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Abstract— This paper introduces a control architecture for
centrally controlling the ensemble behavior of many identical
agents. A swarm of robots or other agents performing a variety
of tasks is often modeled as a collection of hybrid-state agents,
whose discrete switching behaviors are controlled by finite state
machines. The number of agents in the swarm in a particular
discrete state is a function of the rate at which agents transition
between state. These state transitions are often modeled as
stochastic interactions with the environment. We show that
effective control over the distribution of agents in each discrete
state can be achieved by designing the agents to transition

between tasks randomly, according to a centrally determined
state transition probability graph. The centrally-determined
policy varies with time and with feedback information by re-
broadcasting the probability graph to all agents. Feedback
policies will be presented for the case in which the central
controller has limited or no knowledge of the states of each
agent.

I. INTRODUCTION

There is an increasing interest in the robotics, biological

engineering, and control communities in controlling collec-

tive behaviors of vast numbers of identical, independent

units. In this paper we will focus on a specific class of

problems in this area which we call recruitment problems,

dealing with agents having a set of discrete states governing

tasks or behaviors. Recruitment is the problem of centrally

controlling the fraction of agents in each discrete state. The

goal is to affect this ensemble distribution of agents in any

particular discrete state, using an extremely low-bandwidth

broadcast command and limited feedback information, as

shown in Fig. 1. This architecture is inspired by the exam-

ple of skeletal muscle, which is composed of many small

independent sub-systems called motor units. The nervous

system stimulates the motor units, which individually relax

or contract to produce a summed output force based on an

individual response threshold [1]. This idea of recruitment

is particularly applicable to problems having a hybrid state

description, that is, a discrete finite state machine which

controls the switching behavior of a robot or agent between

several different state evolution equations. The aforemen-

tioned problem of motor recruitment could be discretized

into many hybrid state machines whose state transitions are

triggered by nervous activation at each motor unit. Similarly,

the collective behaviors of insects, or even cellular regulatory

mechanisms can be treated as systems composed of many

hybrid-state units [2] [3].
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Fig. 1. A block diagram representation of the recruitment control problem.
One central controller must send the same signal to a large swarm of
identical agents, in order to control the distribution of states among the
swarm.

Many researchers have described robotic swarms as a

collection of hybrid-state agents. Each different behavior

performed by the agents in the swarm has its own discrete

state, and the interactions with the environment or other

robots that trigger transitions between behaviors are modeled

using a Markov probabilistic model. In the example shown in

Fig. 2, a robot carrying out a task to search for and retrieve an

object will transition between its “search” and “carry” states

based on the random event of finding the object it seeks

in the environment. Over time, these stochastic transitions

often reach a steady state equilibrium distribution, similar to

a chemical reaction or other kinetic process. These models

have been successful in predicting the emergent behavior of

swarms [4] [5] [6], and have also been used to generate rules

for each agent to follow in transitioning between tasks.

This framework can also be applied to systems that

have been intentionally hybridized, such as active material

actuators that have been intentionally broken up into very

many on/off units similar to motor units in biological muscle.

The motivation for imposing this architecture is usually that

designing a two-state regulator is simpler or more robust than

continuously varying the response of an active material[7]

[8] [9]. In swarm robot systems, it has been noted that

intentional pseudo-random transitions can generate useful

behaviors [10] [11]. Unlike most hybrid state systems, in

which probabilistic state transitions result from interactions

with the environment, the authors have been focusing on

systems in which each agent is designed to transition in a

pseudo-random manner between all states. The Markov state

transition graph associated with these transitions is chosen

by a central controller and broadcast to all of the agents. This

transition graph constitutes the control input for the system,

and can vary over time according to a control policy. This

kind of stochastic recruitment strategy requires very little
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Fig. 2. Many models of swarm behavior include a finite state machine
description of each agent in the swarm. The transitions between states are
governed by random interactions between agents and the environment or
agents and other agents.

bandwidth, and renders the agents in the swarm anonymous

and interchangeable.

The authors have previously analyzed problems of recruit-

ment in which the distribution of agents in each state is fully

known. In this case, both linear and time-optimal feedback

policies can be formulated to drive the state distribution

towards a desired reference [12] [13] [14]. In this paper we

will introduce control policies for the case when the central

controller has limited knowledge or no knowledge of the

exact number of agents in each state. In the case where the

central controller has no knowledge of the agents’ state, a

class of control policies based on simple kinetic equilibrium

predictions allows the central controller to specify any dis-

tribution and achieve it within some variance. Time-optimal

control laws are also derived for a system in which minimal

feedback knowledge is available. This analysis is particularly

useful because it ties together the feed-forward and feedback

policies, and also provides a good bounding case on the

behavior of feedback policies.

II. THE DYNAMICS OF RANDOMIZED RECRUITMENT

Consider the simplest recruitment problem, a system made

up of N agents having just two states, ON and OFF . The

control task is to recruit a specific number of agents, N ref ,

into the ON state. These states could represent two different

sensor modalities or behaviors exhibited by a robot. The au-

thors have been using two-state agents of this kind to control

shape memory alloy actuators made up of many binary units,

capable of producing varied force and displacement as a

function of the number of ON agents, Non
t . Figure 3 shows a

schematic of this actuator architecture and the Markov graph

governing the transition between discrete states. To keep

track of the state evolution of the system, we will introduce

a discrete distribution variable, x, describing the probability

with which each agent is in either state,

Fig. 3. The motor recruitment problem in an artificial muscle can be
posed as a set of motor units having two states, ON and OFF , in which
different levels of force are produced. The net force produced is the sum
of each individual unit.

x =

[

x1

x2

]

=

[

P (ON)
P (OFF )

]

(1)

In previous publications, we have considered the case

where control policies have explicit knowledge of Non
t [12].

Here that assumption will be relaxed so that the distribution

of Non
t is predicted conditioned on xt using a binomial

distribution,

P (Non
t = k|xt) =

(

N
k

)

xk
1,t(1 − x1,t)

N−k (2)

Equation (2) will actually describe the number of agents in

a selected state for a system with more than two states. The

distribution can be viewed as a Bernoulli process summing

a random variable equal to 1 if the agent is in the selected

state, and 0 otherwise. As N becomes large, the central limit

theorem will guarantee that Non
t will approach its expected

value,

E(Non
t |xt) = Nx1,t (3)

The advantage of using xt to keep track of the recruited

units rather than directly using Non
t is the simplicity of the

state evolution model afforded by the probability distribution.

The state transition graph of each agent is parametrized as

shown in Figure 3, using variables p and q to represent the

probabilities of transitioning from OFF to ON and ON
to OFF , respectively. These variables make up the control

input broadcast by the central controller. For the moment

they will be determined by a constant policy, but later it will

be clear that there is often benefit to be gained by varying

p and q over time. The evolution of x can be written as a

matrix M,

xt = Mtx0 =

[

1 − q p
q 1 − p

]t

x0 (4)

The eigenvalue-eigenvector decomposition of M can be

used to produce a simpler representation of (4),
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M =

[ p

p+q
1

q

p+q
−1

]−1 [

1 0
0 1 − p − q

] [ p

p+q
1

q

p+q
−1

]

(5)

This decomposition can then be used to rewrite (4),

xt = xssλ
t
1 + xtransλ

t
2 (6)

As is the case with any conservative Markov model, the

largest eigenvalue of M, λ1, is equal to 1. The steady-state

distribution xss is found in the corresponding eigenvector,

xss =

[ p

p+q
q

p+q

]

(7)

Some physical meaning can be gleaned from (7). It states

that the fraction of ON agents at steady state is equal to the

probabilistic rate at which agents transition from OFF to

ON , normalized by the sum of all transition rates between

states. The second eigenvalue of M, λ2, varies between -1

and 1 and is equal to 1 − p− q, and its eigenvector, xtrans,

makes up the transient portion of the response in Equation

(6). If the system has more than two states, the second-largest

eigenvalue of M will dominate the settling time.

III. A NO-KNOWLEDGE CONTROL POLICY

If the central controller has no knowledge of the number

of agents in each state, then the control policy must pro-

duce feed-forward dynamics that move the state distribution

toward the desired goal. Equation (7) demonstrated that the

recruitment dynamics have a stable steady-state component

in the feed-forward response, so p and q could be chosen

so that some desired number of cells N ref is expected

according to (3),

p

p + q
=

N ref

N
(8)

Many policies satisfy this constraint. For example, setting

p = 0.1 and q = 0.1 will drive the agents to a 50% likelihood

of being in either state according to (7). So will setting

p = q = 0.3. In order to distinguish between these cases,

a scaling analysis can be used to weigh the performance

tradeoffs between these policies.

A. Convergence Rate and Steady State Distribution are In-

dependent.

The control policy parameters p and q can be rewritten

as βp0 and βq0, where p0 + q0 = 1 and β is a scaling

factor that varies between 0 and max(1/p0, 1/q0). When the

transition probabilities are scaled in this way, the steady-state

distribution xss from (7) is independent of β:

xss =

[

βp0

β(p0+q0)
βq0

β(p0+q0)

]

=

[ p0

p0+q0

q0

p0+q0

]

(9)

However, the smaller eigenvalue governing the rate of

convergence still depends on β:

λ2 = 1 − β(p0 + q0) = 1 − β (10)

This means that β is a free parameter with which the con-

vergence time can be arbitrarily varied while still satisfying

the condition imposed in (8). In the special case β = 1, the

second eigenvalue λ2 = 0. In this case, x converges to xss

after only one round of random state transitions. Figure 4

shows xt converging to the same steady-state behavior from

the same initial conditions, for several values of β.

B. Accuracy Varies Only as xss and N .

Specifying xss does not guarantee that the number of

recruited cells Non
ss will converge to the desired number. The

accuracy of the control system once it has reached steady

state can be described by the variance of Non
ss , normalized

by the number of agents N ,

V ar

{

Non
ss

N
|xss

}

=
x1,ss(1 − x1,ss)

N
=

pq

(p + q)2N
(11)

In order to extend this expression into the many-state case,

all that is needed is the expression for x1,ss, an element of

the stable eigenvector of M. For the two-state case, the β
scaling argument from (9) and (10) can be applied to the

variance calculation. The numerator and denominator of (11)

both vary by a factor of β2, so the variance is independent

of the rate at which the actuator converges to its steady state

probability distribution,

V ar

{

Non
ss

N
|xss

}

=
β2p0q0

β2(p0 + q0)2N
=

p0q0

(p0 + q0)2N
(12)

This is an important observation; it means that nothing is

to be gained by taking “baby steps”, that is, selecting very

small values of p and q in hopes of improving the accuracy

of recruitment in exchange for a slower rate of response. It

also means that, for any desired number of recruited agents,

the only way to improve the accuracy of this control system

is to increase the number of agents, N .

C. The Number of Transitions per Unit Time

In a physical system, there is often a significant energy

cost associated with switching agents from one behavior

to another. For example, a mobile robot switching between

patrolling two different areas will expend energy in driving

from place to place. A shape memory alloy actuator has

significant latent heat associated with the phase transition

used for actuation, so spurious phase transitions are costly.

As a consequence, it may be useful to consider the expected

number of state transitions per unit time when formulating

a control policy. The expected number of transitions can be

calculated conditioned on xt, p and q,

E(N trans
t |xt, p, q) = N(qx1,t + px2,t) (13)

In the steady state (8) can be substituted in, so that (13)

is a function of N , p and q,
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Fig. 4. The expected value of Non

t
and probability distribution of Non

t

at several points in time are shown for N = 500, p0 = 0.8, q0 = 0.2, and
β = 0.2, 0.5 and 1. This plot illustrates the fact that the variance of Non

t
is

independent of the rate of convergence. All three cases approach the same
probability distribution in Non

t
.

TABLE I

SCALING OF PERFORMANCE MEASURES VERSUS β

Performance Measure Dependency on β Goal

E(Non
ss ) none N ref

V ar(Non
ss /N) none 0

Convergence Rate λ2 1 − β 0
E(N trans

ss ) β(2Np0q0) 0

E(N trans
ss |p, q) =

2Npq

p + q
(14)

Using the scaling argument again, (14) can be rewritten

in terms of βp0 and βq0. This implies that an increase in β
implies more expected transitions per unit time in the steady

state,

E(N trans
ss |βp0, βq0) =

β22Np0q0

β(p0 + q0)
= β(2Np0q0) (15)

The value of β minimizing the number of expected transi-

tions is, naturally, 0, corresponding to the control policy that

allows no random transitions between states.

D. Summary of Trade-Offs

The results of the scaling analysis, shown in Table I, show

that there is a conflict between the rate at which the system

converges, and the expected number of state transitions that

occur at steady state. Choosing β = 1 will yield the fastest

convergence of xt to xss, but it will also incur a substantial

number of state transitions per unit time. Knowledge of these

trade-offs is important because it can enable the selection

of higher-performing, time-varying policies. For example, if

it is acceptable to have a small constant error in the state

distribution, a compromise policy might set p and q to satisfy

(8) and β = 1, then cease all transition after one round of

stochastic state transitions, once x = xss. The variance of

the error in this policy would be equal to the steady state

variance for the constant policy, while eliminating many state

transitions.

IV. A MINIMAL KNOWLEDGE FEEDBACK POLICY

The analysis above provides some insight into the per-

formance capabilities and performance limitations of the

open-loop system. Although the expected distribution of the

open-loop system converges, there is undesirable uncertainty

in the response. The obvious means for improving on the

performance of the open-loop response is the incorporation

of feedback. Here we will analyze the simplest possible

feedback policy, in which the central controller knows only

when the distribution of agents is close enough or equal to

N ref . This knowledge is represented as a Boolean variable

yt,

yt =

{

true, Non
t = N ref

false, Non
t 6= N ref (16)

This extremely limited amount of information will produce

policies of limited practical application, but this solution

is conceptually important for two reasons. First, this is in

some sense the worst-case situation for which probability

one convergence is assured. As such, it provides a useful

bounding case on the more general problem of limited

information control. Second, the optimal policy based on this

limited feedback is closely related to the open-loop control

policy, and thus provides a link between the behavior of

limited-knowledge and no-knowledge policies.

A. Probability One Convergence

One of the simplest requirements for a feedback control

policy is that it converge in probability, that is, that the proba-

bility of reaching the desired state monotonically approaches

one with time. Given only yt, this can be achieved by

choosing policies which cease all state transitions (command

p = q = 0) upon reaching the desired distribution. A brief

proof follows.

Proof of P=1 Convergence: For any control policy in which

p and q are greater than zero by some non-infinitesimal

amount, the agents will be ON or OFF with some prob-

ability distribution, xt after at least one round of stochastic

state transitions. According to the probability distribution in

(2), the system has a non-infinitesimal, non-zero probability

of achieving any value of Non
t . The greatest lower bound for

all these probabilities will be called ρ. If the control policy

is designed to stop, that is, set p = q = 0 when yt indicates

that the current state is the target state, the probability of

leaving the target state is zero. The net probability of being

in the target state after k time steps is consequently greater

than or equal to 1− (1− ρ)k. As k becomes very large, this

quantity approaches 1 exponentially (end of proof).

Because this class of policies creates a de facto absorbing

target state, this problem can be approached as a stochastic

shortest path (SSP) problem in the dynamic programming
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framework. We will derive a control policy that minimizes

the expected time to converge. A non-discounted, positive

cost-per-stage function g(yt) can be written as a random

variable keeping track of the time spent not in the target

distribution,

g(yt) =

{

0, yt = true
1, yt = false

(17)

The total cost function is the convergence time of the

system written as a summation of g(yt),

J(X0) = E

{

∞
∑

t=0

g(yt)

∣

∣

∣

∣

∣

x0

}

(18)

Because the cost-per-stage g(yt) is bounded and all ad-

missible control policies converge with probability one, J is

convergent. As in the no-knowledge case, nothing is known

about the number of ON agents until the target distribution is

achieved, so a policy with constant p and q must be pursued

until yt is true. The optimal policy to pursue is not hard to

imagine; Essentially, it is to set p and q to satisfy (8) and

β = 1 until yt is true.

Proposition: The control policy which minimizes (18) for

any initial value of x0 is the policy which sets x1,ss =
N ref/N and λ2 = 0 unless yt indicates that the target state

has been reached, in which case p = q = 0.

Proof: This policy is a minimum of J because at x1,ss =
N ref/N and λ2 = 0, the partial derivatives of J with respect

to x1,ss and λ2 are increasing functions equal to zero, and

consequently there is a minimum of J at this policy. The

cost function can be rewritten using Bellman’s equation,

J(xt) = E {g(yt) + J(xt+1)| xt} (19)

Using (2) and (16), we can write the probability H(xt)
that yt is true conditioned on xt,

H(xt) = P (yt|xt) =

(

N
N ref

)

xNref

1,t (1 − x1,t)
N−Nref

(20)

We can then rewrite (19) in terms of (20),

J(xt) = (1 − H(xt))(1 + J(xt+1)) (21)

The partial derivative of J(x1,t) with respect to x1,ss can

be found when λ2 = 0 by differentiating (21),

∂J(xt)

∂x1,ss

= −
∂H(xt)

∂x1,ss

J(xt+1)+(1−H(xt))
∂J(xt+1)

∂x1,ss

(22)

The chain rule can then be used to evaluate ∂H/∂x1,ss,

∂H

∂x1,ss

= −
∂H

∂x1,t

∂x1,t

∂x1,ss

(23)

The derivative of H(xt) with respect to x1,t is found to

be a product of H(xt) and a second term,

∂H

∂x1,t

=

(

N
N ref

)

xNref

1,t (1−x1,t)
N−Nref

[

N ref − x1,tN

x1,t(1 − x1,t)

]

(24)

The eigenvalue decomposition of xt can be substituted into

(24), holding λ2 equal to 0,

∂H

∂x1,t

= H(xt)

[

N ref − x1,ssN

x1,t(1 − x1,t)

]

(25)

The derivative of x1,t with respect to x1,ss is 1. H(xt) and

x1,t(1−x1,t) are both positive quantities, so ∂H/∂x1,ss can

be written as a positive quantity At multiplied by N ref −
x1,ssN ,

∂H

∂x1,ss

= At(N
ref − x1,ssN) (26)

Equation (22) can be evaluated using (26),

∂J(xt)

∂x1,ss

= (x1,ssN−N ref)AtJ(xt+1)+(1−H(xt))
∂J(xt+1)

∂x1,ss

(27)

Each term of (27), when expanded, will contain a factor

of x1,ssN − N ref . All of the other quantities in each term,

values of At, J , and 1 − H(xt), are positive, so the sign

of x1,ssN − N ref will determine the sign of the entire

expression. Consequently, ∂J/∂x1,ss will be an increasing

function of x1,ss, equal to zero when x1,ss = N ref/N . A

similar argument can be made for λ2 when x1,ss = N ref/N .

The partial derivative of x1,t with respect to λ2 is equal to

tλt−1. Using the chain rule, the ∂H/∂λ2 can be found when

x1,ss = N ref/N ,

∂H

∂λ2
= H(xt)

[

−txtransλ
2t−1

x1,t(1 − x1,t)

]

(28)

This expression can be written as the product of some

positive quantity Bt and −λ2t−1
2 , much like (26),

∂H

∂λ2
= −Btλ

2t−1
2 (29)

The derivative of J with respect to λ2 can be written in a

fashion similar to (27),

∂J(xt)

∂λ2
= λ2t−1BtJ(xt+1) + (1 − H(xt))

∂J(xt+1)

∂λ2
(30)

Each term in this recursively defined series is an odd

increasing function of λ. Because (27) and (30) are both

increasing functions which are zero for x1,ss = N ref/N and

λ = 0, this policy minimizes the time it takes the swarm of

agents to converge on the target distribution.

B. A Computational Example

Figure 5 shows a histogram of 10000 simulations of the

time-optimal minimal feedback policy, for N = 500 and

N ref = 200, showing the typical convergence behavior. All

simulations were started from the same initial conditions,

with all agents in the OFF state. The optimal law, in which
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β = 1, is compared to a more gradual law, having β = 0.1.

In both cases, the likelihood of converging at any point in

time should converge to a constant value, as xt approaches

xss. One would expect that the tail of both distributions

should have an exponential shape, which the figure clearly

demonstrates. The shifting of the distribution peak towards

longer convergence time is due to the fact that the likelihood

of reaching the desired output is very small until xt is close to

xss, which occurs quickly with the optimal policy and more

slowly with the β = 0.1 feedback policy. The high variance

of these convergence times, represented by the length of

the exponential tails, is one of the major factors which can

be mitigated by incorporating more information into the

control policy. The expected value taken from the β = 1
distribution was 27.5 time intervals. The authors’ previous

work found that the expected convergence time under these

same conditions with full knowledge of Non
t was about 4.5

time intervals1 [12]. A well-designed practical control policy

should lie somewhere between these two extremes.
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Fig. 5. A histogram showing the observed convergence time of the feedback
policy for many trials

V. CONCLUSION

In this paper, we have shown that:

• It is possible to control the ensemble behavior of many

finite-state agents by intentionally randomizing the be-

havior of each agent according to a centrally determined

policy.

• If the central controller has no information about the

state of the agents, control policies can be formulated

which approximately achieve the desired distribution of

states among agents.

• There is no benefit to taking “baby steps” toward the

desired distribution; the one-shot policy which causes

the individual probability distribution of each agent xt

to converge immediately provides the best accuracy

achievable.

• If the central controller has minimal information about

the state of the agents, policies can be formulated to

cause the distribution to converge exponentially on the

target distribution of states among agents.

• The policy which minimizes the expected convergence

time of the system can be provably found for any

desired distribution.

1These results were found using the value iteration algorithm, for a
controller with measurements of the exact number of ON agents.

Although the analysis presented here is restricted to the

two-state case, it can be extended to the many-state re-

cruitment problem. This analysis is also restricted to very

limited knowledge of the state of agents in the swarm.

Past work on recruitment policies having full knowledge of

Non
t has yielded good results in finding numerically optimal

control policies. Policies for systems in which the state of

the agents is partially known, or in which the state is affected

by random interactions with the environment, remain an

interesting future directions.
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