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Abstract— In this paper we give a delay dependent stability
criterion for stochastic delay systems with polynomial nonlin-
earity. An important benefit of this result is that when an
invariant set of the system is available, we can incorporate
this information to reduce the conservativeness. The resulting
condition is given in terms of a semi-algebraic problem which
is known to be efficiently solvable via sums of squares (SOS)
relaxations. This work is originally motivated by the design of
quantum spin control systems in the face of feedback delays.
The effectiveness of the proposed method is evaluated by
designing a globally stabilizing control law for the spin-1/2
system.

Index Terms— Stochastic delay systems, Sum of squares,
Polynomial nonlinearity

I. INTRODUCTION

Stochastic systems have attracted a renewed interest due

to their relation to systems biology, financial engineering,

quantum mechanical systems, indeterministic behavior of

communication networks such as delays and packet loss,

systems with Markov switching and so on. In this paper, we

derive a new delay-dependent stability criterion for a class

of nonlinear stochastic system. In recent years numerous

stability criteria for several type of delay systems have

been derived. Some of them are applicable to stochastic

delay differential systems; see e.g., [7], [9], [22], [24] and

references therein.

The original motivation of this work is control of quantum

spin systems which is explained in detail in the next section.

To deal with this problem, we focus on the delay systems

which have the following properties:

1) dynamical equation (more precisely, stochastic delay

differential equation) includes polynomial coefficients,

2) systems evolve in a prespecified semi-algebraic set C,

i.e., a subset of R
n defined by

C = {x ∈ R
n : pi(x) ≥ 0, i = 1, 2, · · · , l} (1)

with some n-variable polynomials pi.

Firstly, systems with polynomial nonlinearity can cover a

wide class of nonlinear system. The main result in [22]

is capable of dealing with norm bounded nonlinearity, i.e.,

function f(x) : R
n → R

n such that there exists a matrix F
satisfying

‖f(x)‖ ≤ ‖Fx‖
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where the norm is the standard Euclidean norm. As is seen

in the stability analysis of Lur’e systems, it is not so hard

to derive sufficient conditions for the stability of this type

of nonlinear system. However, if one deals with polynomial

nonlinearity as a norm bounded one, this often introduces

excessive conservativeness.

Secondly, a good example of such systems are positive

systems, such as compartmental systems, whose state vari-

ables do not exit the positive orthant; see e.g., [4]. There

also exist many physical systems with signals that take only

bounded values. Such a priori knowledge about the region is

expected to be useful for less conservative analysis.

Among existing results, delay-dependent stability criteria

in terms of LMIs are the most attractive due to their low

computational complexity. However, this kind of approach

is not suitable for our problem formulation. One reason is

that it is impossible to deal with the polynomial nonlinearity.

Another is the small freedom of the choice of Lyapunov-

Krasovskii functionals; to obtain LMI conditions, Lyapunov-

Krasovskii functionals consisting of quadratic forms of state

variables and its (double) integrations are necessary. When

we need to search for functionals that are globally positive,

this restriction may not be too conservative. However, the

systems of interest in this paper evolve only in a prespecified

region, and consequently we do not need globally positive

Lyapunov-Krasovsii functionals. For example, any polyno-

mial with positive coefficients is positive in the positive

orthant while it is not globally positive in general.

In view of these facts, we derive a delay-dependent sta-

bility criterion in the form of semi-algebraic problem. This

approach has already been applied for the stability analysis

of (deterministic) delay systems by Papachristodoulou et al.

[11], [12]. The differences between these existing results and

the main result in this paper are

• we deal with stochastic systems, and

• we can easily incorporate the information about the

region where the system evolves.

This paper is organized as follows. Section II is devoted to

a review of our motivating example, control of quantum spin

systems. Section III is the main part of this paper; we provide

a delay dependent stability criterion for the class of nonlinear

stochastic delay system with the properties stated above.

The effectiveness of the result is illustrated by designing a

globally stabilizing controller for the spin-1/2 particle which

takes the feedback delay into explicit account.
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Fig. 1. Control of quantum spin systems by using continuous measurement

Notation

For z ∈ R
n and M ∈ R

n×n, ‖z‖2
M := zTMz. The

subscript is omitted when M is the identity matrix. For

D ⊂ R
m, a function F : D → R is said to be positive

(resp. negative) in D if F (z) ≥ 0 (resp. F (z) ≤ 0) for any

z ∈ D.

Let Ch
C

be the set of C-valued uniformly continuous

functions on [−h, 0]. This is a Banach space equipped with

‖x̃‖Ch

C

:= supθ∈[−h,0] ‖x̃(θ)‖C. The 1-dimensional standard

Wiener process is denoted by wt. The set of W0-measurable

Ch
C

-valued random variables is denoted by Ch
C,W0

where

W0 is the σ-algebra generated by w0. Expectation is de-

noted by E. If it exists, the infinitesimal generator of a

function V along a Markov process x̃t is denoted by A V

i.e., A V (x̃) := lim
t→0

E
x̃[x̃t] − x̃

t
where E

x̃ represents the

expectation with respect to paths which start at x̃0 = x̃;

see [9], [7], [22] for a formula.

II. MOTIVATING EXAMPLE: CONTROL OF QUANTUM SPIN

In this section, we consider a cold atomic ensemble

trapped in an optical cavity [3], [23], [8] depicted in Figure 1.

The total angular momentum of the atom along the i-axis

(i = x, y, z), denoted by Fi, is a quantum observable. We can

partially observe the quantum state by shining a laser (along

the z-axis) through the cavity at a homodyne-type photo

detector. The system is affected by an external magnetic field

along the y-axis where the magnetic field strength ut is used

as a time-varying control input.

The state variable is (conditional) density matrix ρt that

belongs to the following convex set:

S := {ρ ∈ C
Ns×Ns : ρ = ρ∗ ≥ 0, tr ρ = 1}. (2)

The dynamics of control quantum spin system is described

by the following stochastic differential equation called the

Belavkin equation or stochastic master equation:

dρt = i[utFy, ρt]dt − 1

2
[Fz, [Fz, ρt]]dt

+
√

η
[

Fzρt + ρtFz − 2 tr(Fzρt)ρt

]

dwt, (3)

where η ∈ (0, 1] represents the measurement efficiency and

Fy :=
i

2















0 c1

−c1 0 c2

. . .
. . .

. . .

−cNs−2 0 cNs−1

−cNs−1 0















,

cm :=
√

(Ns − m)m, m = 1, 2, · · · , Ns − 1

Fz :=
1

2
diag{Ns − 1, Ns − 3,

· · · ,−(Ns − 3),−(Ns − 1)}

Our goal is to determine a control input ut such that ρt

shows a desirable behavior. However, nano-mechanical dy-

namic systems have very fast dynamics, with time constants

orders of magnitude less than the time necessary to compute

the control input. From a practical viewpoint, this means that

we need to formulate the control problem stated above taking

feedback delays into consideration. Actually, such delays are

known to degrade the control performance and the dynamical

stability. In view of this fact, we should consider the delayed

feedback control input ut = u(ρt−τ ), where τ > 0 means

the delay. Note that τ can includes another possible delay

that occurs when physically activating the controller as a

function of ut.

Note that a control system which takes into account these

delays can be described by using stochastic delay differential

systems. Moreover, we can restrict our analysis to the class

of system which have polynomial coefficients and evolve in

a bounded set. Let us see this point in more detail. System

Eq. (3) has the complex matrix-valued state variable ρt. By

concatenating the real and imaginary part of all elements into

a column vector, we can rewrite (3) as a real vector-valued

nonlinear stochastic system with polynomial coefficients. In

other words, any Hermitian matrix ρ ∈ C
Ns×Ns such that

tr ρ = 1 can be represented by using (N2
s −1) real variables.

It is known ([23, Proposition 1]) that the positive semi-

definiteness of ρ can be represented in the form of a semi-

algebraic set with respect to newly introduced real variables;

see also Section IV. Therefore, we obatain a polynomial type

nonlinear stochastic delay system which evolves only in a

bounded semi-algebraic set determined by S.

It should be mentioned that the diffusion term (the coeffi-

cient of stochastic noise) is free from the control input which

possibly suffers from delays.

III. MAIN RESULT

A. Delay-dependent stability criterion

We investigate the class of stochastic delay systems with

delay free diffusion term. The mathematical description of

the problem in this paper is given as follows.

Problem 1: Let f(·, ·) : R
n × R

n → R
n, g(·) : R

n →
R

n be polynomials satisfying f(0, 0) = g(0) = 0 and C

a bounded semi-algebraic set in R
n including the origin.

Suppose that for any initial condition x̃i ∈ Cτ
C,W0

the
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solution to the delay differential stochastic equation

dxt = f(xt, xt−τ )dt + g(xt)dwt (4)

xθ = x̃i(θ) ∈ C, θ ∈ [−τ, 0] (5)

does not exit C almost surely. Then, determine whether the

solution converges to the origin almost surely for any x̃i ∈
Cτ

C,W0
.

A delay-dependent stability criterion for Problem 1 is

given in the following:

Theorem 1: For Problem 1, suppose there exist n-variable

polynomials Vi (i = 0, 1), N ∈ R
2n×n, and positive-definite

matrices R, T ∈ R
n×n such that Υ : C × C × R

2n → R

defined below is negative:

F (x, xd) :=
(

∂V0(x)
∂x

)T

f(x, xd)

+1
2 g(x)T ∂

∂x

(

∂V0(x)
∂x

)T

g(x)

+V1(x) − V1(xd) + ‖x‖2 + τ‖g(x)‖2
T

+2
[

xT xT
d

]

N(x − xd) + τ‖f(x, xd)‖2
R

Υ(x, xd, y) := F (x, xd)

+





x
xd

y





T 



0 N τN
NT −T 0
τNT 0 −τR









x
xd

y



 ,

(6)

Then, the unique continuous solution of Eqs. (4), (5) con-

verges to the origin almost surely for any initial condition

x̃i ∈ Cτ
C,W0

.

This theorem states that the origin of the stochastic system

considered in Problem 1 is stable if a semi-algebraic problem

is feasible. While semi-algebraic problems are in general NP-

hard, SOS relaxation enables us to systematically search for

polynomials V0 and V1 which satisfy the required conditions

[13], [14]. In the numerical example in the next section, we

utilized MATLAB SOSTOOLS [15], [16].

B. Proof of Theorem 1

In this section, we prove Theorem 1 by using a standard

Lyapunov-Krasovskii type argument: Let xt be the solution

of the stochastic delay differential equations (4) and (5).

Define

x̃t(θ) := xt+θ, θ ∈ [−2τ, 0]

for t ≥ τ .

Consider the following Lyapunov-Krasovskii functional

candidate V : C2τ
C

→ R+

V (x̃) := V0(x̃(0)) +

∫ 0

−τ

V1(x̃(θ))dθ

+

∫ 0

−τ

∫ 0

v

{

‖f(x̃(θ), x̃(−τ + θ))‖2
R + ‖g(x̃(θ))‖2

T

}

dθdv.

(7)

Direct computation yields

0 ≤ τeTXe −
∫ 0

−τ

eTXeds

0 = (2 − 2) · eTN

{

x̃(0) − x̃(−τ) −
∫ 0

−τ

f(s)ds

}

≤ 2eTN(x̃(0) − x̃(−τ)) −
∫ 0

−τ

2eTNf(s)ds

+eTNT−1NTe +

∥

∥

∥

∥

x̃(0) − x̃(−τ) −
∫ 0

−τ

f(s)ds

∥

∥

∥

∥

2

T

where e :=
[

x̃(0)T x̃(−τ)T
]T

, f(s) := f(x̃(s), x̃(−τ +
s)) and X := NR−1NT ≥ 0. We used Lemma 1 in

Appendix. Combining these inequalities and

A V (x̃) =

(

∂V0(x)
∂x

∣

∣

∣

x̃(0)

)T

f(x̃(0), x̃(−τ))

+1
2 g(x̃(0))T ∂

∂x

(

∂V0(x)
∂x

)T
∣

∣

∣

∣

x̃(0)

g(x̃(0))

+V1(x̃(0)) − V1(x̃(−τ)) + τ(‖f(0)‖2
R + ‖g(x̃(0))‖2

T )

−
∫ 0

−τ

{

‖f(s)‖2
R + ‖g(x̃(s))‖2

T

}

ds,

we obtain

A V (x̃) + ‖x̃(0)‖2 ≤ Υ̃(x̃(0), x̃(−τ)) − G1(x̃) − G2(x̃)

with

Υ̃(x, xd) := F (x, xd) +
∥

∥

∥

[

xT xT
d

]T
∥

∥

∥

2

τX+NT−1NT

G1(x̃) :=

∫ 0

−τ

∥

∥

∥

[

eT f(s)T
]T

∥

∥

∥

2

Ξ
ds ≥ 0

G2(x̃) :=

∫ 0

−τ

‖g(x̃(s))‖2
T ds

−
∥

∥

∥

∥

x̃(0) − x̃(−τ) −
∫ 0

−τ

f(s)ds

∥

∥

∥

∥

2

T

,

Ξ :=

[

X N
NT R

]

≥ 0.

Moreover, we can show

E [G2(x̃t)]

= E

[

∫ 0

−τ

‖g(x̃(s))‖2
T ds −

∥

∥

∥

∥

∫ 0

−τ

g(x̃(s))dws

∥

∥

∥

∥

2

T

]

= 0

by using Itô isometry. We thus have

E
[

A V (x̃t) + ‖x̃t(0)‖2
]

≤ E

[

Υ̃(x̃t(0), x̃t(−τ))
]

.

Finally, by using Lemma 2 in Appendix II and the assump-

tion on Υ, we can show that Υ̃ is negative, and consequently

E [A V (x̃t)] ≤ −E
[

‖x̃t(0)‖2
]

≤ 0 (8)

follows.
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Recall that xt evolves only in bounded domain C. Hence

Fubini’s theorem yields

E

[
∫ t

0

A V (x̃s)ds

]

=

∫ t

0

E [A V (x̃s)] ds.

By combining this equality, (8) and Dynkin’s formula, we

obtain

V (x̃t) − V (x̃0) = E

[
∫ t

0

A V (x̃s)ds

]

= −
∫ t

0

E
[

‖xt‖2
]

ds ≤ 0

Without loss of generality, we can assume that polynomials

Vi (i = 0, 1) are non-negative on C. This is because both

of these are bounded from the below due to the continuity

of polynomials and also the boundedness of C. Therefore

we conclude that V (x̃t) is a nonnegative super-martingale.

The remaining proof is the same as the standard Lyapunov-

Krasovsii argument; see e.g., Theorem 6.1 and 6.2 in [6] and

their proofs. This completes the proof.

Remark 1: The assumption on the boundedness of C is

not essential. When we consider an unbounded domain C we

need to add some assumptions including the non-negativity

of Vi. See [6] for the detail.

IV. APPLICATION: 2-DIMENSIONAL QUANTUM SPIN

This section focuses on a spin-1/2 model of the atom

such that the system is composed of only a single particle.

This system is very important, since it is the most basic

component in quantum information processing [10]. In (3),

the angular momentum operators are

Fy =
1

2

[

0 i
−i 0

]

, Fz =
1

2

[

1 0
0 −1

]

.

It is well known as quantum state reduction that the equation

(3) without the input ut = 0 shows the following probabilis-

tic convergence:

ρt → ρ↑ :=

[

1 0
0 0

]

, or ρt → ρ↓ :=

[

0 0
0 1

]

.

The density matrices ρ↑ and ρ↓ represent that the monitored

spin state of the atom is up and down, respectively. Note

that only these two matrices are equilibrium points of Eq. (3)

when ut = 0. Our goal is to design a feedback control law

ut = u(ρt−τ ) that achieves the deterministic convergence to

the prescribed equilibrium state ρf which is ρ↑ or ρ↓. This

problem has been solved in [23] when there is no delay.

We should remark that, even in such a simple setting, the

controlled equation (3) shows a significant dependence on

the delay, and eventually the control problem becomes much

harder than the previous one.

It is shown ([23]) that the control input ut = u(ρt) with

u(ρ) := k1(1 − tr(ρρf)) + k2 tr(i[Fy, ρ]ρf) (9)

achieves the control objective ρt → ρf when k1 and k2 are

chosen appropriately1.

In this section, we derive a sufficient condition for this

form of control input to globally stabilize a quantum spin

control system in the face of feedback delay. Let us rewrite

Eq. (3) in terms of the regulation error
[

x(1)

t x(2)

t + ix(3)

t

x(2)

t − ix(3)

t −x(1)

t

]

:=

{

ρf − ρt, if ρf = ρ↑
ρt − ρf, if ρf = ρ↓.

We obtain a stochastic delay differential systems with respect

to real variables x(1)

t , x(2)

t and x(3)

t The followings can easily

be verified:

• x(3)

t affects neigher x(1)

t nor x(2)

t ,

• if both x(1)

t and x(2)

t converege to 0, then so does x(3).

Hence the dynamics of x(3) can be ignored. An explicit

expression of the dynamics of

x :=
[

x(1) x(2)
]T

is given by (4) with

f(x, xd) :=

[

−kxdx
(2)

kxd

(

x(1) − 1
2

)

− 1
2x(2)

]

,

g(x) :=
√

η

[

2x(1)(x(1) − 1)
(2x(1) − 1)x(2)

]

,

k :=
[

k1 k2

]

.

Let us consider the invariant subset of this dynamics.

Recall that original state variable ρt is positive semi-definite.

By this property and the definition of xt, an invariant subset

is given by the following circular domain C:

C :=
{

x ∈ R
2 : Ψ(x) ≤ 0

}

, (10)

Ψ(x) := x(1)(x(1) − 1) + x(2)2. (11)

Actually, we can show that for any initial condition x̃i ∈
Cτ

C,W0
the solution to delay differential stochastic equation

(4) does not exit C almost surely.

In summary, the following statements are equivalent:

• In Problem 1 with the definitions above, xt converges

to the origin almost surely.

• With u(·) given by (9), ut = u(ρt−τ ) regulates the state

ρt to the target state ρf almost surely.

Therefore, the required global stabilization of the target state

is achieved if the following SOS problem has a solution:

Problem 2 (SOS programming): Under the above defini-

tions, find polynomials Vi (i = 0, 1), h, hd and N ∈ R
2n×n

and positive-definite matrices R, T ∈ R
n such that

−Υ(x, xd, y) − h(x, xd, y)Ψ(x) − hd(x, xd, y)Ψ(xd),

h(x, xd, y),

hd(x, xd, y)

are the sum of squares with respect to x, xd and y.

1The interpretation of this control law is as follows: the second term
with k2 > 0 locally stabilizes ρf. However, unfortunately, any eigenstate
is an equilibrium of the closed-loop system. Hence, when ρt is close to
an eigenstate that is not the regulation point, we need to prevent ρt from
converging to it. This is done by the first term.
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We provide a numerical example to illustrate the effec-

tiveness of Theorem 1. If we fix the degrees of free decision

polynomials, Problem 2 can be solved via reduction to

the semi definite programming. Polynomials V0 and V1 are

restricted to quadratic functions

V0(x) := x(1) + xTQ0x,

V1(x) := qx(1) + xTQ1x.

It should be stressed that x(1) in these functions is equivalent

to dist(·) which is defined below and represents a distance

from the target state ρf. Note that Qi ∈ R
2×2 does not need

to be positive definite because x(1) is positive in C.

We take η = 0.9 and ρt ≡ 1
2 (ρ↓ + ρ↑) for −τ ≤ t ≤ 0. In

what follows, time responses of

dist(ρ) := 1 − tr(ρρf) : S → [0, 1]

are shown (10 sample paths (blue) and their average (red)).

This function gives the distance from the target state, i.e.,

dist(ρ) = 0 (resp. dist(ρ) = 1) if and only if ρ = ρf (resp.

ρ is another eigenstate, different from the target state). The

initial state satisfies dist(ρ0) = 1/2.

Figure 2 is the time responses of dynamics without control

input, i.e., ut ≡ 0. In this case, dist(ρt) converges to 0 or

1. This is a result of the quantum state reduction. We design

control law such that ρt → ρf := ρ↑ as t → ∞.

Let k1 = k2 = 1.0 and ρf := ρ↑. Figure 3 is the time

responses of ρt controlled without delay. We can see that

global stability is achieved. Then, we solved Problem 2 for

this control input and τ = 1.0. This means that this control

input stabilized the target state despite the feedback delay.

Figure 4 shows the time response of this case.

Let k1 = k2 = 10.0. In this case, Problem 2 had no

solution. The time response in Figure 5 does not converge

to the target state.

Roughly speaking, Problem 1 covers not only the spin-1/2

model but also other higher dimensional spin systems. Using

the numerical approach introduced in the next section, we

can show that the general multi-spin system is also globally

stabilized by a feedback controller despite time-delays. See

also [5] for the effect of delays in switching control law.

V. CONCLUSION

In this paper, we gave a delay dependent stability criterion

for a class of stochastic delay systems with polynomial

nonlinearity. An important advantage of this result is that

when an invariant set of the system is available, we can

incorporate this information to reduce the conservativeness.

The resulting condition was given in terms of semi-algebraic

problem which is known to be effectively solvable via SOS

relaxations. However, we have not so far discussed the

computational complexity.

This work was originally motivated by the design of

quantum spin control systems in the face of feedback delays.

The effectiveness of the proposed method is evaluated by

designing a globally stabilizing control law for the spin-1/2

system. To the best of the author’s knowledge, there have

time

dist(ρt)

Fig. 2. Time response: without control input, i.e., ut ≡ 0

time

dist(ρt)

Fig. 3. Time response: delay free case with k1 = k2 = 1.0

been no theoretical result which proves that quantum spin

systems in the face of feedback delays can be stabilized

by using continuous (i.e., without switching) control law. In

principle, higher dimensional spin systems can be dealt with

similarly to the case of spin-1/2 system. However, due to the

computational complexity issue noted above, it is not clear

whether resulting semi-algebraic problems can be solved in

a realistic time.

APPENDIX

Lemma 1: For any x, y ∈ R
n and positive definite matrix

T ∈ R
n×n,

2|xTy| ≤ ‖x‖2
T + ‖y‖2

T−1 .
Proof: This result readily follows from

(T 1/2x ± T−1/2y)T(T 1/2x ± T−1/2y) ≥ 0.

Lemma 2 (Schur complement): Let D be a subset of R
n,

N ∈ R
n×m and negative-definite W ∈ R

m×m. If F : D →
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time

dist(ρt)

Fig. 4. Time response: the case of τ = 1.0 with k1 = k2 = 1.0

time

dist(ρt)

Fig. 5. Time response: the case of τ = 1.0 with k1 = k2 = 10.0

R makes

Υ(z, y) := F (z) +

[

z
y

]T [

0 N
NT W

] [

z
y

]

negative in D × R
m, then

Υ̃(z) := F (z) − zTNW−1NTz

is also negative in D.

Proof: The result readily follows from Υ(z, ȳ) = Υ̃(z)
with ȳ := −W−1NTz ∈ R

m.
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[10] M. Nielsen and I. Chuang, Quantum Computation and Quantum

Information, Cambridge University Press, 2000.
[11] A. Papachristodoulou, Analysis of nonlinear time delay systems using

the sum of squares decomposition Proc. ACC, 2004.
[12] A. Papachristodoulou, Robust stabilization of nonlinear time delay

systems using convex optimization, Proc. CD-ROM 44th. IEEE CDC

and ECC ’05, 2005.
[13] P. A. Parillo, Structured semidefinite programs and semialgebraic ge-

ometry methods in robustness and optimization. PhD thesis, California
Institute of Technology, 2000.

[14] P. A. Parillo, Semidefinite programming relaxations for semialgebraic
problems, Math. Program., Ser. B 96: 293-320, 2003.

[15] S. Prajna, A. Papachristodoulou and P. A. Parrilo, SOSTOOLS ver
2.02: Sum of squares optimization toolbox for MATLAB, 2004.

[16] J. Sturm, SeDuMi version 1.1, 2006.
[17] J. J. Sakurai, Modern Quantum Mechanics (revised ed.). Addison

Wesley, 1994.
[18] D. A. Steck, K. Jacobs, H. Mabuchi, S. Habib and T. Bhattacharya,

Feedback cooling of atomic motion in cavity QED, Phys. Rev. A, 74
012322, 2006.

[19] J. K. Stockton, Continuous Quantum Measurement of Cold Alkali-

Atom Spins, Ph.D Thesis, California Institute of Technology, 2006.
[20] J. Stockton, M. Armen and H. Mabuchi, Programmable logic devices

in experimental quantum optics, J. Opt. Soc. Am. B, 19:3019-3027,
2002.

[21] H. M. Wiseman, Quantum theory of continuous feedback, Phys. Rev.

A, vol. 49, p. 2133, 1993.
[22] D. Yue and Q.-L. Han, Delay-Dependent exponential stability of

stochastic systems with time-varying delay, nonlinearity, and Marko-
vian switching, IEEE Trans. Automat. Contr., 50:217-222, 2005.

[23] R. van Handel, J. K. Stockton, and H. Mabuchi, Feedback control of
quantum state reduction, IEEE Trans. Automat. Contr., vol. 50, pp.
768-780, 2005.

[24] E. I. Verriest, Asymptotic properties of stochastic delay systems, in
Advances in Time-Delay Systems, pp. 389-435, Springer-Verlag, 2004.

5263


