
  

  

Abstract— This paper proposes a new nonlinear control 
approach which is applied to a miniature aerobatic helicopter 
through a multi-timescale structure.  To deal with inherent 
unstable internal dynamics, the translational, rotational, and 
flapping dynamics of the helicopter are organized into a three-
timescale nonlinear model.  The concepts of dynamic inversion 
and sliding manifold are combined together.  Part of the 
uncertainties is explicitly taken into account in the nonlinear 
robust control design, and Monte Carlo simulations are used 
for validations under other sensor noises and model 
uncertainties. 

Index Terms— Miniature helicopter, multi-timescale, 
nonlinear system, robust control, under-actuated system. 

I. INTRODUCTION 
he evolution of the Unmanned Aerial Vehicle (UAV) is 
at a tremendous pace these days. However, in order to 

respond to a growing market’s demand and operate in the 
US National Airspace System (NAS), UAVs require the 
Certificate of Authorization from the Federal Aviation 
Administration (FAA) [1], [2]. Typically, the practice in 
rotary wing UAV flight control is to linearize the aircraft 
dynamics about different trim conditions and use gain 
scheduled linear control techniques to control the helicopter 
during different flight conditions. Mismatches and 
uncertainties among these operating points are captured 
through different robust control methodologies such as H∞  
[4], [5], μ  control [6], neural nets [7] or fuzzy logic [8].  
However, aerodynamic forces acting on a rotary wing UAV 
changes dramatically when it operates between different 
flight conditions. To design a controller for operations in the 
full flight envelope, dynamic inversion, input-output 
feedback linearization or sliding mode control (SMC) is 
typically used [6], [9]-[11]. Because of the under-actuated 
nature, a pseudo inverse is normally experienced. Numerical 
errors can not be avoided and the induced internal dynamics 
instability may occur even with the help of singular value 
decomposition techniques. Two of the typical methodologies 
used to address this problem are timescale separation (TSS) 
[12], [13] and the State-Dependant Riccati Equation control 
(SDRE) [14]. In the SDRE approach, only the part of the 
system that is not able to be presented in the state dependant 
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coefficient (SDC) form needs to be inverted. 
This paper is mainly concerned with the development of a 

general multiple-input-multiple-output (MIMO) nonlinear 
robust controller, which combined with the three-timescale 
structure (three resolvable problems) can be applied in a 
specific miniature helicopter control problem. Different 
from [12] and [13] where a two-timescale model is used and 
the flapping motion is assumed to be quasi-static, three 
timescales are used where the flapping motion is regarded as 
the fastest mode explicitly.  In each timescale, a uniform 
nonlinear robust controller is designed with guaranteed 
stability and is robust with respect to explicitly considered 
parametric uncertainties and unmodeled dynamics.  Unlike a 
typical SMC [15]-[19], there is no discontinuity function or 
non-ideal switch, which typically results in the chattering 
phenomenon [20], [21].  In the mean time, the controller is 
guaranteed to be insensitive to bounded parametric and 
functional uncertainties, which is better than a typical 
dynamic inversion approach. 

The rest of the paper is organized as follows.  First the 
Lyapunov stability based nonlinear robust control is derived 
and the existence and uniqueness of the feedback control 
gain are proved.  Second, led by the analytical stability 
study, some characteristics of the proposed nonlinear control 
method are discussed.  After that, the three-timescale 
miniature helicopter dynamics model is briefly listed.  Then 
controllers are designed and validated through Monte Carlo 
simulations for each timescale.  Finally, the overall 
simulation results are demonstrated and a conclusion is 
drawn. 

II. NONLINEAR ROBUST TRACKING CONTROL 

A. General Case 
Let us consider a nonlinear system with a state function of  
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1[ ,..., ]T p
pr r= ∈ℜr .  To avoid numerical errors in pseudo 

inverse associated with the proposed controller, p m≤  is 
required.  The aim of the controller is capable of tracking the 
desired trajectory , , 1,...,i dy i p= . The nominal model is  
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and the nominal measured output is 1
ˆ ( ,..., )i i ny h= x x , where 

∧  represents the predicted information, 1̂
ˆˆ [ ,..., ]T n
nf f= ∈ℜf  

and  1
ˆˆ ( ,..., ) n m
ij nb ×⎡ ⎤= ∈ℜ⎣ ⎦B x x .  The parametric uncertainties 

of the input matrix are bounded by 1, , 1,...,ij ijD i j pΔ ≤ < =  

as 
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where I  is an identity matrix with the proper dimension. B  
and Β̂  are assumed to satisfy the matching condition.  “ L ” 
and “ + ” are used to denote the Lie derivative and the 
pseudo inverse respectively. The error between the predicted 
and actual state functions is bounded by 

ˆ
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where , 0, 1,..., 2k i ik rλ > = − −  can be any positive number 
and the error signal is defined to be , , 1,...,i i d ie y y i p= − = . 

Theorem 1: For a nonlinear system (1) with bounded 
parametric and functional uncertainties (5) and (6), the 
proposed MIMO feedback control scheme 
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guarantees that the closed-loop system is globally 
asymptotically stable for tracking desired signal  ,i dy . Note 

that element-wise multiplication 1 1[ ,..., ]T
p pa b a b⋅a b =  is used. 

An explicit time varying feedback gain 1[ ,..., ]T
pk k=k  will be 

obtained from the stability proof below (Section II.B). 
Unlike the SMC or boundary layer augmented SMC 

(BASMC), there is no discontinuous function (or switching 
function) involved in the proposed controller and therefore 
chattering is avoided.  This property is crucial to the multi-
timescale robust controller to be used in the miniature 
helicopter control problem. 

Proof: Stability of the control law is ensured through the 
analysis of the Lyapunov function candidate / 2TV = s s , The 

derivative of the Lyapunov function is 
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Using parametric uncertainty and functional uncertainty 
bounds, when ( ) 0is t ≠  
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Therefore the gain is calculated by  
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When ( ) 0is t = , we have 0iv =  and 0iv = . Therefore the 
reaching and sliding on the sliding manifold 0is =  are 
guaranteed.  Here, iv  is lower bounded by zero, and iv  is 
negative semi-definite.  Because 0iv ≤  and ( ) (0)i iv t v≤ , the 
output and output tracking errors are bounded. Thus, is  and 

is  are also bounded.  For the continuous functions is  and 

is , i i i i iv s s s s= +  are also bounded, which means 

1( ,..., , )i nv tx x  is uniformly continuous over time.  According 
to the Barbalat’s Lemma [22], ( , ) 0v x t →  as t → ∞  and thus 
the controlled system is asymptotically stable. 

B. Existence of a Solution to k  
Lemma 1: There exists a unique positive solution for the 

control gain k  that satisfies (10) for any positive numbers 
λ  and  η . Proof: 

 For 0is∀ > , the Lyapunov stability requires  
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while for 0is∀ < , the Lyapunov stability requires 
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2) 
Case 1: 0is >  or 0, [1,..., ]is i p< ∀ ∈ ,  
Under this case, both (11) and (12) can be written as  
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Let us define | | 0i i ik sς = >  and 1 1[ ,..., ] pζ ζ= ∈ℜζ . Equation 
(13) can be written in a vector form as ( )= − = −ζ ς Dς I D ς , 
where  
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Because of the uncertainty matching function [22], the 
maximum eigenvalue of matrix D  is less than 1.  According 
to the Perron–Frobenius theorem, if 0>ζ , and the 
maximum eigenvalue of matrix D  is less than 1.  Thus there 
exists a unique solution of ς  and 0>ς .  The unique and 
positive k  can be found by / , 0i i i ik s sς= ≠ . In case of 

0is → , the magnitude of i ik s  ( i i ik sς = ) instead of ik  will 
be calculated because the proposed controller (8) only uses 

i ik s . 
Case 2: 0ls > , 0qs < , , [1,..., ]l q p∀ ∈  and q l≠  
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Let us define l l lk sς =  for 0ls >  and q q qk sς = −  for 0qs < . 
Equations (11) and (12) can be simplified as  
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The left side of both Eqs. (15) and (16) are positive.  
Based on the same derivation as shown in Case 1, there 
exists a unique and positive solution for ς , from which a 
unique k  can be calculated explicitly. 

III. CHARACTERISTICS OF THE CONTROLLER 

A. Chattering Free 
As a typical dynamic inversion approach, the proposed 

nonlinear robust control removes the discontinuous function. 

B. Saturation Protection 
It is often true that saturation happens in the initial stage 

of a tracking problem and the corresponding initial gain is 
large.  Let us use the second order system as an example.  
The control feedback gain k  (in SMC) is calculated by 

ˆ 1
ˆ( ) ( )d 0L −+ − + ⋅ + ⋅ + −2

f
F D y h x λ e λ e η = I D k   (17) 

and is not affected by the sliding manifold.  We can simplify 
the control gain calculation as 1 1( ) ( )− −= − + −k I D p I D η  

where p  is defined as ˆ 1
ˆ( )d 0L −+ − + ⋅ + ⋅2

f
F D y h x λ e λ e .  It 

can be seen that the control feedback gain k  will not reflect 
the slow transient effects due to the saturation. However, the 
solution of k  in the proposed controller is found as  

1 1( ) / ( )− −− + − =I D p. s I D η k     (18) 
where 1 1/ [ / ,..., / ]T

m mp s p sp. s = . 

IV. MINIATURE HELICOPTER DYNAMICS IN THREE 
TIMESCALES 

Different from [12], [13], three timescales are used.  
Separations are made among the fast mode (i.e. flapping 
dynamics), the middle mode (i.e. attitude dynamics), and the 
slow mode (i.e. translational dynamics).  The idea is to 
control the flapping dynamics at the fastest rate (1 kHz). The 
control inputs fu  for the fast mode are the main rotor 
collective colδ , longitudinal cyclic lonδ  and lateral cyclic 

latδ . The pedal pedδ , 1a  and 1b  are used as the control 
vector mu  for the middle mode (100 Hz) to track the desired 

Euler angles , , T
d d dφ θ ψ⎡ ⎤⎣ ⎦ .  In the slow mode, two of the 

Euler angles, , Tφ θ⎡ ⎤⎣ ⎦ , and the main engine thrust mrT  will be 
regarded as the control su  for controlling the body velocity.  
In the slow mode (10 Hz), the roll, pitch and yaw rates, and 

pedδ , 1a  and 1b  are all in the average sense (within the 
sampling period of the slow mode).  Due to the page limit, 

detailed information and nomenclature of the miniature 
helicopter model can be found in [24] and will not be listed 
here.  Here, to simplify the control design, the dynamics 
model has been re-organized in a much clearer way. 

A. Fast Mode 
In this paper, the flapping dynamics is considered as the 

fast model  
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where the state is 1 1[ , ]Tf a b=x , the advance ratio is 
2 2 /( )a au v Rμ = + Ω , and the control input vector is 

, , T
f col lon latδ δ δ= ⎡ ⎤⎣ ⎦u .  Also the relative velocities of the 

helicopter with respect to the wind are a wu u u= − , 

a wv v v= − , and a ww w w= − . 

B. Middle Mode 
The middle mode (attitude dynamics) is governed by 
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  (20) 

where the state vector is [ , , , , , ]T
m p q rφ θ ψ=x  and the control 

input is 1 1, ,
T

ped a bδ⎡ ⎤⎣ ⎦ .  The detailed information of the 

moments and forces can be found in [24]. 

C. Slow Mode 
In the slow mode (translational motion), the state and the 

control vectors are defined as [ , , ]T
s u v w=x  and 

1 1[ , , ]T
s mrT a b=u .  The governing equation is 
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where symbols with over-bars denote variables that are 
evaluated using the average values from the middle mode.  
The forces generated by the fuselage are  

0.5 fus
fus x aX S u Vρ ∞= −       (22) 

0.5 fus
fus y aY S v Vρ ∞= −        (23) 

and 
( )0.5 fus

fus z a imrZ S w V Vρ ∞= − +    (24) 

where ( )22 2
a a a imrV u v w V∞ = + + + . 

V. FAST MODE CONTROL AND MONTE CARLO VALIDATION 
The fast mode controller is designed to track reference 

lateral and longitudinal flapping angles 1,da  and 1,db  
respectively. The settling time needs to be less than the 
sampling period of the middle mode (0.01s) and the steady 
state error are assumed to be within 5% (uncertainty bounds 
considered by the middle mode). Let us denote the fast mode 
to be ( )f f f f= +x f x B u  and f f=y x , where subscript f  
designates the fast mode. The uncertainties in the fast mode 
state function are modeled as , , ,

ˆ , 1, 2f i f i f if f F i− ≤ =  and those 

of the input matrix are 

, ,
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where “ ∧ ” represents the nominal modes. 
Since the relative degree for the fast mode is one, the 

nonlinear robust controller can be simplified as 
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without the integral gain, where ,f f f d f= = −s e y y .  To 
satisfy the asymptotical stability requirement under bounded 
uncertainties, the control parameter fk  needs to satisfy  
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where , 0, 1,2f i iη > = . 
The following random noise and uncertainties (all 

assumed to be Gaussian) are considered in the Monte Carlo 
simulation for the fast mode. The wind model is scaled 
(10%) from the one designed for conventional large aircraft 
[25]. The airspeed indicator and attitude sensors are 
assumed to have 2% noise.  The estimated states 1a  and 1b  
are assumed to have 1% noise. There are 5% uncertainties in 
the helicopter parameters Kμ , eτ , mrΩ , mrc , mra , 

lon

normAδ , 

and 
lat

normBδ , whereas mrR  and 0λ  have 0.5% and 1%  noises 

respectively.  The control fu  has a noise with a zero mean 
and 1o standard deviation. With 12,500 Monte Carlo 
simulations, the success rate was 99.97%.  The mean and 
variance of the settling time ( 1a ) are 0.0040s and 0.0039s, 
whereas those of 1b  are 0.0045s and 0.0034s.  The mean and 
variance of the steady state error ( 1a ) are 0.6602% and 
0.2411%, whereas those of 1b  are 1.2286% and 1.6420%. 

VI. MIDDLE MODE CONTROL AND MONTE CARLO 
VALIDATION 

Let us rewrite the fast mode to be ( )m m m m= +x f x B u .  The 
output for the middle mode is [ , , ]T

m m φ θ ψ= =y h , and the 
relative degree is two. To take into account modeling 
uncertainties and achieve asymptotic stability, the following 
controller is used 
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where ,m d m m= −e y y . The “ ∧ ” denotes a predicted model.  
In order to reduce the steady state error and settling time, 

an integral gain is used in the sliding surface 
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The uncertainties in the state equation and input matrix 
are modeled as 
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To obtain asymptotic stability, control parameters mk  need 
to satisfy 
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) 
The noise associated with the helicopter parameters 

( , , , , , ,xx yy zz tr mr trI I I h K h lβ ) are modeled to have zero means and 
5% of the nominal value in the standard deviation. Also, 
0.5% noise is assumed in the helicopter mass and 10% 
uncertainties are modeled in 

r

trYδ , itrV  and imrV .  Coming 
from the fast model, 5% noise is assumed in the flapping 
dynamics ( 1a  and 1b ), and the pedal input pedδ .  

The success rate is 99.48% with 13,000 Monte Carlo 
simulations.  The driving factors associated with the middle 
mode performance are the mass m  and the attitude sensor 
precision.  The mean values of the settling time are 0.0569s 
(φ ) and 0.0570s (θ ). The variances of the settling time are 
0.0002s and 0.0003s.  The mean values of the steady state 
error are 2.5854% (φ ) and 2.1767% (θ ). The variances are 
8.9045% and 10.0823% separately. 
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VII. SLOW MODE CONTROL AND MONTE CARLO 
VALIDATION 

At this level, the Euler angles will be used to drive the 
translational velocity to desired values.  The state vector in 
the slow mode is [ , , ]T

s u v w=x  and the control variables are 
[ , , ]T

mrTφ θ . Now, the system dynamics can be written as 

s s s s= +x f B u  where 1 2 3, , T
s ς ς ς= ⎡ ⎤⎣ ⎦u . [ , , ]Tm p q r=x  and 

1 1[ , , ]Tm peda b δ=u  represent the average state and control 
from the middle mode.  

 The control designed for the slow mode involves two 
steps (1) a nonlinear robust control law su  to track desired 

body velocity [ , , ]Td d du v w  and (2) using the control 
commands su  to solve for desired Euler angles and thrust 
levels through a zero finding algorithm. 

Since the output in the slow mode is s s=y x , the full state 
feedback controller is designed for step 1. The uncertainty 
model for the slow mode is  ˆ

s s s− ≤f f F  and 

ˆ( )s s s= +B I Δ B , ( ) ( ) 1s sij ijDΔ ≤ <   (33) 
These uncertainties may come from (1) sensor noise, (2) 
average value of the middle mode state and control 
variables, (3) steady state error of the Euler angle, and (4) 
zero finding algorithm error. 

Since the relative degree is one in this case, the nonlinear 
robust control can be simplified as 

1
,

ˆˆ
s s s d s s s

− ⎡ ⎤= − + ⋅⎣ ⎦u B x f k s , where ,s s s d s= = −s e x x  and the 

control parameter needs to satisfy 
1

,
ˆ( ) ( )s s s s s s s d s s s

−⋅ = − + − + ⋅k s I D F D x f η s , where 0s >η . 

The true control variables [ , , ]T
mrTφ θ  can be found as 

following.  First, the controls found and [ , , ]T
mrTφ θ  have the 

following relations. 
( )
( )

1 1

2 1

3

/ sin
/ sin cos
/ cos cos

mr

mr

mr

T m a g
T m b g
T m g

ς θ
ς φ θ

ς φ θ

⎡ ⎤+ −⎡ ⎤
⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎢ ⎥⎣ ⎦

    (34) 

The magnitude of both sides is equal as 

( ) ( ) ( )22 2 2
1 1 2 1 3/ / /mr mr mra T m b T m T m gς ς ς+ + − + + =   (35) 

and the thrust can be found as 

( )2
2 2 1 3 14 / 2mrT ξ ξ ξ ξ ξ⎛ ⎞= − ± −⎜ ⎟

⎝ ⎠
     (36) 

where  

( ) ( ) ( )22 2 2
1 1 1/ / 1/ mra m b m m Tξ ⎡ ⎤= + +⎢ ⎥⎣ ⎦

   (37) 

( )2 1 1 2 1 32 / 2 / 2 / mra m b m m Tξ ς ς ς= − +    (38) 

and 2 2 2 2
3 1 2 3 gξ ς ς ς= + + − . 

To guarantee a valid solution for the main rotor thrust, it is 
required to have 2 2 2 2

3 1 2 3 0gξ ς ς ς= + + − ≤  and the velocity 

command will be shaped to avoid rapid changes. 
The Euler angles (φ  and θ ) can be calculated from Eq. 

(34) as 
( )1 1sin / /mrT m a gθ ς⎡ ⎤= − +⎣ ⎦      (39) 

and 
( )2 3tan / / /mr mrT m b T mφ ς ς⎡ ⎤= − +⎡ ⎤⎣ ⎦⎣ ⎦    (40) 

The Euler angle controlled by the middle mode has 10% 
steady state error. In addition to the uncertainties and noises 
already mentioned in the fast and middle modes, the gravity 
coefficient g  and corresponding density ρ  are assumed to 
have 0.5% uncertainties. wη  has a zero-mean noise with a 
1% in the standard deviation. In the 10,500 Monte Carlo 
runs, the success rate is 97.10%.  The mean values for the 
settling time in velocity tracking ( u , v , and w ) are 
1.9994s, 1.9937s, and 0.4059s respectively, whereas the 
variances are 0.0111s, 0.0068s, and 0.0196s.  The mean 
values of the steady state errors in three directions are 
0.0141 %, 0.0074%, and 0.0602%.  The corresponding 
variances are 3.8931%, 1.7115%, and 17.0253%. 

VIII. SIMULATION RESULTS 
The miniature helicopter is assumed to fly at an altitude of 

300m.  Initially, the helicopter is in a hover mode with a 
zero velocity.  As shown in Fig. 1, the helicopter is able to 
track the desired velocity ( 1 /du m s= , 1 /dv m s= , and 

1 /dw m s= ) for the first five seconds and go back to hover 
mode for the later five seconds without any chatter. 
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Fig. 1 Velocity tracking in u, v, and w 

The main rotor collective and the tail rotor pedal input are 
shown in Fig. 2, where the pedal input has more oscillations 
in the slow mode scale.  The longitudinal cyclic and lateral 
cyclic of the main rotor are shown in Fig. 3.  The main rotor 
thrust and engine speed performance is show in Fig. 4. 

0 2 4 6 8 10
-30

-20

-10

0

10

20

30

Time, s

C
on

tro
l C

om
m

an
ds

, D
eg

re
es

 

 

col
pedal

 
Fig. 2 Main rotor collective and the pedal input. 
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Fig. 3 Main rotor longitudinal and lateral cyclic. 
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Fig. 4 Main engine speed and main rotor thrust. 

IX. CONCLUSION 
A nonlinear robust control algorithm is proposed here 

which could enable a miniature helicopter to operate in the 
full flight envelop.  In addition, the controller is valid for 
general thn  order MIMO systems with coupled uncertainties 
in state and input functions and parameters.  The miniature 
helicopter is controlled through a three-timescale (flapping, 
rotational, and translational models) nonlinear robust 
controller.  The advantage of the proposed controller is to 
have a finite time convergence and guaranteed settling time, 
which is preferred for the multi-timescale control structure. 
The unique solution of the control feedback gain is 
guaranteed.  Monte Carlo simulations are conducted for the 
validation of the proposed controller for each of the three 
modes. 
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