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Abstract— This work considers the design of point-to-point
input trajectories for flexible motion systems. The objective is to
excite the system’s dynamics as little as possible so as to reduce
residual vibration and settling time. Simulation and experimen-
tal results of a recently developed optimization framework for
polynomial splines are presented. This framework is capable
of automatically selecting the optimal number and location of
the knots of the polynomial spline and allows input constraints
and robustness against parametric uncertainty and unmodeled
dynamics to be included during the design. The obtained results
are compared to two literature benchmark methods.

I. INTRODUCTION

Trajectory design for flexible motion systems, for example

cam and servo motor systems, aims at shaping the system

input such that the output behaves in a satisfactory manner.

Several approaches have been presented in literature, which

can be categorized roughly in two main classes: filter design

and input design [2]. Filter design (see [7, 8] among others)

is the more general technique since any motion reference can

be convolved with the designed filter to create the appropriate

system input, whereas input design methods (see e.g. [1, 4,

5, 9]) need to determine a new system input for every new

motion.

This paper discusses the application of the optimization

framework for designing polynomial spline inputs developed

by Demeulenaere et al. in [2] on a two Degree-of-Freedom

(2-DOF) flexible motion system to achieve fast point-to-point

motions with reduced residual vibrations. Both simulation

and experimental results are presented. The results obtained

with the optimal polynomial spline trajectories are compared

to two benchmark methods from the literature. The first

benchmark is input shaping, a filter design method proposed

by Singer and Seering [7]. The second benchmark is an input

design method based on Bernstein-Bézier harmonic curves

developed by Srinivasan and Ge [9].

The paper is organized as follows. Sec. II gives a short

overview of the optimization framework for polynomial

splines. Next, residual vibrations of a flexible motion system

for a given point-to-point input are quantified in Sec. III,

after which Sec. IV presents the application. The test-

setup is introduced and the results of the two considered

benchmark methods and the spline optimization framework

are compared. Sec. V concludes the paper.
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II. BASIC SPLINE OPTIMIZATION FRAMEWORK

This section gives a short overview of the optimization

framework for polynomial splines presented in [2]. First,

the terminology is introduced and a definition is given for

polynomial splines.

A motion trajectory s(t), defined on a finite time interval

[0,te], is a polynomial spline of degree k ≥ 0, having as knots

the strictly1 increasing sequence ti, i = 0, . . . ,g + 1 (t0 = 0,

tg+1 = te) if [3]:

• s(t) is a polynomial of degree ≤ k on each knot interval

[ti,ti+1]:
s[ti,ti+1] ∈ Pk, i = 0, . . . ,g. (1)

• s(t) and its derivatives up to order k−1 are continuous

on [0,te]:
s(t) ∈ C

k−1[0,te]. (2)

A knot is called active if the kth-order derivative of s(t)
features a discontinuous jump at ti (as allowed by the

previous definition). The knots ti, for i = 1 . . .g are the g

internal knots.

Several approaches exist to optimize polynomial splines.

If the degree k, the number g and the location of the internal

knots are given, it suffices to find the coefficients of the

polynomials s[ti ,ti+1] on each knot interval. Depending on

the optimization criterion this is a rather straightforward

problem. In contrast, the problem becomes a nonlinear

optimization problem with a lot of local optima when only

the degree k and the number of knots g are given, but not

their location. In the approach presented in [2], this problem

is avoided by choosing a very fine, equidistant sequence of

possible knots,

ti = i ·∆t, i = 0, . . . ,g + 1 where ∆t =
te

g + 1

with typical values of g = 500 . . . 2000.

The consequence of this indirect (basis pursuit) approach

is that the only variables that need to be determined are

the coefficients of the polynomials on each knot interval.

Choosing affine cost functions and constraints the optimiza-

tion results in a medium-scale (typically with a few thou-

sands of variables) sparse linear program that can be solved

very efficiently with a guarantee of optimality. Moreover,

by controlling the smoothness of the spline, i.e. the peak

values of the higher derivatives, the number of active knots

1If the knot sequence is increasing, but not strictly increasing (that is,
coincident knots are present), the continuity condition (2) has to be relaxed:
if ti−1 < ti = · · · = ti+l < ti+l+1, s(t) only has continuous derivatives up to
order k−1− l at t = ti (l ≤ k).
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”chosen” by solving the optimization problem is often very

small yielding a compact representation of the spline.

Some technical issues are discussed now. The interested

reader is referred to [2] for further details. Since the poly-

nomial spline is found as the numerical solution of an

optimization problem, a general parameterization is required

to guarantee that

s(t) ∈ C
k−1
[0,te]

and s(t) /∈ C
k
[0,te]

.

Therefore the k−1st-order derivative of s(t), denoted here as

s(k−1)(t), is parameterized as a piecewise-linear, continuous

function. This is guaranteed by using B-splines (see [3]) of

order 2, denoted here as βi(t) for i = 0, . . . ,g + 1, as base

functions for s(k−1)(t):

s(k−1)(t) =
g+1

∑
i=0

bi ·βi(t) with bi = s(k−1)(ti).

This parameterization becomes more general as g → ∞, i.e.

as ∆t → 0. The spline s(t) is obtained by integrating s(k−1)(t)
k − 1 times, thus introducing k − 1 unknown integration

constants as variables in the optimization problem. This

results in a parameterization for s(t) which is linear in

g + k + 3 optimization variables: the g + 2 values s(k−1)(ti),
for i = 0, . . . ,g + 1 and the k + 1 integration constants.

The basic program to optimize s(t) aims at maximiz-

ing the smoothness of the polynomial spline, given linear

constraints on its position, velocity and higher derivatives.

Smoothness is generally associated with peak values of the

higher derivatives of s(t) and in the optimization framework,

it is quantified by two characteristics of the spline: the ∞-

norm of the kth-order derivative and the 1-norm of k + 1st-

order derivative. These characteristics are affine functions of

the optimization variables, as explained in [2]. Therefore,

using these characteristics as cost function results in a linear

program.

This basic optimization problem can be extended to in-

clude bounds on the residual vibration of a flexible motion

system under parametric and dynamic system uncertainty

(see Sec. III). This will come at the cost of a less smooth

spline.

III. RESIDUAL VIBRATION OF A FLEXIBLE

SYSTEM

A one Degree-of-Freedom (1-DOF) system typically has

the following equation of motion

ÿ(t)+ 2ζω0 ẏ(t)+ ω2
0 y(t) = ω2

0 u(t), (3)

with ω0 the undamped resonance frequency of the system

and ζ the corresponding damping ratio. For such a system,

Fig. 1 shows the response y(t) (dash-dotted) for a fast point-

to-point motion input u(t) (solid) with a rise portion (0 ≤
t ≤ te) and a dwell portion t > te. The notion of a ”fast” or

”slow” input is quantified by the dimensionless ratio

λ =
te

t0
= te ·

ω0

2π
[−], (4)

where te is the duration of the rise portion of the input

trajectory and

t0 =
2π

ω0

[s] (5)

the natural period of the system. The ratio λ represents the

dimensionless undamped resonance frequency and can be

interpreted as the number of periods, corresponding to the

undamped resonance frequency ω0, that fits into the time

interval [0,te]. In general, values of λ smaller than 10 are

considered to be fast.
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Fig. 1. System response (dash-dotted) for a fast point-to-point motion input
trajectory (solid).

A

t0

te

After the rise portion of the input, the system response is

a free oscillation with viscous damping. A good measure of

the amplitude of the residual dwell vibration is the amplitude

A of its exponential envelope at t = te

A =

√

y(te)2 + 2ζy(te)(ẏ(te)/ω0)+ (ẏ(te)/ω0)2

√

1− ζ 2
[m]. (6)

Both the exponential envelope (dotted) and the amplitude of

the residual vibration A are indicated in Fig. 1. From Eq. (6)

it is clear that for a 1-DOF system the amplitude of the

residual vibration is a function of the system characteristics

ω0 and ζ and of the position and velocity of the output at

time te. Given the linear system dynamics (3), the output at

time te is a linear function of the input u(t), for 0 ≤ t ≤ te.

Therefore the ratio λ , the damping ζ and a given point-

to-point input trajectory u(t) with duration te completely

determine A for a 1-DOF system. From (6) it is clear that

A2 is a quadratic function of the output position and velocity

and since these are linear in the input u(t), A2 is a quadratic

function of the input. As explained in the previous sections,

the optimization framework uses a linear parameterization for

the input. Consequently, A2 constitutes a quadratic function

in the spline parameters.

All concepts introduced above can be extended to multiple

Degree-of-Freedom flexible systems. Multiple DOF systems

can be characterized by multiple resonance frequencies ωi
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and corresponding damping ratios ζi, for i = 0, . . . ,N, with

N + 1 the number of DOFs in the model. Similarly as for

1-DOF systems, dimensionless resonance frequencies λi =
te/ti, with ti =

2π
ωi

can be defined. If the resonance frequencies

are sorted such that

ω0 ≤ . . . ≤ ωi−1 ≤ ωi ≤ ωi+1 ≤ . . . ≤ ωN ,

the corresponding λi are sorted as well

λ0 ≤ . . . ≤ λi−1 ≤ λi ≤ λi+1 ≤ . . . ≤ λN .

For a given multiple DOF flexible system and a given

input, perfect nominal performance is achieved if, in the

absence of any uncertainty or modeling error, the amplitude

of the residual vibration is zero. However, most systems are

not perfectly known and therefore the input trajectories have

to be robust against 1) small perturbations on the system

parameters ωi and ζi, 2) small perturbations on the duration

of the rise portion te and 3) unmodeled higher dynamics. To

guarantee 1) and 2) the amplitude of the residual vibration A

has to be small for a range of λ -values around the nominal

value of each λi. To guarantee 3) A has to be sufficiently

small for all values of λ ≥ λN . Most methods published

in the literature demand perfect nominal performance and

add robustness in a second step. In this paper, however, it

will be shown that relaxing the perfect nominal performance

requirement, provides additional design freedom to improve

robustness.

As mentioned before, the test-setup is a 2-DOF system, so

for a given input with duration te it can be represented by 2

dimensionless resonances λ0 and λ1 with the corresponding

damping ratios ζ0 and ζ1. However, one of the goals of

this case-study is to check the robustness of the different

methods against unmodeled higher dynamics. Therefore,

during the design of the inputs, only information about the

first resonance frequency (λ0, ζ0) is used.

Both benchmark methods use a local sensitivity approach

to include robustness, i.e. robustness is obtained by setting

the first-order sensitivity

∂A

∂λ

∣

∣

∣

∣

λ=λ0

= 0. (7)

Higher-order robustness can be included by setting the higher

derivatives of A with respect to λ to zero as well.

The spline optimization framework uses a global sensitiv-

ity approach by imposing the following inequality constraints

A(λ ) ≤ ε, for λ ∈ Λ = [λ , λ̄ ], with λ0 ∈ Λ. (8)

Sec. IV-C explains how this upper bound on the amplitude

of the residual vibration is imposed in the optimization

framework presented in Sec. II. But first, the test-setup is

introduced in Sec. IV-A and the benchmark methods from

the literature are presented in Sec. IV-B.

IV. APPLICATION: FLEXIBLE MOTION SYSTEM

A. Two Degree-Of-Freedom Test-Setup

The test-setup considered is a 2-DOF mass-spring-damper

system. Fig. 2 presents a picture and a schematic drawing of

p(t)

k2

m2 x2(t)

k1 k1
c

m1 x1(t)

Fig. 2. Picture and schematic drawing of the test-setup.

the setup. The system is excited by a hydraulic piston whose

position is indicated by p(t). This piston is driven by a servo

valve which is controlled using a PID-controller to track a

reference position r(t) as shown in Fig. 3. The bandwidth of

the closed-loop P(s)/R(s) is 22Hz. The position of the upper

mass x1(t) is chosen as the system’s output. The dynamics

of the system come from three springs; two with stiffness

k1 and one with stiffness k2. The damping in the system is

represented by the dashpot c.

r(t) +

−

e(t)
PID

u(t) SERVO

VALVE

p(t)

Fig. 3. Control configuration for the hydraulic piston.

Frequency response functions (FRFs) of the system are

measured using multisine excitation with a frequency con-

tent between 0.1Hz and 10Hz and a sample frequency of

2kHz. Statespace models are fitted on these FRFs using a

nonlinear least-squares frequency identification method [6].

Fig. 4 shows two measured FRFs and the two corresponding

identified models. The blue curve (+ marks) shows the FRF

relating r(t) to x1(t). The red line indicates the corresponding

identified model X1(s)/R(s). The green curve (∗ marks)

shows the FRF relating p(t) to x1(t). The black line indi-

cates the corresponding identified model X1(s)/P(s). Both

X1(s)/R(s) and X1(s)/P(s) clearly show a first resonance at

ω0 = 2.6205 ·2π rad/s with ζ0 = 1.57%

and a second resonance at

ω1 = 7.7926 ·2π rad/s with ζ1 = 2.93%.

Notice that there is little or no difference between the two

FRFs at low frequencies. However, at higher frequencies a

clear phase shift is noticeable which can be explained by the

limited bandwidth of the piston position PID-controller.
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Fig. 4. Measured FRFs and identified models relating x1(t) to p(t) and
r(t).

For the benchmark methods as well as for the spline design

the nominal λ is chosen to be 2, which means that the inputs

for this application have a total duration

te = λ
2π

ω0

= 2
2π

2.6205 ·2π
= 0.7632s.

B. Benchmark Results

i. Input shaping

Input shaping is a well-known method to analytically

calculate finite impulse response (FIR) filters, consisting of

a series of positive impulses, that are able to reduce the

system’s residual vibration. It is an elegant, widely spread

and straightforward procedure that is capable of including

robustness against perturbations in both λ and ζ . A drawback

is that a short move-time penalty is incurred (the duration of

the filter).

For the considered application a filter was calculated,

using the procedure developed in [7], with perfect nominal

performance and first-order robustness. The resulting filter

consists of only 3 impulses and has a duration of 0.3816s

(see Fig. 5 b). By convolving a ramp input (Fig. 5 a) with

a duration of 0.3816s as well, a shaped input (Fig. 5 c)

is obtained with a total duration of te = 0.7632s which

corresponds to λ = 2. This ramp input can be interpreted

as a velocity pulse of 0.3816s, which is similar to the input

originally used in [7]. Notice that by choosing a ramp input

as the original input, the obtained shaped input has a non-

zero velocity at the start and the end of the trajectory.

ii. Bernstein-Bézier Harmonic Curves

Bernstein-Bézier harmonic curves constitute an interesting

family of curves since they have a low frequency content that

is explicitly known. Following the procedure presented in

[9], in a first step, a Bernstein-Bézier harmonic is calculated

analytically for the desired output, based on the requirements

of perfect nominal performance and first-order robustness. In

a second step the corresponding Bernstein-Bézier harmonic
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Fig. 5. Original input, input shaping filter and the resulting shaped input.

input, necessary to obtain the desired output, is calculated

analytically using the inverse dynamics of the system. The

calculation of the desired output in the first step can become

time-consuming for higher-order robustness. Both the desired

output (solid) and the corresponding calculated input (dash-

dotted) are shown in Fig. 6. The desired output clearly has

zero velocity at the boundaries. This however, is not the case

for the calculated input, which starts and ends with a nonzero

velocity.
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Fig. 6. Desired output (solid) and calculated input (dash-dotted) using
Bernstein-Bézier harmonic curves.

C. Polynomial Spline Results

A polynomial spline with degree k = 5 is optimized

considering the following constraint and goal function.

• Robustness against uncertainty on λ0 is included here

by choosing a set of M values λ̃ j from the uncertain

set Λ = [λ , λ̄ ], constructing their corresponding models

(3) and imposing inequality constraints on the residual

vibration for these models. As explained in [2], the

constraint A(λ̃ j)
2 ≤ ε2 which is quadratic in the spline

parameterization, can be replaced by a conservative set

of four linear constraints for every λ̃ j.

• The cost function is the ∞-norm of the kth-order deriva-

tive. Minimizing this cost function yields that extreme

values of the higher derivatives are clipped off.

• Since both benchmark methods allow a velocity dis-

continuity at the start t = 0 and end t = te of the

trajectory, this design freedom is given to the spline

optimization framework as well. This, however, is rather

counterintuitive since the imposed continuity of the

spline for 0 < t < te is higher.

Fig. 7 shows the position, velocity and higher derivatives

of the polynomial spline that was found using the following
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settings: number of internal knots g = 511, total spline

duration te = 0.7632s and bound on the residual vibrations

ε = 0.75% for λ̃ j ∈ [1.7 : 0.01 : 3] (M = 131). The resulting

spline clearly shows only 4 active internal knots, although

511 possible knots were provided and the associated cost

||s(5)(t)||∞ = 1.0493e4[m/s5] as can be seen from Fig. 7 f.

Although the optimization framework allows to include

robustness against unmodeled higher dynamics, this is not

included in the design of this spline. The results shown in

the following section motivate this choice.
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Fig. 7. Polynomial spline and its derivatives.

D. Comparison
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Fig. 8. Position, velocity and higher derivatives of the polynomial spline
(solid), the shaped input (dashed) and the Bernstein-Bézier harmonic curve
(dash-dotted).

Fig. 8 shows the position, the velocity and the higher

derivatives of the three inputs derived in Sec. IV-B and

IV-C. The shaped input (dashed) has a piecewise-linear

continuous position and discontinuous jumps in its velocity

(Fig. 8 b). Therefore, higher derivatives are not shown for the

shaped input. The polynomial spline (solid) has degree k = 5,

which means the derivative of the jerk is piecewise-linear

continuous and the fifth-order derivative shows discontinuous

jumps (Fig. 8 f). Since the Bernstein-Bézier harmonic curves

can be represented by a finite sum of sines and cosines,

they can be derived infinitely many times. Compared to

the shaped input and the Bernstein-Bézier harmonic, the

polynomial spline shows the smallest ∞-norm of the velocity.

The same holds when comparing the higher derivatives of the

Bernstein-Bézier harmonic and the polynomial spline. Lower

peak values for the derivatives are obviously beneficial for

the system.

The goal of the case-study is to measure the amplitude

of the residual vibration as a function of λ for the three

inputs shown in Fig. 8. To do so, the following approach is

adopted. Since the test-setup has fixed resonance frequencies,

the only freedom left to influence λ is the duration te of

the input. Thus, instead of varying the system, the input is

stretched or compressed in time, as shown in Fig. 9 for the

polynomial spline input and three different values of te =
[0.6487, 0.7632, 1.1448]s corresponding to three different

values of λ1 = [1.7, 2, 3].
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Fig. 9. Polynomial spline input compressed/stretched for λ1 = [1.7, 2, 3]

λ1 = 1.7, te = 0.6487s

λ1 = 2, te = 0.7632s

λ1 = 3, te = 1.1448s

Figs. 10, 11 and 12 show the amplitudes of the residual

vibrations for values of λ ∈ [1.25,4], for the three inputs

designed in the previous section. Simulation results based on

the 1-DOF and the 2-DOF model and experimental results

on the test-setup are compared. Five conclusions can be

drawn. 1) The two benchmark results have perfect nominal

performance, i.e. the amplitude of the residual vibration is

zero for λ = 2. As this was not imposed in the polynomial

spline optimization, this input doesn’t yield perfect nom-

inal performance. 2) The polynomial spline input clearly

outperforms the two benchmark methods. The measured

amplitude of the residual vibrations is below 0.75% for

a range of λ ∈ [1.7,4] which is clearly larger than the

robustness range of the other methods. So the fact that perfect

nominal performance is not required in the polynomial spline

design is largely exploited to suppress the residual vibrations

over a wide λ -range. 3) The experimental results correspond

quite well to the simulation results, indicating that the used

models are accurate representations of the actual test-setup.

4) The 1- and 2-DOF models produce very similar results
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for all designed inputs indicating that for this application,

the unmodeled second resonance frequency is (almost) not

excited by any of the three inputs. This can be explained by

the fact that due to the higher damping of the second mode

the peak of the FRF at the second resonance frequency lies

over 20dB below the peak at the first resonance frequency

(see Fig. 4). 5) For the two benchmark methods, robustness

was imposed using a local sensitivity approach. Comparing

Figs. 10 and 11 shows that in a small range around the

nominal λ -value, the shaped input is more robust than the

Bernstein-Bézier input. For higher values λ ≥ 2.6, however,

the Bernstein-Bézier input yields lower residual vibrations.
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Fig. 10. Amplitude of the residual vibration for λ ∈ [1.25,4]: Comparison
of 1-DOF (solid), 2-DOF model (dash-dotted) simulation and experimental
(∗ marks) results for the shaped input.
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Fig. 11. Amplitude of the residual vibration for λ ∈ [1.25,4]: Comparison
of 1-DOF (solid), 2-DOF model (dash-dotted) simulation and experimental
(∗ marks) results for the Bernstein-Bézier harmonic input.
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Fig. 12. Amplitude of the residual vibration for λ ∈ [1.25,4]: Comparison
of 1-DOF (solid), 2-DOF model (dash-dotted) simulation and experimental
(∗ marks) results for the polynomial spline input.

V. CONCLUSIONS

The optimization framework for designing polynomial

splines, as introduced in [2], is used here to design spline

inputs for a two Degree-of-Freedom motion system. The

optimal spline gives rise to little or no residual vibrations

over a wide range of system uncertainty and outperforms

two earlier benchmark methods from the literature: the well-

known input shaping method [7] and a technique based on

Bernstein-Bézier harmonic curves [9].

The optimization of the polynomial spline is a linear

program, guaranteeing that the solution is a global optimum

that can be found efficiently, in this case within a few CPU

seconds. This makes the optimization framework a promising

tool for engineers in practice. Moreover, the framework

is extremely versatile, allowing to include many different

constraints, e.g. boundary constraints, bounds on the input

and output and their derivatives, set points on the output, . . .
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