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Abstract— This work develops numerical methods using
stochastic approximation approach for an optimal stock trading
(buy and sell) strategy. Assuming the underlying asset price
is governed by a mean-reverting stochastic process, we aim
to find buying and selling strategies so as to maximize an
overall expected return. One of the advantageous of our
approach is that the underlying asset is model free. Only mean
reversion is required. Slippage cost is taken into consideration
for each transaction. Convergence of the algorithms is provided.
Numerical examples are reported to demonstrate the results.

I. INTRODUCTION

This work develops a systematic procedure for an asset

trading strategy, where the underlying asset price is subject

to random disturbances. There are two main ingredients,

namely, buy and sell. A time honored trading strategy is

to buy low and sell high. Nevertheless, identifying the lows

and highs is a challenging task. In this paper, we develop an

easily implementable procedure to identify lows and highs

when the underlying asset price is mean reverting. Other than

the mean reversion, we deal with model free stock returns

by using observed stock prices only.

A mean-reversion formulation is often used in financial

and energy markets. It aims to capture price movements that

have the tendency to move towards an equilibrium level.

Studies of mean-reversion stock returns can be traced back

to the 1930’s; see Cowles and Jones [6]. The research was

carried further in [10], [12] among others. Mean-reversion

models were also used to characterize stochastic volatility

[14], asset prices in energy markets [1], and option pricing

with a mean-reversion asset [2], [11], [16].

Trading rules in financial markets have been studied for

many years. Researchers from both academia and industry

have devoted their attention to such problems. For example,

in [25] a selling rule determined by two threshold levels,

a target price and a stop-loss limit, was obtained. One

makes a selling decision whenever the price reaches either

the target price or the stop-loss limit. The formulation of

stock price in mathematical terms is based on a regime-

switching geometric Brownian motion models. The objective

is to determine the threshold levels to maximize an expected

discounted reward function, and the optimal threshold levels

are obtained by solving a set of two-point boundary value

problems. In [13], the optimal selling rule under a model with

switching GBM was considered using a smooth fit technique,
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and the optimal stopping rule was characterized by a set

of algebraic equations under certain smoothness conditions.

In [22], aiming at designing a systematic approach, a class

of stochastic approximation algorithms is developed for

obtaining the optimal selling rule. Further numerical and

asymptotic results were obtained in [23]. Along another line,

a linear programming approach was developed in [15]; fast

Fourier transform was used in [19]; capital gain taxes and

transaction costs in connection with selling was found in

[3], [5], [7], among others. These papers have been devoted

to selling strategies, whereas rigorous mathematical analysis

on the buying side of trading has only been developed

recently in [24], in which both buy and sell actions were

taken. The objective was to buy and sell the underlying asset

sequentially to maximize a discounted reward function.
As explained in the aforementioned paper another feature

addressed is slippage cost associated with each transaction,

where slippage cost usually refers to the spread between

expected price and the actual price paid. The study was

carried out using a dynamic programming approach and the

associated HJB equations or variational inequalities for the

value functions. The essence is that the optimal stopping

times can be determined by two threshold levels. Suppose

that X(t) ∈ R is a mean-reverting, Ornstein-Uhlenbeck (OU)

process governed by

dX(t) = a(b−X(t))dt+ σdW (t), X(0) = x, (1)

where a > 0 is the rate of reversion, b is the equilibrium

level, σ > 0 is the volatility, and W (t) is a standard

Brownian motion. The asset price is given by

S(t) = exp(X(t)). (2)

Then two sequences of stopping times {τ{bn}} and {τ{sn}}
with 0 ≤ τ{b1} ≤ τ{s1} ≤ τ{b2} ≤ τ{s2} ≤ · · · are

considered. A buying decision is made at τ{bn} and a selling

decision is made at τ{sn} with n = 1, 2, . . . We consider the

case that the net position at any time can be either flat (no

stock holding) or long (with one share of stock holding). Let

i = 0, 1 denote the initial net position. If initially the net posi-

tion is long (i = 1), then one should sell the stock before ac-

quiring any shares. The corresponding sequence of stopping

times is denoted by Λ1 = (τ{s1}, τ{b2}, τ{s2}, τ{b3}, . . .).
Likewise, if initially the net position is flat (i = 0), then

one should first buy a stock before selling any shares. The

corresponding sequence of stopping times is denoted by

Λ0 = (τ{b1}, τ{s1}, τ{b2}, τ{s2}, . . .).
Many stock prices during certain period of time can rea-

sonably be assumed to fit into a mean reversion model. In the

existing literature, concerning practical applications, some
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empirical studies were conducted in [1], [10], [12], among

others. We also use the framework of mean reversion in this

paper. However, instead of using a dynamic programming

approach, we solve the same problem, namely finding buying

and selling strategies using numerical methods. Instead of

focusing on analytic solutions, our objective is to establish

a systematic approach for numerical solutions. Focusing on

threshold type policies, we develop stochastic approximation

algorithms to approximate the optimal threshold values lead-

ing to optimal buying-selling strategies. We also assume that

the asset price is mean reverting. Nevertheless, one of the

distinct features in our approach is that in lieu of assuming

the explicit form (1) and (2), we deal with more general

model free cases. The main ingredient is that we observe the

price at any given t, from which we construct a sequence

of estimates of the threshold values. Then we update the

threshold estimates by stochastic optimization methods.

The rest of the paper is arranged as follows. Section

2 begins with the problem formulation and the algorithm

design. Section 3 proceeds with analysis of the recursive

algorithms. Section 4 demonstrates the performance of our

algorithms by a number of examples. First simulation results

are presented; then real data are used for demonstration.

Finally, Section 5 concludes the paper with further remarks.

II. PROBLEM FORMULATION AND ALGORITHM DESIGN

We are working with an asset price that is mean reverting.

We can observe the asset price at Sn, and denote the log price

by Xn. Different from the model given in (1), we will not

assume the stock returns to follow a particular form. Thus

the price could be an OU process, or a more general mean-

reverting diffusion, or a mean-reverting jump diffusion, or a

mean-reverting process with regime switching, or much more

general form. Suppose that 0 < K < 1 is the percentage

of slippage or commission per transaction and ρ > 0 is

the discount factor. Our objective is to maximize the reward

function

φ(θ) = φ(b, s) = E[exp(−ρτ{s})s(1−K)

− exp(−ρτ{b})b(1 +K)],
(3)

where τ{b} = inf{t > 0 : S(t) ≤ b}, τ{s} = inf{t > τ{b} :
S(t) ≥ s}. Note that τ{b} and τ{s} denote the stopping

times for buying and selling, respectively, b and s denote the

buying and selling threshold values, and S(t) is the stock

price at time t. To solve the problem, we use a stochastic

approximation (SA) method. The idea can be explained as

follows. Let e1 = (1, 0) and e2 = (0, 1), and cn = n−1/6.

Denote by φ̃(θ, ξ) the noisy corrupted observations and or

measurements of φ(θ).

1) Initialization: Choose initial estimates θ0 = (b0, s0).
2) Iteration: With n > 0 and θn = (bn, sn) computed,

carry out one step stochastic approximation to find the

updated threshold θn+1 = (bn+1, sn+1). .

a) Find τ{bn+cn} < τ{sn}, compute φ̃(θn+cne1, ξ
+
n,1).

b) Find τ{bn−cn} < τ{sn}, compute φ̃(θn−cne1, ξ
−
n,1).

c) Find τ{bn} < τ{sn+cn}, compute φ̃(θn+cne2, ξ
+
n,2).

d) Find τ{bn} < τ{sn−cn}, compute φ̃(θn−cne2, ξ
−
n,2).

e) Using (a)-(d), find the gradient estimate ∆φ̃(θn, ξn).
f) Update one step the parameter estimate by using

stochastic approximation method.

3) Repeat Step 2 with n← n+ 1, until |θn+1 − θn| < η
with a prescribed tolerance level η > 0 or n = N for

some large N .

The SA algorithm is:

θn+1 = θn + εn∆φ̃(θn, ξn)
= θn + εn gradient estimate of φ(θn),

(4)

where {εn}, satisfying εn ≥ 0, εn → 0 as n → ∞,

and
∑

n εn = ∞ is known as the step size sequence. For

simplicity, in what follows, we choose εn = 1/n. Thus the

algorithm becomes

θn+1 = θn +
1

n
∆φ̃(θn, ξn), (5)

where θn = (bn, sn), and the gradient estimate

∆φ̃(θn, ξn) = (∆iφ̃(θn, ξn)) of φ(θ) = φ(b, s) can be

obtained by

∆iφ̃(θn, ξn) =

[
φ̃(θn + cnei, ξ

+
n,i)− φ̃(θn − cnei, ξ

−
n,i)

]

2cn
,

where ξ±n,i are noise sequences. The algorithm proposed

above is of stochastic approximation type. To proceed, we

use the techniques developed in [18] to analyze the algo-

rithm.

III. ASYMPTOTIC PROPERTIES OF ALGORITHM

In the convergence analysis, we use the idea that on each

“small” interval, the noise ξ varies much faster than the

‘state’ θ. Thus with θ ‘fixed’, the noise will be eventually

averaged out resulting in an averaged system that can be

characterized by a system of ordinary differential equations.

Define tn =
∑n

j=1
1
j ; m(t) = max{n : tn ≤ t}. Let

θ0(t) be the piecewise constant interpolation of θn on the

interval [tn, tn+1) and let θn(t) = θ0(t+ tn).
To proceed with the analysis of algorithm (5), we assume

the following conditions.

For convenience, we first rewrite (5) by separating the bias

and noise terms. We use En to denote conditional expectation

with respect to the σ-algebra Fn = {ξ±j : j < n}. Define

for i = 1, 2,

bin =
φ(θn + cnei)− φ(θn − cnei)

2cn
−
∂φ(θn)

∂θi
,

ρi
n = [φ̃(θn + cnei, ξ

+
n,i)− φ̃(θn − cnei, ξ

−
n,i)]

−En[φ̃(θn + cnei, ξ
+
n,i)− φ̃(θn − cnei, ξ

−
n,i)],

ψi
n = [Enφ̃(θn + cnei, ξ

+
n,i)− φ(θn + cnei)]

−[Enφ̃(θn − cnei, ξ
−
n,i)− φ(θn − cnei)],

and define bn = (b1n, b
2
n)′, ψn = (ψ1

n, ψ
2
n)′, ρn = (ρ1

n, ρ
2
n)′.

Then algorithm (5) can be rewritten as

θn+1 = θn +
1

n
∇φ(θn) +

1

n

ψn

2cn
+

1

n

ρn

2cn
+

1

n
bn. (6)
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Note that in fact, both ψn and bn are θ dependent. In what

follows, when it is needed, we write ψn = ψ(θn, ξn), where

ξn includes ξ±n .

(A1) For each ξ, φ̃(·, ξ) is a continuous function.

(A2) For each 0 < N < ∞ and each 0 < T < ∞,

the set {sup|θ|≤N |φ̃(θ, ξn)|, n ≤ m(T )} is uniformly

integrable.

(A3) The sequences {ξ±n } are bounded. For each θ in a

bounded set and for each T <∞,

sup
n

m(T+tn)−1∑

j=n

1

j
E1/2|Ej

ψj(θ, ξj)

2cj
| <∞,

lim
n

sup
0≤i≤m(T+tn)

E|ψn
i | = 0,

where ψn
i is defined by

ψn
i = (n+ i)

m(T+tn)+i−1∑

j=n+i

1

j2cj
En+i[ψj(θn+i+1, ξj)

−ψj(θn+i, ξj)], i < m(T + tn).

(A4) The second derivative of φ(·) is continuous.

Remark 1: Note that unbounded noise can also be added.

For example, we may require that in addition to the non-

additive correlated noise, there are unbounded and additive

noise sequences {ξ±2,n} that are martingale differences with

the condition supn |ξ
±
2,n|

2 <∞. All the subsequent analysis

go through without modification. Condition (A3) that seems

to be technical is motivated by mixing type of noise.

To present the main ideas without undue technical com-

plication, we have chosen to use simplified notation. Weaker

conditions and more general setup can be found in [18]; see

also [22], [23] for the associated problem in applications to

asset liquidation.

Theorem 2: Under conditions (A1)–(A4), θn(·) converges

weakly to θ(·) that is a solution of

θ̇ = ∇φ(θ), (7)

provided that the ordinary differential equation above has a

unique solution for each initial condition.

Proof. The proof of the weak convergence requires that we

first verify that the sequence {θn(·)} is tight. By virtue of

the Prohorov’s theorem, we can then extract a convergent

subsequence. We next characterize the limit by showing

it is the solution of a martingale problem with a desired

operator. Recall the definition of weak convergence. Let Xn

and X be R
r-valued random variables. We say that Xn

converges weakly to X iff for any bounded and continuous

function g(·), Eg(Xn) → Eg(X) as n → ∞. {Xn} is

said to be tight iff for each η > 0, there is a compact

set Kη such that P (Xn ∈ Kη) ≥ 1 − η for all n. The

definitions of weak convergence and tightness extend to

random variables in a metric space. The notion of weak

convergence is a substantial generalization of convergence

in distribution. It implies much more than just convergence

in distribution since g(·) can be chosen in many interesting

ways. On a complete separable metric space, tightness is

equivalent to sequential compactness. This is known as the

Prohorov’s Theorem. Due to this theorem, we are able to

extract convergent subsequences once tightness is verified.

The above discussion also extends to function spaces. Let

Dr[0,∞) denote the space of R
r-valued functions that are

right continuous and have left-hand limits, endowed with the

Skorohod topology. For various notations and terms in weak

convergence theory such as Skorohod topology, Skorohod

representation etc. and many others, we refer to [9], [18]

and the references therein.

To carry out the analysis, a convenient device is a trunca-

tion method. Let ν > 0 be fixed but otherwise arbitrary. Let

Sν be the sphere with radius ν, i.e., Sν = {x ∈ R
r, |x| ≤ ν}.

We say that θn,ν(·) is an ν-truncation of θn(·) if, θn,ν(t) =
θ(t) up until the first exit from Sν , and

lim
K0→∞

lim sup
n

P (sup
t≤T
|θn,ν(t)| ≥ K0) = 0 for each T <∞.

Let qν(·) be a smooth function such that qν(θ) ={
1 if θ ∈ Sν ,

0 if θ ∈ R
r − Sν+1.

Consider the truncated sequence

θν
n+1 = θν

n +
[ 1

n
∇φ(θn) +

1

n

ψn

2cn
+

1

n

ρn

2cn
+

1

n
bn

]
qν(θν

n).

(8)

Next define the interpolation of θν
n as

θ0,ν(t) = θν
n for t ∈ [tn, tn+1), and θn,ν(t) = θ0,ν(t).

We shall first obtain the convergence of θn,ν(·) and then

let ν → ∞ to conclude the proof. The rest of the proof is

divided into three steps.

(i) Tightness of {θn,ν(·)}. First

θn,ν(t) = θ̃n,ν(t) +

m(t+tn)−1∑

k=1

1

k

[ ψk

2ck
+

ρk

2ck

]
qν(θν

k),

where θ̃n,ν(t) =
∑m(t+tn)−1

k=1
1
k [∇φ(θν

k) + bk]qν(θν
k). For

any η > 0, let t, s ≥ 0 with 0 ≤ s ≤ η.

We have

E|θ̃n,ν(t+ s)− θ̃n,ν(t)|2

≤ KE
∣∣∣

m(t+s+tn)−1∑

k=m(t+tn)

1

k

[
∇φ(θν

k) + bk

]
qν(θν

k)
∣∣∣
2

.

By means of the boundedness of {θν
k}, we have

E
∣∣∣

m(t+s+tn)−1∑

k=m(t+tn)

1

k
∇φ(θν

k)qν(θν
k)

∣∣∣
2

≤ K[(t+ s+ tn)− (t+ tn)]2 ≤ Ks2 ≤ Kη2.

(9)

Likewise,

E
∣∣∣

m(t+s+tn)−1∑

k=m(t+tn)

1

k
bkq

ν(θν
k)

∣∣∣
2

≤ Ks2 ≤ Kη2. (10)

Using (9)–(13), taking lim supn followed by letting η → 0,

we obtain

lim
η→0

lim sup
n→∞

E|θn,ν(t+ s)− θn,ν(t)|2 = 0. (11)
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To proceed, we claim that the following lemma holds.

Lemma 3: Under the conditions of Theorem 2,

m(t+s+tn)−1∑

k=m(t+tn)

1

k

[ ψk

2ck
+

ρk

2ck

]
qν(θν

k)→ 0

in probability as n→∞ and convergence is uniform in t.

Proof of Lemma 3. First note that {ρn} is a martingale

difference sequence. Thus the orthogonality implies that

E
∣∣∣

m(t+s+tn)−1∑

k=m(t+tn)

1

k

ρk

2ck
qν(θν

k)
∣∣∣
2

≤ K

m(t+s+tn)−1∑

k=m(t+tn)

1

k10/6
E|ρk|

2 → 0 as n→∞.

(12)

Using the same technique as in the proof of [22, Lemma

3.1], we can show

E
∣∣∣

m(t+s+tn)−1∑

k=m(t+tn)

1

k

ψk

2ck
qν(θν

k)
∣∣∣
2

→ 0 as n→∞. (13)

Thus the lemma is proved. �

Combining (11) with the result of Lemma 3, the tightness

criterion in [17, p. 47] yields the tightness of {θn,ν(·)}.

(ii) Characterization of the limit process. Since {θn,ν(·)}
is tight, we can extract a weakly convergent subsequence by

Prohorov’s theorem. Do so and still index the sequence by

n and write it as {θn,ν(·)} with limit denoted by θν(·). We

characterize the limit process. For each t, s ≥ 0, Lemma 3

implies that

θn,ν(t+ s)− θn,ν(t) =

m(t+s+tn)−1∑

k=m(t+tn)

1

k

[
∇φ(θn,ν

k )

+bk

]
qν(θν

k) + o(1),

(14)

where o(1) → 0 in probability uniformly in t. By a

truncated Taylor expansion and (A4), it is easily ver-

ified that bnq
ν(θn,ν

n ) = O(c2n/cn) = O(cn). Thus,

E
∣∣∣
∑m(t+s+tn)−1

k=m(t+tn)
1
k bkq

ν(θν
k)

∣∣∣→ 0 as n→∞ uniform in t.

Thus,

m(t+s+tn)−1∑

k=m(t+tn)

1

k
bkq

ν(θν
k)→ 0 in probability uniform in t.

(15)

Note that there is an increasing sequence of positive

integers {ml} and a decreasing sequence of positive real

numbers {δl} such that m(t + tn) ≤ ml ≤ ml+1 −
1 ≤ m(t + tn + s) − 1 for any t, s > 0 and that
1
δl

∑ml+1−1
j=ml

1
j → 1 as n → ∞. Note that in the choice

above, clearly, δl depends on n so we could write it as

δn
l or even δn. However, for notation simplicity, we will

write it as δl in what follows. For notational convenience, set∑
l ,

∑
l:m(t+tn)≤ml≤ml+1≤m(t+s+tn)−1 . Then we rewrite

the first term on the right of (14) as

m(t+s+tn)−1∑

k=m(t+tn)

1

k
∇φ(θn,ν

k )qν(θν
k)

=
∑

l

δl∇φ(θn,ν
ml

)qν(θν
ml

) + o(1),

(16)

where o(1) → 0 in probability. Using (14), (15), and (16),

for any bounded and continuous function h(·), continuously

differentiable function f(·), any positive integer κ, any ti ≤ t
with i ≤ κ, we can show that there is a sequence {ẽn} of

real numbers such that ẽn → 0 as n→∞ and that

Eh(θn,ν(ti) : i ≤ κ)[f(θn,ν(t+ s))− f(θn,ν(t))]
→ Eh(θν(ti) : i ≤ κ)

·

∫ t+s

t

∇f ′(θν(u))∇φ(θν(u))qν(θν(u))du.

(17)

In the above, we have used the weak convergence of θn,ν(·)
to θν(·) and the Skorohod representation. On the other hand,

the weak convergence and the Skorohod representation yield

that, as n→∞

Eh(θn,ν(ti) : i ≤ κ)[f(θn,ν(t+ s))− f(θn,ν(t))]
→ Eh(θν(ti) : i ≤ κ)[f(θν(t+ s))− f(θν(t))].

(18)

Then (17) and (18) lead to that θν(·) is a solution of

the martingale problem with operator given by Lνf(θν) =
∇f ′(θν)∇φ(θν)qν(θν), or equivalently, θν(·) is the solution

of the truncated differential equation θ̇ν = ∇φ(θν)qν(θν).
(iii) The convergence of the untruncated sequence {θn(·)}.

So far we have worked with a fixed but otherwise arbitrary

integer ν. In this step, we examine the asymptotic properties

as ν →∞. The details are similar to that of [18, p. 284] and

are omitted for brevity. �

Next we present a corollary. It ensures the convergence to

the stable point of the ODE. We omit the verbatim proof.

Corollary 4: Suppose that in addition to the conditions

of Theorem 2, {θn} is tight. Suppose also that (7) has a

unique stationary point θ∗ that is asymptotically stable in

the sense of Liapunov. Then there is a sequence of positive

real numbers {sn} satisfying sn →∞ as n→∞, such that,

θn(·+ sn) converges weakly to θ∗ as n→∞.

IV. NUMERICAL DEMONSTRATION

In this section, we demonstrate numerically the perfor-

mance of the proposed algorithm. First, we carry out the

simulation of an example that was considered in [24]. Thus

we are able to compare the numerical results with the studies

in [24]. Then we investigate the performance of the algorithm

using real data. Several stocks with mean reversion features

are considered in the numerical experiments.

Example 5: In this example, the mean reversion stochastic

differential equation is represented by dX(t) = 0.8(2 −
X(t))dt+ 0.5dW (t), X(0) = 2.

The asset price is given by S(t) = exp(X(t)). The mean-

reverse model tries to capture price movements that tend

to move towards an “equilibrium” level X(t) = 2, and S(t)
fluctuates around the level e2 = 7.388. We simulate a sample
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Fig. 1. Demonstration of mean-reverting type stock price (Example 5)
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Fig. 2. Buy and Sell Price (Example 5-6)

trajectory of the solution of the SDE by Euler method of

10000 steps with step size h = 0.01. See Figure 1. The

purpose of the graph is for demonstration purpose.

In what follows, we take ρ = 0.01 and K = 0.01. We start

with initial guesses b0 = 5 and s0 = 18, perform stochastic

approximation (4) until the iteration number becomes 300.

It ends up with b = 4.50324, s = 17.9413 after 300

iterations. The value of the utility function at the final iterate

is φ(b, s) = 10.8542; see Figure 2.

We use different random seeds to perform above stochastic

approximation. By using 100 replications (with the same

initial guess and iteration numbers), we take the sample mean

and sample standard deviation. The results are recorded in

Table 1.

Example 6: In this example, we apply our algorithm to

Wal-Mart Stores Inc. (WMT) stock; see Figure 3 for the

daily stock price from 01/03/2000;

First, we compute optimal threshold by using historic

data of 50 trading days: [beginning date, beginning date +

50 days]. Note that, for each iteration, we used the same

trajectory in the above period. Then, using the computed

Statistics b (buy) s (sell) φ (average return)
sample mean 3.9904 17.8688 9.66707

sample deviation 0.155591 0.761609 6.65556

TABLE I

SAMPLE MEAN AND DEVIATION FOR b, s, AND φ WITH 100

REPLICATIONS
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Fig. 3. WMT Stock Price after 01/03/2000 (Example 6)
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Fig. 4. Buy and Sell Price with Real Data (Example 6-1)
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Fig. 5. Buy and Sell Price with Real Data (Example 6-2)

threshold, we simulate the buy-low-sell-high on the future

data of subsequent 500 trading days.

1) Based on historic data in the 50 trading days period

01/04/2000–03/16/2000, given the initial guess with

b0 = 50 and s0 = 55, we run 600 iterations of (5). The

computed result for optimal threshold is b = 44.831
and s = 54.2677. See Figure 4.

Using the optimal threshold computed above, we prac-

tise trading strategy buy-low-sell-high in the future 500

trading days 03/16/2000– 03/18/2002. The total reward

in this future period is 24.9548. The trading record is

as Table II below.

TABLE II

TRADING WMT STOCK FROM 03/16/2000–03/18/2002

buy date τ{bi} sell date τ{si} reward
10-12-2000 196 12-5-2000 233 8.3126
9-17-2001 425 11-6-2001 461 8.3005
7-22-2002 637 8-15-2002 655 8.34173

2) Based on different historic data in the 50 trading days

period 03/16/2000–05/26/2000, given the same initial

guess with b0 = 50 and s0 = 55, we run 600 iterations

of (5). The computed result for optimal threshold is

b = 46.2061 and s = 58.7187. See Figure 5.

Using the threshold computed above, we practise

buy-low-sell-high in the future 500 trading days

05/26/2000– 05/29/2002. The total reward in this

future period is 21.5511. The trading record is as

Table III below.

TABLE III

TRADING WMT STOCK FROM 05/26/2000– 05/29/2002

buy date τ{bi} sell date τ{si} reward
10-3-2000 139 1-23-2002 463 10.7209
7-22-2002 587 8-12-2003 854 10.8302

Example 7: In this example, we apply the same proce-

dure as in Example 6 to International Business Machines
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Fig. 7. Buy and Sell Price vs. Iteration Number with Real Data (Example 7-
1)

Corp. (IBM); see Figure 6 for the daily stock price after

01/03/2000.
Based on historic data in the 50 trading days period

01/04/2000–03/16/2000, given the initial guess with b0 =
115 and s0 = 120, after 600 iterations of (5), we have

computed result for optimal threshold with b = 110.39 and

s = 118.752. See Figure 7.
Using the threshold computed above, we practise buy-

low-sell-high in the future 500 trading days 03/16/2000–

03/18/2002. The total reward in this future period is 28.8968.

The trading record is as Table IV below.

TABLE IV

TRADING IBM STOCK FROM 03/16/2000–03/18/2002

buy date τ{bi} sell date τ{si} reward
3-16-2000 50 3-24-2000 56 6.04398
4-14-2000 71 6-7-2000 107 5.90787
6-27-2000 121 8-8-2000 150 5.93909
10-12-2000 196 5-21-2001 347 5.39343
7-6-2001 379 12-5-2001 481 5.61238
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