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Abstract— Motivated by the type of missions currently per-
formed by unmanned aerial vehicles, we investigate a discrete
dynamic vehicle routing problem with a potentially large
number of targets and vehicles. Each target is modeled as an in-
dependent two-state Markov chain, whose state is not observed
if the target is not visited by some vehicle. The goal for the
vehicles is to collect rewards obtained when they visit the targets
in a particular state. This problem can be seen as a type of
restless bandits problem with partial information. We compute
an upper bound on the achievable performance and obtain in
closed form an index policy proposed by Whittle. Simulation
results provide evidence for the outstanding performance of this
index heuristic and for the quality of the upper bound.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are actively used for
military operations and considered for civilian applications
such as environmental monitoring. Technological advances in
this area have been impressive, and it seems now that a major
challenge for future developments will be to increase the
degree of automation of these systems [1]. For this we need
solutions with acceptable levels of performance to difficult
optimization problems, such as variants of the weapon-target
assignment problem [2]. Often, the problems solved are
static combinatorial optimization problems resulting in open-
loop policies. Yet, for most applications of UAVs, involving
surveillance and monitoring, we would like to factor into
the decision making process the (stochastic) evolution of the
environment, which results in even harder stochastic control
problems.

In this paper, we consider the following scenario. A group
of M mobile sensors (also denoted agents in the following)
is tracking the states of N > M sites. We discretize time. At
each period, each site can be in one of two states {s1,s2},
but we only know the state of a site with certainty if we
actually visit it with a sensor. For i ∈ {1, . . . ,N}, the state
of site i changes from one period to the next according to a
Markov chain with known transition probability matrix Pi,
independently of the fact that a sensor is present or not, and
independently of the other sites. To specify Pi, it is sufficient
to give Pi

11 and Pi
21, which are the probabilities of transition

to state s1 from state s1 and s2 respectively. When a sensor
explores site i, it can observe its state without measurement
error, and obtains a reward Ri if the site is in state s1. There
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is no cost for moving the agents between the sites. We want
to determine how we should allocate the agents at each time
period, in order to maximize an expected total discounted
cost over an infinite horizon.

This problem is related to various sensor management
problems. These problems have a long history [3], [4], but
have enjoyed a renewed interest more recently. Close to the
ideas of this work, we mention the use by Krishnamurthy and
Evans [5], [6] of Gittins’ solution to the multi-armed bandit
problem to direct a radar beam towards multiple moving
targets. La Scala and Moran [7] suggest to use instead for
a similar problem the restless bandits model, as we do here.
However, in the restricted symmetric cases that [7] considers,
the greedy solution is optimal and Whittle’s indices and
upper bound are not computed. Whittle already mentioned
the potential application of restless bandits to airborne sensor
routing in his original paper [8]. Recently, a slightly more
general version of our problem was considered independently
by Guha et al. [9], in the average-cost setting, to schedule
transmissions on wireless communication channels in differ-
ent states. These authors propose a policy that is different
from Whittle’s and offers a performance guarantee of 2.

Let us start by briefly recalling the multi-armed bandit
problem (MABP) and restless bandits problem (RBP). The
classical MABP concerns N sites or projects, where the state
of project i at discrete time t is xi

t . At each time t, only one
project can be worked on. Then a reward ri(xi

t) is received,
and the state xi

t evolves to xi
t+1 according to a known Markov

rule specific to project i. The N − 1 projects that are not
operated produce no reward and their states do not change.
The important result of Gittins [10], [11] is that the rich
structure of this problem makes possible an efficient solution.
Optimal policies turn out to have the form of an index rule.
That is, we can compute independently for each project an
index λ i(xi

t) ∈ R such that the optimal policy is to operate
at each period the project with the maximal index.

The assumptions made in the MAPB inhibit its applicabil-
ity for the sensor management problem. Suppose one has to
track the state of N targets evolving independently. First, the
MABP solution helps scheduling only one sensor, since only
one target can be worked on at each period. Moreover, even
if one does not make new measurements on a specific target,
its information state still has to be updated using the known
dynamics of the true state. This violates the assumption that
the projects that are not operated remain frozen. To use
Gittins’ result for this problem, [5] must assume that the
dynamics of the targets are slow and that the propagation
step of the filters can be neglected for unobserved targets.
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To overcome the shortcomings of the MABP, Whittle
introduced the RBP [8]. In this problem, we now allow for M
projects to be simultaneously operated, rewards can be gener-
ated for the projects that are not active, and most importantly
these projects are also allowed to evolve, possibly according
to different transition rules. These less stringent assumptions
are very useful for the sensor management problem, but
unfortunately the RBP is now known to be intractable,
in fact PSPACE-hard [12], even if M = 1 and we only
allow deterministic transition rules. Nonetheless, Whittle
investigated an interesting relaxation and index policy for
this problem, which extends Gittins’ and which we will
review in section IV in our specific context. The relaxation
technique has been used apparently independently for sensor
management problems by Castañón [13], [14], who does not
develop index policies however. [15] also investigates the
relaxation technique in a more general setting.

The rest of the paper is organized as follows. In section
II, we give a precise formulation of our problem. In section
III, we provide a counter example showing that the obvious
candidate greedy solution to the problem is not optimal.
Section IV gives a general discussion of our proposed
solution to this sensor routing problem. Whittle’s method
is discussed with an emphasis on computations and from the
point of view of constrained Markov decision processes [16].
An upper bound on the achievable performance is obtained
by solving a relaxed problem using a Lagrangian approach
and subgradient optimization. A lower bound is obtained
by computing Whittle’s index policy. The computation of
Whittle’s indices is non trivial in general, and the indices
may not always exist. However, in section V we show
the indexability of our particular problem by obtaining a
closed form expression of Whittle’s indices, which is the
main result of the paper. We also obtain in closed form
the subgradient necessary for the computation of the upper
bound on achievable performance. Finally in section VI,
we verify experimentally the high performance of the index
policy by comparing it to the upper bound for problems
involving a large number of targets and vehicles.

II. PROBLEM FORMULATION

For the dynamic optimization problem described in the
introduction, the state of the N sites at time t is xt =
(x1

t , . . . ,x
N
t )∈ {s1,s2}N , and the control is to decide which M

sites to observe. An action at time t can only depend on the
information state It which consists of the actions a0, . . . ,at−1
at previous times as well as the observations y0, . . . ,yt−1 and
the prior information y−1 on the initial state x0. We represent
an action at by the vector (a1

t , . . . ,a
N
t )∈{0,1}N , where ai

t = 1
if site i is visited by a sensor at time t, and ai

t = 0 otherwise.
Assume the following flow of events. Given our current

information state, we make the decision as to which M sites
to observe. The rewards are obtained depending on the states
observed, and the information state is updated. Once the
rewards have been collected, the states of the sites evolve
according to the known transition probabilities.

Let p be a given probability distribution on the initial state
x0. We assume independence of the initial distributions, i.e.,

P(x1
0 = s1, . . . ,xN

0 = sN) = p(s1, . . . ,sN)

=
N

∏
i=1

(pi
−1)

1{si=s1}(1− pi
−1)

1{si=s2},

for some given numbers pi
−1 ∈ [0,1]. We denote by 1{·}

the indicator function. For an admissible policy π , i.e.,
depending only on the information process, we denote Eπ

p the
expectation operator. We want to maximize over the set Π of
admissible policies the expected infinite-horizon discounted
reward (with discount factor α)

J(p,π) = Eπ
p

{
∞

∑
t=0

α
tr(xt ,at)

}
, (1)

where

r(xt ,at) =
N

∑
i=1

Ri 1{ai
t = 1,xi

t = s1},

and subject to the constraint
N

∑
i=1

1{ai
t = 1}= M,∀t. (2)

It is well known that we can reformulate this problem as
an equivalent Markov decision process (MDP) with complete
information [17]. A sufficient statistic for this problem is
given by the conditional probability P(xt |It), so we look for
an optimal policy of the form πt(P(xt |It)). An additional
simplification in our problem comes from the fact that the
sites are assumed to evolve independently. Let pi

t be the
probability that site i is in state s1 at time t, given It . A simple
sufficient statistic at time t is then (p1

t , . . . , pN
t ) ∈ [0,1]N .

We have the following recursion:

pi
t+1 =



Pi
11, if site i is visited at time t and found

in state s1.
Pi

21, if site i is visited at time t and found
in state s2.
f i(pi

t) := pi
tP

i
11 +(1− pi

t)P
i
21

= Pi
21 + pi

t(P
i
11−Pi

21), if site i is not visited
at time t.

(3)

III. NON-OPTIMALITY OF THE GREEDY POLICY

We can first try to solve the problem formulated above
with a general purpose solver for partially observable MDPs.
However, the computations become quickly intractable, since
the size of the underlying state space increases exponentially
with the number of sites. Moreover, this approach would not
take advantage of the structure of the problem, notably the
independent evolution of the sites. We would like to use this
structure to design optimal or good suboptimal policies more
efficiently.

There is an obvious candidate solution to this problem,
which consists in selecting at each period the M sites for
which pi

tR
i is the highest. Let us call this policy the “greedy
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Fig. 1. Counter Example.

policy”. It is not optimal in general. To see this, it is sufficient
to consider a simple example with completely deterministic
transition rules but uncertainty on the initial state. This
underlines the importance of exploring at the right time.

Consider the example shown on Fig. 1, with N = 2, M = 1.
Assume that we know already at the beginning that site 1
is in state s1, i.e., p1

−1 = 1. Hence we know that every time
we select site 1, we will receive a reward R1, and in effect
this makes state s2 of site 1 obsolete. Assume R1 > p2

−1R2,
but (1− p2

−1)R
2 > R1, i.e., R2−R1 > p2

−1R2. Let us denote
p2
−1 := p2 for simplicity. The greedy policy, with associated

reward-to-go Jg, first selects site 1, and we have

Jg(1, p2) = R1 +αJg(1,1− p2).

During the second period the greedy policy chooses site 2.
Hence

Jg(1,1− p2) = (1− p2)R2 +α(1− p2)Jg(1,0)+α p2Jg(1,1).

Note that Jg(1,0) and Jg(1,1) are also the optimal values for
the reward-to-go at these states, because the greedy policy
is obviously optimal once all uncertainty has been removed.
It is easy to compute

Jg(1,0) =
R1 +αR2

1−α2 , Jg(1,1) =
R2 +αR1

1−α2 .

Now suppose we sample first at site 2, removing the
uncertainty, and then follow the greedy policy, which is
optimal. We get for the associated reward-to-go:

J(1, p2) = p2R2 +α p2Jg(1,0)+α(1− p2)Jg(1,1).

We compute the difference and obtain after some calcula-
tions:

J− Jg = p2R2−R1 +α p2R1.

For example, we can take R2 = 3R1, p2 = (1−ε)/3, for a
small ε > 0. We get p2R2 = R1(1−ε) < R1 and (1− p2)R2 =
(2− ε)R1 > R1 so our assumptions are satisfied. Then J−
Jg = α

3 R1(1− ε − 3ε

α
), which can be made positive for ε

small enough, and as large as we want by simply scaling the
rewards. Hence in this case it is better to first inspect site 2
than to follow the greedy policy from the beginning.

IV. RESTLESS BANDITS

The optimization problem (1) subject to the resource
constraint (2) seems difficult to solve directly. However one
can obtain an upper bound on the achievable performance
by relaxing the constraint (2) to enforce it only on average.
More specifically, we replace it by the following constraint

Eπ
p

{
∞

∑
t=0

α
t

N

∑
j=1

1{ai
t = 1}

}
=

M
1−α

,

or equivalently by

D(p,π) = Eπ
p

{
∞

∑
t=0

α
t

N

∑
i=1

1{ai
t = 0}

}
=

N−M
1−α

. (4)

Clearly (4) is implied by (2), so solving the optimization
problem (1) with relaxed constraint (4) indeed provides an
upper bound on the achievable performance. This relaxed
problem can now be solved using the tools available for
constrained MDPs. The two main (dual) approaches are a
direct linear programming formulation on the set of occu-
pation measures, or a Lagrangian approach using dynamic
programming ideas [16]. In addition to solving the relaxed
problem, we would also like to use its solution to obtain a
feasible policy for the original problem. We do this by using
the additional restless bandits structure.

To study the restless bandits problem, Whittle used the
Lagrangian approach for the constrained MDP, which we
also follow here. The following results can be found in [16,
chapter 3]. Define the Lagrangian

L(p,π,λ ) = J(p,π)+λ

(
D(p,π)− N−M

1−α

)
,

with λ ∈ R a Lagrange multiplier. Then the optimal reward
for the problem with averaged constraint satisfies

J∗(p) = sup
π∈Π

inf
λ

L(p,π,λ ) = sup
π∈ΠS

inf
λ

L(p,π,λ ),

where ΠS is the set of stationary Markov (randomized)
policies. Since we allow for randomized policies, a classical
minimax theorem allows us to interchange the sup and the
inf to get

J∗(p) = inf
λ

{
J∗(p;λ )−λ

N−M
1−α

}
(5)

where

J∗(p;λ ) = sup
π∈ΠD

{J(p,π)+λD(p,π))} (6)

= sup
π∈ΠD

Eπ
p

{
∞

∑
t=0

α
t

N

∑
i=1

Ri 1{ai
t = 1,xi

t = s1}+λ1{ai
t = 0}

}
,

and ΠD is now the set of stationary deterministic policies. For
a fixed λ , J∗(p;λ ) can be computed using dynamic program-
ming, and the possibility to restrict to deterministic policies
is a classical result for unconstrained dynamic programming.
Moreover, the computation of J∗(p;λ ) has the interesting
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property of being separable by site. Hence we can solve the
dynamic programming problem for each site separately:

J∗(p;λ ) =
N

∑
i=1

J∗,i(p;λ )

J∗,i(pi;λ ) = max
{

λ +αJ∗,i( f i pi;λ ),

piRi +α piJ∗,i(Pi
11;λ )+α(1− pi)J∗,i(Pi

21;λ )
}

,

the second equation being Bellman’s equation for site i.
We can now finish the computation of the upper bound

using standard dual optimization methods. Suppose that we
are given a prior p on the initial states of the sites. The dual
function, which we would like to minimize over λ , is

G(p;λ ) = J∗(p;λ )−λ
N−M
1−α

.

G is a convex function of λ , although in general not differ-
entiable. We can solve the minimization problem (5) using
the subgradient method, although an even simpler method
such as a line search would also be possible. We have the
following well-known result, see e.g. [18]:

Theorem 1: A subgradient of G(p; ·) at λ is

D(p,π∗
λ
)− N−M

1−α
=

N

∑
i=1

Di(pi,π∗,i
λ

)− N−M
1−α

, (7)

where π∗
λ

is an optimal policy for the problem (6) (which
can be decomposed into optimal policies π

∗,i
λ

for each site),
and

Di(pi,π∗,i
λ

) = E
π
∗,i
λ

pi

{
∞

∑
t=0

α
t1{ai

t = 0}

}
.

We will see in section V that an expression for D(p,π∗
λ
) is

obtained at no additional cost once we have an expression
for J∗(p;λ ).

So far however, we have only provided a means to
compute an upper bound on the achievable performance.
It remains to find a good policy for the original, path
constrained problem. Whittle proposed an index policy which
generalizes Gittins’ policy for the multi-armed bandit prob-
lem and emerges naturally from the Lagrangian relaxation.
We underline here only the key ideas and refer the reader to
[8] for more details and motivations behind this heuristic.

To compute Whittle’s indices, we consider the bandits (or
targets) individually. Hence we isolate bandit i, consider the
computation problem for J∗,i(pi;λ ) and drop the superscript
identifier i for simplicity. λ can be viewed as a “subsidy for
passivity”, which parametrizes a collection of MDPs. Let us
denote by P(λ ) ⊂ [0,1] the set of information states p of
the bandit such that the passive action is optimal, i.e.,

P(λ ) = {p ∈ [0,1] : λ +αJ∗( f p;λ )≥ pR+α pJ∗(P11;λ )
+α(1− p)J∗(P21;λ )} .

Definition 2: A bandit is indexable if P(λ ) is monoton-
ically increasing from /0 to [0,1] as λ increases from −∞ to
+∞, i.e.,

λ1 ≤ λ2⇒P(λ1)⊆P(λ2).

Hence a bandit is indexable if the set of states for which it
is optimal to take the passive action increases with the sub-
sidy for passivity. This requirement seems very natural. Yet
Whittle provided an example showing that it is not always
satisfied, and typically showing the indexability property for
particular cases of the RB problem is challenging, see e.g.
[19], [20]. However, when this property could be established,
Whittle’s index policy, which we now describe, was found
empirically to perform outstandingly well. [21] also studied
a form of asymptotic optimality for this heuristic.

Definition 3: If a bandit is indexable, its Whittle index is
given, for any p ∈ [0,1], by

λ (p) = inf{λ ∈ R : p ∈P(λ )} .
Hence, if the bandit is in state p, λ (p) is the value of the sub-
sidy λ which renders the active and passive actions equally
attractive. Then, restoring the superscripts i for the N bandits,
and assuming that each bandit is indexable, we obtain for
state (p1

t , . . . , pN
t ) a set of indices λ 1(p1

t ), . . . ,λ
N(pN

t ). The
index heuristic applies at each period t the active action to
the M projects with largest indices λ i(pi

t), and the passive
action to the remaining N−M projects.

V. INDEXABILITY AND COMPUTATION OF WHITTLE’S
INDICES

A. Preliminaries

In this section we give an overview of the study of the
indexability property for each site. Due to space constraints,
most of the computations are not presented. The interested
reader can find them in our technical report [22]. For the
sensor management problem considered in this paper, we
show that the bandits are indeed indexable and compute the
Whittle indices in closed form.

Since the discussion is concerned with a single site, we
drop the superscript i. For reference we rewrite Bellman’s
equation of optimality for this problem. If J is the optimal
value function, then

J(p) = max{λ +αJ( f p), pR+α pJ(P11)+α(1− p)J(P21)}
(8)

where f p := pP11 +(1− p)P21 = P21 + p(P11−P21).

Note that for simplicity, we dropped the λ and the ∗ from
the previous notation, i.e., J(p) := J∗(p;λ ). First we have

Theorem 4: J is a convex function of p, continuous on
[0,1].

Proof: It is well known that we can obtain the value
function by value iteration as a uniform limit of cost func-
tions for finite horizon problems, which are continuous,
piecewise linear and convex, see e.g. [23]. The uniform
convergence follows from the fact that the discounted dy-
namic programming operator is a contraction mapping. The
convexity of J follows, and the continuity on the closed
interval [0,1] is a consequence of the uniform convergence.

Lemma 5: 1) When λ ≤ pR, it is optimal to take the
active action. In particular, if λ ≤ 0, it is always optimal
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to take the active action and J is affine:

J(p) = αJ(P21)+ p[R+α(J(P11)− J(P21))]

=
(αP21 + p(1−α))R

(1−α)(1−α(P11−P21))
. (9)

2) When λ ≥ R, it is always optimal to take the passive
action, and

J(p) =
λ

1−α
. (10)

Proof: By convexity of J, J( f p) ≤ pJ(P11) + (1−
p)J(P21) and so for λ ≤ pR, it is optimal to choose the active
action. The rest of 1 follows by easy calculation, solving first
for J(P11) and J(P21). To prove 2, use value iteration, starting
from J0 = 0.

With this lemma, it is sufficient to consider from now on
the situation 0 < λ < R.

Lemma 6: The set of p ∈ [0,1] where it is optimal to
choose the active action is convex, i.e., an interval in [0,1].

Proof: In the set where the active action is optimal, we
have

J(p) = pR+α pJ(P11)+α(1− p)J(P21).

Consider p1 and p2 in this set. We want to show that for
all β ∈ [0,1], it is also optimal to choose the active action
at p = β p1 +(1−β )p2. We know from Bellman’s equation
(8) that

pR+α pJ(P11)+α(1− p)J(P21)≤ J(p).

By convexity of J, we have

J(p)≤βJ(p1)+(1−β )J(p2)
J(p)≤β (p1R+α p1J(P11)+α(1− p1)J(P21))+

(1−β )(p2R+α p2J(P11)+α(1− p2)J(P21))
J(p)≤pR+α pJ(P11)+α(1− p)J(P21).

Combining the two inequalities, we see that the active action
is optimal at p.

Lemma 7: The sets of p ∈ [0,1] where the passive and
active actions are optimal are of the form [0, p∗] and [p∗,1],
respectively.

Proof: This follows from the convexity of the active
set and the fact that the active action is optimal for p ≥ λ

R
by lemma 5.

In the following, we emphasize the dependence of p∗ on
λ by writing p∗(λ ). It is a direct consequence of lemma
7 and the continuity of J that p∗(λ ) is a value where the
passive and the active actions are equally attractive. We also
see that to show the indexability property of definition 2, it is
sufficient to show that p∗(λ ) is an nondecreasing function of
λ . Then, Whittle’s index is obtained by inverting the relation
λ → p∗(λ ), i.e.,

λ (p) = inf{λ : p∗(λ ) = p} .

An interesting feature of our problem is that it is possible
to compute p∗(λ ) in closed form. In addition we can

also compute the value function J(p) := J∗(p;λ ) and the
“discounted passivity measure” for each bandit:

D(p,π∗
λ
) = E

π∗
λ

p

{
∞

∑
t=0

α
t1{at = 0}

}
.

This last quantity is necessary to compute the subgradient
(7). Its computation is a policy evaluation problem. D(p,π∗

λ
)

obeys the equations

D(p,π∗
λ
) =


α pD(P11,π

∗
λ
)+α(1− p)D(P21,π

∗
λ
),

for p > p∗(λ )
1+αD( f p,π∗

λ
), for p≤ p∗(λ ).

These equations can be compared to those verified by
J∗(p;λ ) once p∗(λ ) is known:

J∗(p;λ ) =


R+α pJ∗(P11,λ )+α(1− p)J∗(P21,λ ),
for p > p∗(λ )

λ +αJ∗( f p,λ ), for p≤ p∗(λ ).

Hence it is sufficient to have a closed form solution for
J∗(p;λ ). To compute D(p,π∗

λ
), we simply formally set R = 0

and λ = 1 in the corresponding expression for J∗(p;λ ).
For example, starting from expressions (9) and (10), we
recover the (trivial) result that D(p,π∗

λ
) = 0 if λ ≤ 0 and

D(p,π∗
λ
) = 1/(1−α) if λ ≥ R.

The computation of p∗(λ ), J∗(p;λ ) and D(p,π∗
λ
) for each

bandit can be performed by distinguishing between various
cases depending on the value of the parameters P11 and
P21. The computations are rather long and we omit them
in this paper. Here we only give the main result, which is
the expression of the Whittle indices.

Theorem 8: A two-state restless bandit as considered in
this section is indexable. The index λ (p) can be computed
as follows. Let s = P11 − P21 (then −1 ≤ s ≤ 1), f nP21 =
P21

1−sn+1

1−s , and I = P21
1−s .

1) Case s = 0: λ (p) = pR.
2) Case s = 1: λ (p) = pR

1−α(1−p) .
3) Case 0 < s < 1:

• If p≥ P11 or p≤ P21: λ (p) = pR.
• If I ≤ p < P11: λ (p) = pR

1−α(P11−p) .

• If P21 < p < I: Let k := k(p) = d ln(1− p
I )

lns e−2. Then
let

Bk = 1−α
k+2, Ck = α−α

k+2,

Ak =
(1−αP11)Bk +αk+2(1−α)( f k+1P21)

1−αs
We have

λ (p) =
Ak(p)− (1− p)Bk(p)

Ak(p)− (1− p)Ck(p)
R.

4) Case s =−1:
• If p≥ 1/2: λ (p) = α+p(1−α)

1+α(1−α)(1−p)R.
• If p < 1/2: λ (p) = p

1−α p R.
5) Case −1 < s < 0:

• If p≥ P21 or p≤ P11: λ (p) = pR.
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Fig. 2. Monte-Carlo Simulation for Whittle’s index policy and the greedy
policy. The upper bound is computed using the subgradient optimization
algorithm. We fixed α = 0.95.

• If f P11 ≤ p < P21: λ (p) = p+α(P21−p)
1+α(P21−p) R.

• If I ≤ p < f P11: λ (p) = p+α(P21−p)
1+α(1−α)(P21−p)−α2P11s R.

• If P11 < p < I: λ (p) = p
1−α(p−P11)R.

VI. SIMULATION RESULTS

In this section, we briefly present some simulation results
illustrating the performance of the index policy and the
quality of the upper bound. We generate sites with random
rewards Ri within given bounds and random parameters
P11, P21. We progressively increase the size of the problem
by adding new sites and UAVs to the existing ones. We
keep the ratio M/N constant, in this case M/N = 1/20.
When generating new sites, we only ensure that |P11−P21|
is sufficiently far from 0, which is the case where the
index policy departs significantly from the simple greedy
policy. The upper bound is computed for each value of N
using the subgradient optimization algorithm. The expected
performance of the index policy and the greedy policy are
estimated via Monte-Carlo simulations.

Fig. 2 shows the result of simulations for up to N = 3000
sites. We plot the reward per agent, dividing the total reward
by M, for readability. We can see the consistently stronger
performance of the index policy with respect to the simple
greedy policy, and in fact its almost optimality.

VII. CONCLUSION

We have proposed the application of Whittle’s work on
restless bandits in the context of a UAV routing problem with
partial information. For given problem parameters, we can
compute an upper bound on the achievable performance, and
experimental results show that the performance of Whittle’s
index policy is often very close to the upper bound. This is
in agreement with existing work on restless bandit problems
for different applications. Some directions for future work
include a better understanding the asymptotic performance
of the index policy and the computation of the indices for
more general state spaces.
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