V = eT P1e + xT P2x. Based on (11), in order

to have a guaranteed decay rate β for the error dynamics,

it is needed that ∆V ≤ −(1 − exp(−2β))eT P1e. This can

be satisfied by replacing −P1 in (32) with − exp(−2β)P1.

Substituting the all above into (15) and (16) of Lemma 3,

the LMIs in Theorem 1 are obtained. ¥

IV. ROBUSTNESS AGAINST NONLINEAR UNCERTAINTY

As mentioned earlier, the maximization of Lipschitz con-

stant makes the proposed observer robust against some Lips-

chitz nonlinear uncertainty. In this section this robustness fea-

ture is studied and both norm-vise and element-wise bounds

on the nonlinear uncertainty are derived. The norm-wise

analysis provides an upper bound on the Lipschitz constant

of the nonlinear uncertainty and the norm of the Jacobian

matrix of the corresponding nonlinear function. Furthermore,

we will find upper and lower bounds on the elements of the

matrix-type Lipschitz constant of the nonlinear uncertainty

through a novel element-wise analysis. The discrete-time ob-

server proposed here, enjoys the similar robustness features

as those discussed in [10] for the continues-time observer.

For the sake of complexness, here we study the observer

robustness features in the discrete-time domain. More details

on this section can be found in [12] including the proof of

the results.

A. Norm-Wise Robustness

Assume a nonlinear uncertainty as follows

Φ∆(x, u) = Φ(x, u) + ∆Φ(x, u) (33)

x(k + 1) = (A + ∆A)x(k) + Φ∆(x, u) (34)

where Φ∆ is the uncertain nonlinear function and ∆Φ is the

unknown nonlinear uncertainty. Suppose that

‖∆Φ(x1, u) − ∆Φ(x2, u)‖ 6 ∆γ‖x1 − x2‖. (35)

Proposition 1. [12] Suppose that the actual Lipschitz

constant of the system is γ and the maximum admissible

Lipschitz constant achieved by Theorem 1, is γ∗. Then,

the observer designed based on Theorem 1, can tolerate

any additive Lipschitz nonlinear uncertainty with Lipschitz

constant less than or equal γ∗ − γ.

B. Element-Wise Robustness

Assume that there exists a matrix Γ ∈ R
n×n such that

‖Φ(x1, u) − Φ(x2, u)‖ 6 ‖Γ(x1 − x2)‖. (36)

Γ can be considered as a matrix-type Lipschitz constant.

Suppose that the nonlinear uncertainty is as in (34) and

‖Φ∆(x1, u) − Φ∆(x2, u)‖ 6 ‖Γ∆(x1 − x2)‖. (37)

Assuming

‖∆Φ(x1, u) − ∆Φ(x2, u)‖ 6 ‖∆Γ(x1 − x2)‖, (38)

based the proposition 1, ∆Γ can be any matrix with

‖∆Γ‖ ≤ γ∗ − ‖Γ‖. Now, we look at the problem from a

different angle. It is clear that Γ∆ = [γ∆ij ]n is a perturbed

version of Γ due to ∆Φ(x, u). The question is that how

much perturbation can be tolerated on the elements of Γ
without loosing the observer features stated in Theorem 1.

This is important in the sense that in gives us an insight

about the amount of uncertainty that can be tolerated in

different directions of the nonlinear function. Here, we

propose an approach to optimize the elements of Γ and

provide specific upper and lower bounds on tolerable

perturbations.

Corollary 1. Consider Lipschitz nonlinear system (
∑

1)
satisfying (36), along with the observer (6). The observer

error dynamics is (globally) asymptotically stable with the

matrix-type Lipschitz constant Γ∗ = [γ∗

ij ]n with maximized

admissible elements, decay rate β and L2(w → z) gain,

µ, if there exist fixed scalars β > 0, µ > 0 and cij >

0 ∀ 1 ≤ i, j ≤ n, scalars ǫ1 > 0 and ǫ2 > 0 and matrices

A = [αij ]n ≻ 0, P1 > 0, P2 > 0 and G, such that the

following LMI optimization problem has a solution.

min


ǫ1 −

n∑

j=1

n∑

i=1

cijαij




Ξ1 < 0[
Ψ1 Ω
⋆ Ψ2

]
< 0

where

Ψ1 =




HT H − exp(−2β)P1 0 A
⋆ ǫ2N

T N − P2 0
⋆ ⋆ −I




and Ξ1, Ψ2 and Ω are as in Theorem 1. Once the problem

is solved

L = P−1
1 G, α∗

ij , max(αij), ǫ∗1 , min(ǫ1)

A∗ , [α∗

ij ]n, Γ∗ ,
1√

(1 + ǫ∗1)
A∗.

Proof: The proof is similar to the proof of Theorem 1,

replacing γI with Γ and using the change of variables

(1 + ǫ1)Γ
T Γ = ATA . ¥

Remark 3. In fact, we are maximizing every single

element of the positive matrix A by suboptimaly maximizing

a weighted sum of its elements. By appropriate selection

of the weights ci,j , it is possible to put more emphasis

on the directions in which the tolerance against nonlinear

uncertainty is more important. To this goal, one can take

advantage of the knowledge about the structure of the

nonlinear function Φ(x, u).

According to the norm-vise analysis, it is clear that ∆Γ
in (38) can be any matrix with ‖∆Γ‖ ≤ ‖Γ∗‖ − ‖Γ‖. We

will now proceed by deriving bounds on the elements of Γ∆.
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Lemma 4. [12] For any Q = [qi,j ]n and R = [ri,j ]n, if

|Q| ¹ R, then QQT ≤ RRT ◦ nI .

Now we are ready to state the element-wise robustness

result. It is worth mentioning that the bound given in the

following proposition is better than that given in [10] and

yet is valid for the continues-time filter in [10] as well.

Proposition 2. [12] Suppose that the actual matrix-type

Lipschitz constant of the system is Γ and the maximized

admissible matrix-type Lipschitz constant achieved by

Corollary 1, is Γ∗. Then, ∆Φ can be any additive nonlinear

uncertainty such that |Γ∆| ¹ n−
1

2 Γ∗.

Therefore, denoting the element of Γ∆ as γ∆i.j = γi,j +
δi,j , the following bound on the element-vise perturbations

is obtained

−n−
1

2 γ∗

i,j − γi,j ≤ δi,j ≤ n−
1

2 γ∗

i,j − γi,j . (39)

V. NUMERICAL EXAMPLE

Consider a system of the form (
∑

1) where

A =




0.1 0.4 0.1
0.2 0.1 0.2
−0.1 0.3 0.2


 , Φ(x) =




0.1x1x2

0.3x2
2

0.3sin(x1)




M1 =




0.1 0
0.1 0.1
0.1 0.1


 , M2 =

[
0 0.1

0.1 0.2

]

C =

[
0.5 0.2 0
0 0.2 0.1

]
, N =

[
0.2 0.1 0.1
0.2 0.1 0.2

]
.

We assume µ = 1.25, β = 0.05, B =
[

1 1 1
]T

,D =[
0.2 0.2

]T
,H = 0.25I3. The system is locally Lips-

chitz. The Lipschitz constant is region-based. Using Theorem

1, we get

ǫ∗1 = 0.7715, α∗ = 2.9982, γ∗ = 0.4339

L =




0.3220 1.0764
0.3426 1.1104
−0.1205 1.5892




For any initial conditions in the region γ ≤ γ∗, the

observer error dynamics is asymptotically stable. The region

in which γ ≤ γ∗ is a tube in the three dimensional space,

going to infinity from both sides with respect to the axis x3

(i.e. there is no limit on the values of x3). Figure 1, shows

the true and estimated values of states and the cross-section

of our region of interest, the region in which γ ≤ γ∗, with

the x1 − x2 plane.

VI. CONCLUSIONS

A new LMI optimization approach to the robust H∞

observer design for nonlinear discrete-time uncertain is sys-

tems is proposed. The considered class of nonlinear systems

contains norm-bounded time-varying model uncertainties as

well as additive Lipschitz nonlinear model uncertainties.
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Fig. 1. The true and estimated states of the Example

Explicit bounds on the tolerable uncertainty were derived

via norm-wise and element-wise robustness analysis.
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