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Abstract— The H∞-optimal control for nonlinear systems
is hard to obtain because one must solve the Hamilton-
Jacobi-Isaacs (HJI) equation. To overcome this problem, a
nonlinear controller is proposed by Ezal, Pan, and Kokotović.
The controller guarantees local optimality and global inverse
optimality, that is, it behaves as a linear optimal controller in
the region where the linearized dynamics dominates, and is
inverse optimal in the global sense. However, the system class
under their consideration is single-input strict-feedback non-
linear systems which is somewhat restrictive. In this paper, we
propose a nonlinear optimal controller for a class of multi-input
nonlinear systems. Moreover, under the proposed controller,
the closed-loop system is globally exponentially stable, whereas
the controller proposed by Ezal et al. just guarantees global
asymptotic stability.

I. INTRODUCTION

In general, the nonlinear optimal control designs, including
the H∞-design, for the general nonlinear systems are very
difficult since one must solve the HJI equation (see [2] and
[4]). An alternative to this problem is to employ the linear
optimal control which is obtained from the linearization of
the given nonlinear system. However, the main drawback
of this approach is global stability, that is, the closed-
loop system constituted by the linear optimal controller is
locally stable but may be unstable in the outside of the
local region. Moreover, one does not know how large the
region of attraction is. It may become unacceptably small
in the general cases. To overcome this problem, Ezal et
al. [7] proposed a nonlinear controller based on the robust
backstepping methodology, whose feature is that the closed-
loop system is locally optimal and globally asymptotically
stable. In particular, the global stability is achieved by
ensuring the inverse optimality so that the closed-loop system
has desirable stability margins [2].

However, the considered systems in [7] are single-input
strict-feedback nonlinear systems, which might be some-
what restrictive. The extension to the multi-input nonlinear
systems is presented in [8]. But, in [8], the authors only
consider a specific nonlinear model, i.e., a moored ship
model. Due to the consideration of the specific nonlinear
model, they only perform the backstepping procedure to two
steps. Furthermore, the dimensions of the substates must be
equal to each other.

The main objective of this paper is to extend the ap-
proach developed in [7] to the general multi-input nonlinear
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systems. The essential difference compared to [7] is the
block Cholesky factorization. By using the block Cholesky
factorization and the block backstepping methodology, a
nonlinear controller is constructed such that it guarantees
the local optimality and the global inverse optimality for the
multi-input nonlinear systems.

II. PROBLEM FORMULATION

Consider a multi-input nonlinear system

ẋ = f(x) + G(x)u + H(x)w,

in the block strict-feedback form [3]:

ẋ1 = f1(x[1]) + G1(x[1])x2 + H1(x[1])w
ẋ2 = f2(x[2]) + G2(x[2])x3 + H2(x[2])w

...
ẋm = fm(x) + Gm(x)u + Hm(x)w,

(1)

where x = [xT
1 · · · xT

m]T with xi ∈ Rµi is the state, x[i] =
[xT

1 · · · xT
i ]T is the substate of x, u ∈ Rµm+1 is the control

input, the positive integer µi satisfies µ1+· · ·+µm = n with
0 < µ1 ≤ · · · ≤ µm ≤ µm+1, and w : [0,∞) → Rq is an
unknown disturbance of either L2 or L∞. We assume that
fi, Gi, Hi are smooth, fi(0) = 0, and Gi(x[i]) has full row
rank for all x[i] ∈ Rµ1+···+µi . Note that the system (1) is a
natural extension of the system in [7], that is, if m = n and
Gi(x[i]) = 1 for all i then (1) becomes the system considered
in [7].

The goal of this paper is to develop a recursive design
procedure for the multi-input nonlinear system (1) such that
the designed controller u = µ(x) achieves local optimality
and global inverse optimality as described below.

Local Optimality: We design the controller u = µ(x)
to satisfy the local optimality, that is, to make it similar to
the H∞-optimal controller in the region where the linear
dynamics dominates. Consider the linear part of (1)

ẋl = Axl + Bul + Dwl, (2)

where subscript “l” denotes local quantities and

A =
∂f

∂x
(0) =




A11 B1 0 · · · 0
A21 A22 B2 · · · 0

...
...

...
. . .

...
· · · · · · · · · · · · Bm−1

Am1 Am2 Am3 · · · Amm




,

(3)
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B = G(0) =




0
...
0

Bm


 , D = H(0) =




D1

...
Dm−1

Dm


 .

Since Bi’s have full row rank, the pair (A,B) is controllable.
Suppose that a cost functional to (2) is given by

Jl(ul, wl) =
∫ ∞

0

{
xT

l Qlxl + uT
l Rlul − γ2wT

l wl

}
dt, (4)

with Ql = QT
l > 0 and Rl = RT

l > 0. Then, the H∞-
optimal controller ul = µl(xl) is the solution of the dynamic
game minul

maxwl
Jl(ul, wl) for the linearized system (2)

and the cost functional (4). From the H∞-optimal control
theory, it is known that there exist the optimal disturbance
attenuation level γ∗ > 0 and the unique positive definite
solution P of the generalized algebraic Riccati equation
(GARE)

PA + AT P + P

(
1
γ2

DDT −BR−1
l BT

)
P + Ql = 0

(5)

for all γ > γ∗, because (A,B) is controllable and (A,Ql)
is observable [4]. In this case, the optimal value function
is V (xl) = xT

l Pxl (see [2] and [5]), the resulting optimal
controller for the cost functional (4) is

ul = µl(xl) = −R−1
l BT Pxl, (6)

and the corresponding worst case disturbance is

wl = νl(xl) =
1
γ2

DT Pxl. (7)

Thus, in order to satisfy the local optimality, we require that
the final controller u = µ(x) satisfies ∂µ

∂x (0)x = µl(x).
Global Inverse Optimality: We construct a controller u

that achieves the global inverse optimality [2] for the multi-
input nonlinear system (1) with respect to the cost functional

J(u,w) =
∫ ∞

0

{
q(x) + uT R(x)u− γ2wT w

}
dt, (8)

where q(x) is positive definite and radially unbounded, and
R(x) = RT (x) > 0 for all x. Note that, differently from
the one in [7] that is a scalar-valued positive function, R(x)
should be symmetric positive definite for all x because multi-
input nonlinear systems are considered. Moreover, q(x) and
R(x) satisfy that qxx(0) := 1

2
∂2q
∂x2 (0) = Ql and R(0) = Rl

for the local optimality to be meaningful. The scaling factor
1/2 is included for convenience. The inverse optimality prob-
lem, which is mentioned above, is equivalent to satisfying

min
u

max
w

{
q(x) + uT R(x)u− γ2wT w + V̇ (x)

}
= 0. (9)

for some value function V : Rn → R.

III. LOCALLY OPTIMAL AND GLOBALLY INVERSE
OPTIMAL CONTROLLER DESIGN

Our objective is to design a stabilizing nonlinear state-
feedback controller, which is globally inverse optimal and
whose linear part is the same as the linear optimal controller
(6). The resulting controller is obtained by the robust back-
stepping, but in order to have the latter property, the linear
part of each virtual control that is obtained at each step of the
backstepping design procedure, needs to be carefully chosen.
For this, the linear optimal controller (6) is obtained first.
Then, the block Cholesky factorization of the matrix P gives
some indication suitable for the linear parts of all the virtual
controls. We, therefore, finalize the controller design for the
nonlinear system (1) by choosing nonlinear virtual controls
at each step using the linear parts that are already known
to us. The obtained controller is shown to be optimal for a
certain cost functional.

Before proceeding, we introduce some notations for con-
venience. Consider a matrix M ∈ Rn×n which is partitioned
into the same form as A in (3), that is, its (i, j) matrix entry
Mij belongs to Rµi×µj . Then, it is defined that

M[i] :=




M11 M12 · · · M1i

...
...

. . .
...

Mi1 Mi2 · · · Mii




and M〈i〉 := [Mi1 Mi2 · · · Mii]. For a matrix N =
[NT

1 · · · NT
m]T with Ni ∈ Rµi×q , it is defined that N[i] :=

[NT
1 · · · NT

i ]T . To represent a vector we use a small letter
and to denote a matrix a capital letter is employed. The
superscript “h” stands for higher order function. In this
paper, the higher order function has two meanings. For a
vector function a(x), ah(x) means that ah(0) = 0 and
∂ah

∂x (0) = 0. For a matrix function C(x), Ch(x) is intended
for Ch(0) = 0. The right inverse is denoted by “+”, i.e.,
K+ := KT (KKT )−1 for full row rank matrix K. With
a certain coordinate transformation, the “over bar” means
a quantity in the transformed coordinate. Finally the norm
operator ‖ · ‖ is devoted for the Euclidean norm.

A. Preliminaries

As shown in [7], it is necessary to construct (6) and (7) by
using the linear backstepping methodology for the prepara-
tion of nonlinear backstepping. Instead of constructing them
explicitly, the forthcoming Lemma 1 will summarize the
necessary properties. Consider the unique positive definite
solution P of the GARE (5). From Lemma 3 in Appendix,
P can be factorized as P = LT ∆L, where

L =




I1 0 · · · 0
L11 I2 · · · 0

...
...

. . .
...

Lm−1,1 Lm−1,2 · · · Im


 ,

∆ = diag(∆1, ∆2, · · · , ∆m)

with ∆i, Ii ∈ Rµi×µi , ∆i = ∆T
i > 0 for i = 1, · · · ,m, and

other matrices are of appropriate dimensions. Define zl :=
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Lxl. In particular, the error coordinates are given by

zl,1 = xl,1

zl,i = xl,i + L〈i−1〉xl,[i−1]

= xl,i + L〈i−1〉zl,[i−1], i = 2, · · · ,m,

(10)

where L〈i〉 := L〈i〉L
−1
[i] . Then, the dynamics of z becomes

żl = Azl + Bul + Dwl, (11)

where A = LAL−1, B = LB, and D = LD.
Lemma 1: The following properties hold.

P1: For 1 ≤ k ≤ m, zl,[k] = L[k]xl,[k], where L[k] is
invertible and L−1

[k] := (L−1)[k] = (L[k])−1 has the same
structure as L[k] (see M1 in Appendix).
P2: The structure of A is the same as that of A, that is,

A =




A11 B1 0 · · · 0
A21 A22 B2 · · · 0

...
...

...
. . .

...
· · · · · · · · · · · · Bm−1

Am1 Am2 Am3 · · · Amm




,

and B = B. Thus, for 1 ≤ k < m, the dynamics of the
substate zl,[k] can be written as

żl,[k] = A[k]zl,[k] +
[

0k−1

Bkzl,k+1

]
+ D[k]wl,

where 0k is (µ1 + · · ·+ µk)× 1 zero vector.
P3: In the z-coordinate, the GARE (5) becomes

∆A + A
T
∆ + ∆

(
1
γ2

DD
T −BR−1

l BT

)
∆ + Q = 0,

where Q = L−T QlL
−1 > 0. In particular, for 1 ≤ k < m,

∆[k]A[k] + A
T

[k]∆[k]+
1
γ2

∆[k]D[k]D
T

[k]∆[k] + Q[k] = 0,

2zT
l,[k]∆[k]A[k]zl,[k] = −zT

l,[k]Q[k]zl,[k] − γ2νT
lkνlk,

where νlk(zl,[k]) := 1
γ2 D

T

[k]∆[k]zl,[k].
P4: For 1 ≤ k ≤ m,

zT
l,[k]∆[k]A[k]zl,[k] = zT

l,[k−1]∆[k−1]A[k−1]zl,[k−1]

+ zT
l,k−1∆k−1Bk−1zl,k + zT

l,k∆kA〈k〉zl,[k].

P5: For 1 ≤ k ≤ m,

νlk(zl,[k]) = νl,k−1(zl,[k−1]) +
1
γ2

D
T

k ∆kzl,k,

with νl0 ≡ 0 and νl := νlm.
P6: For 1 ≤ k ≤ m,

A〈k〉 = A〈k〉L
−1
[k] −BkL〈k〉 +

[
L〈k−1〉A[k−1] Lk−1,k−1Bk−1

]

Dk = Dk + L〈k−1〉D[k−1],

where L〈0〉 = 0 and L〈m〉 = 0.
Lemma 1 lists the properties in [7] for multi-input case and

its proof is omitted since it is similar to that of [7]. With the
help of Lemma 1 and the linear backstepping procedure in
[7], the control (6) and disturbance (7) can be recovered,
i.e., in z-coordinate, ul = µl(zl) = −R−1

l BT ∆zl and wl =
νl(zl) = 1

γ2 D
T
∆zl.

B. Nonlinear Backstepping

Based on the properties in Lemma 1, we proceed the non-
linear backstepping. At each step of nonlinear backstepping,
the new state zi = φi(x[i]) will be constructed such that its
linear part is the same as the previous one, i.e., (10). The
only difference of the new state zi compared to the linear
one is higher order terms in the virtual control to cancel the
nonlinearities and to attenuate the disturbance. At the last
step, the control Lyapunov function (CLF) [6] V (z) = zT ∆z
and the lower triangular diffeomorphism z = φ(x), where
zi = φi(x[i]), are obtained. For convenience of the nonlinear
backstepping, we define the error coordinates, in advance, as

z1 = φ1(x[1]) = x1

zi = φi(x[i]) = xi + αi−1(z[i−1]), i = 2, · · · ,m,
(12)

where αi(z[i]) := L〈i〉z[i] + αh
i (z[i]). Here, L〈i〉z[i] is the

linear virtual control as in (10) and αh
i (z[i]) is a higher order

virtual control to be designed at each step.
Step 1: Let V 1(z[1]) = zT

[1]∆[1]z[1] as the value function.
Define fh

1 (z[1]) := f1(x[1]) − A〈1〉x[1] and Gh
1 (z[1]) :=

G1(x[1]) − B1. Note that fh
1 (0) = 0, ∂fh

1
∂z[1]

(0) = 0, and
Gh

1 (0) = 0. Then, the dynamics of z[1]-subsystem is

ż1 =
(
A〈1〉 −B1L〈1〉

)
z[1] + G1(z[1])z2 + H1(z[1])w

+ fh
1 (z[1])−Gh

1 (z[1])L〈1〉z[1] −G1(z[1])αh
1 (z[1])

= A〈1〉z[1] + G1(z[1])z2 + H1(z[1])w + f
h

1 (z[1]),

where G1(z[1]) := G1(z[1]), H1(z[1]) := H1(z[1]),
f

h

1 (z[1]) := fh
1 (z[1]) − Gh

1 (z[1])L〈1〉z[1] − G1(z[1])αh
1 (z[1]),

and the error coordinate z2 is defined in (12). It is easily seen
that f

h

1 is indeed higher order function if αh
1 is. To obtain the

above representation, P6 in Lemma 1 is employed for k = 1.
The time derivative of the value function V 1 becomes

V̇ 1 = 2zT
[1]∆[1]

{
A〈1〉z[1] + G1z2 + H1w + f

h

1

}

= −zT
[1]Q[1]z[1] − γ2νT

l1νl1 + 2zT
1 ∆1G1z2 + 2γ2ν1w

+ 2zT
1 ∆1f

h

1 + γ2wT w − γ2wT w + γ2νT
1 ν1 − γ2νT

1 ν1,

where ν1(z[1]) := 1
γ2 H

T

[1](z[1])∆[1]z[1]. Here, P3 in Lemma
1 is used for k = 1. Completing the square with respect to
w, we obtain

V̇ 1 = −zT
[1]Q[1]z[1] + γ2wT w − γ2‖w − ν1‖2 + 2zT

1 ∆1G1z2

+ 2zT
1 ∆1

{
f

h

1 +
1

2γ2

(
H1H

T

1 −D1D
T

1

)
∆1z1

}
.

To treat the terms in the braces, αh
1 is designed as

αh
1 = G+

1

[
fh
1 −Gh

1L〈1〉z[1] +
1

2γ2

(
H1H

T

1 −D1D
T

1

)
∆1z1

]

and this results in

V̇ 1 = −zT
[1]Q[1]z[1] + γ2wT w − γ2‖w − ν1‖2 + 2zT

1 ∆1G1z2.

Note that αh
1 is made up of only higher order terms, that is,

αh
1 (0) = 0 and ∂αh

1
∂z[1]

(0) = 0.
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Step i: Select V i(z[i]) = V i−1(z[i−1]) + zT
i ∆izi =

zT
[i]∆[i]z[i] as the value function for this step. For the induc-

tion, it is assumed that the dynamics of the z[i−1]-subsystem
is represented by

ż[i−1] = A[i−1]z[i−1] +
[

gh
[i−2](z[i−1])

Gi−1(z[i−1])zi

]

+ H [i−1](z[i−1])w + f
h

[i−1](z[i−1]).

(13)

Here, we have used the following definitions:

z[i] = φ[i](x[i]) := [φT
1 (x[1]) · · · φT

i (x[i])]T ,

Gi(z[i]) := Gi(φ−1
[i] (z[i])), G

h

i (z[i]) := Gi(z[i])−Bi,

gh
[i−1](z[i]) := [{Gh

1 (z[1])z2}T · · · {Gh

i−1(z[i−1])zi}T ]T ,

f
h

[i](z[i]) := [{fh

1 (z[1])}T · · · {fh

i (z[i])}T ]T .

Moreover, time derivative of V i−1 is assumed to be

V̇ i−1 = −zT
[i−1]Q[i−1]z[i−1] + γ2wT w − γ2‖w − νi−1‖2

+ 2zT
i−1∆i−1Gi−1zi

= 2zT
[i−1]∆[i−1]A[i−1]z[i−1] + γ2νT

l,i−1νl,i−1

+ 2γ2νT
i−1w − γ2νT

i−1νi−1 + 2zT
i−1∆i−1Gi−1zi,

(14)

where νi−1(z[i−1]) := 1
γ2 H

T

[i−1](z[i−1])∆[i−1]z[i−1].
In the followings, it will be shown that the dynamics of

the z[i]-subsystem can be written as the form in (13) and
the time derivative of V i is of the form in (14). To show
the former, let fh

i (z[i]) := fi(φ−1
[i] (z[i]))−A〈i〉φ

−1
[i] (z[i]) and

(φ−1
[i] )h(z[i]) := φ−1

[i] (z[i])− L−1
[i] z[i]. Then, by the definition

of zi in (12) and P6, the dynamics of zi becomes

żi = fi(x[i]) + Gi(x[i])xi+1 + Hi(x[i])w

+
∂αi−1

∂z[i−1]

{
A[i−1]z[i−1] +

[
gh
[i−2](z[i−1])

Gi−1(z[i−1])zi

]

+H [i−1](z[i−1])w + f
h

[i−1](z[i−1])
}

= A〈i〉z[i] + Gi(z[i])zi+1 + Hi(z[i])w + f
h

i (z[i]),

where

f
h

i (z[i]) := A〈i〉(φ−1
[i] )h(z[i]) + fh

i (z[i])−G
h

i (z[i])L〈i〉z[i]

+ L〈i−1〉gh
[i−1](z[i])

+
∂αh

i−1

∂z[i−1]

{
A[i−1]z[i−1] +

[
gh
[i−2](z[i−1])

Gi−1(z[i−1])zi

]}

+
∂αi−1

∂z[i−1]
f

h

[i−1](z[i−1])−Gi(z[i])αh
i (z[i]),

Hi(z[i]) := Hi(φ−1
[i] (z[i])) +

∂αi−1

∂z[i−1]
H [i−1](z[i−1]).

Therefore, by using P2, the z[i]-dynamics is obtained as

ż[i] = A[i]z[i] +
[

gh
[i−1](z[i])

Gi(z[i])zi+1

]
+ H [i](z[i])w + f

h

[i](z[i]),

which shows that the former case is indeed true. Differently
from [7], the term gh

[i−1](z[i]) appears in z[i]-dynamics due

to the consideration of the nonlinear function Gi−1. To show
the latter, (14), P3, and P4 are used and this results in

V̇ i = V̇ i−1 + 2zT
i ∆i

(
A〈i〉z[i] + Gizi+1 + Hiw + f

h

i

)

= −zT
[i]Q[i]z[i] + γ2wT w − γ2‖w − νi‖2 + 2zT

i ∆iGizi+1

+ 2zT
i ∆i

{
∆−1

i (G
h

i−1)
T ∆i−1zi−1 + f

h

i

+(Hiνi−1 −Diνl,i−1) +
1

2γ2

(
HiH

T

i −DiD
T

i

)
∆izi

}

where νi(z[i]) := νi−1(z[i−1]) + 1
γ2 H

T

i (z[i])∆izi =
1
γ2 H

T

[i](z[i])∆[i]z[i]. To deal with the remaining nonlinear-
ities, the higher order virtual control is selected as

αh
i = G

+

i

[
A〈i〉(φ−1

[i] )h + fh
i −G

h

i L〈i〉z[i] + L〈i−1〉gh
[i−1]

+
∂αh

i−1

∂z[i−1]

{
A[i−1]z[i−1] +

[
gh
[i−2]

Gi−1zi

]}
+

∂αi−1

∂z[i−1]
f

h

[i−1]

+ ∆−1
i (G

h

i−1)
T ∆i−1zi−1 + (Hiνi−1 −Diνl,i−1)

+
1

2γ2

(
HiH

T

i −DiD
T

i

)
∆izi

]
.

Note that all higher order terms in this step, i.e., the terms
with superscript “h”, follow the definitions that are intro-
duced at the beginning of Section III. Then, we get

V̇ i = −zT
[i]Q[i]z[i] + γ2wT w − γ2‖w − νi‖2 + 2zT

i ∆iGizi+1

which is of the form in (14).
Step m: For the last step, we choose V (z) =

V m−1(z[m−1]) + zT
m∆mzm = zT ∆z as the value function,

where z is defined in (12). It is assumed that the dynamics
of the z[m−1]-subsystem and V̇ m−1 are given by (13) and
(14) for i = m, respectively. Then, the zm-dynamics is

żm = fm(x) + Gm(x)u + Hm(x)w

+
∂αm−1

∂z[m−1]

{
A[m−1]z[m−1] +

[
gh
[m−2](z[m−1])

Gm−1(z[m−1])zm

]

+H [m−1](z[m−1])w + f
h

[m−1](z[m−1])
}

= A〈m〉z + Gm(z)u + Hm(z)w + f
h

m(z),

where

f
h

m(z) := A〈m〉(φ−1)h(z) + fh
m(z) + L〈m−1〉gh

[m−1](z)

+
∂αh

m−1

∂z[m−1]

{
A[m−1]z[m−1] +

[
gh
[m−2](z[m−1])

Gm−1(z[m−1])zm

]}

+
∂αm−1

∂z[m−1]
f

h

[m−1](z[m−1]),

Hm(z) := Hm(φ−1(z)) +
∂αm−1

∂z[m−1]
H [m−1](z[m−1]),

and P6 in Lemma 1 is used for k = m. As a consequence
of the nonlinear block backstepping, we have constructed
the lower triangular diffeomorphism z = φ(x) and the
CLF V (z) = zT ∆z. Under the coordinate transformation
z = φ(x) and G(z) := [0T G

T

m(z)]T with appropriate
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dimensions, the original multi-input nonlinear system (1) is
transformed to

ż = Az + G(z)u + H(z)w +
[

gh
[m−1](z)

0

]
+ f

h
(z),

(15)

whose linearized dynamics is the same as (11) since all the
quantities are constructed such that the linear parts remain
unchanged during the nonlinear backstepping. In particular,
the linear part of the diffeomorphism φ(x) is Lx. This
implies that the characteristics of the linearized systems of
(1) and (15) are the same which would be a desirable result
concerning our dual objectives.

C. Global Inverse Optimal Controller Design

In this subsection, we achieve the main result of the paper,
that is, with the CLF V (z) = zT ∆z, a nonlinear controller
is designed such that it admits local optimality and global
inverse optimality by choosing the positive definite function
q(z) and designing the positive definite matrix function R(z).
The detailed descriptions are given in the following theorem.

Theorem 2: There exist a positive definite, radially un-
bounded function q(z) and a matrix R(z) with q(0) = 0,
qz(0) = 0, qzz(0) = Q, R(z) = R

T
(z) > 0 for all z, and

R(0) = Rl such that for the system (15), the control law

u = µ(z) := −R
−1

(z)G
T
(z)∆z (16)

achieves local optimality and global inverse optimality with
respect to the cost functionals (4) and (8) in z-coordinate,
respectively, and the worst case disturbance is

w = ν(z) :=
1
γ2

H
T
(z)∆z. (17)

Moreover, z(t) → 0 as t →∞ if w(t) ∈ L2, and z(t) ∈ L∞
if w(t) ∈ L∞. If w ≡ 0, the origin is globally exponentially
stable.

Proof: From the CLF V (z) = zT ∆z which is obtained
at the last step of the nonlinear backstepping procedure, the
time derivative of V is given by

V̇ =− zT Qz − γ2νT
l νl + µT

l Rlµl + γ2νT
l,m−1νl,m−1

+ 2γ2νT w − γ2νT
m−1νm−1 + 2zT

m∆mGmu

+ 2zT
m∆m

{
∆−1

m (G
h

m−1)
T ∆m−1zm−1 + f

h

m

}
,

where ν is defined by (17). Adding and subtracting
uT R(z)u + µT R(z)µ + γ2wT w + γ2νT ν, and completing
the squares with respect to u and w yield

V̇ =− zT Qz − uT R(z)u + γ2wT w − γ2‖w − ν‖2
+ (u− µ)T R(z)(u− µ)− µT R(z)µ + µT

l Rlµl

+ 2zT
m∆mψ

h
,

where µ is given in (16) and

ψ
h
(z) :=f

h

m + ∆−1
m (G

h

m−1)
T ∆m−1zm−1 +

(
Hmνm−1

−Dmνl,m−1

)
+

1
2γ2

(
HmH

T

m −DmD
T

m

)
∆mzm,

which consists of only higher order terms. Let

q(z) := zT Qz + µT R(z)µ− µT
l Rlµl − 2zT

m∆mψ
h
.

Note that qzz(0) = Q if R(0) = Rl. To prove the theorem,
we should construct R(z) = R

T
(z) > 0 for all z such that

R(0) = Rl and it renders q(z) to be positive definite and
radially unbounded.

Since ψ
h
(0) = 0 and ∂ψ

h

∂z (0) = 0, there exists Ψ
h
(z) such

that ψ
h
(z) = Ψ

h
(z)z = Ψ

h

[m−1](z)z[m−1] + Ψ
h

m(z)zm with

Ψ
h
(0) = 0. By the Young’s inequality, q(z) is written by

q(z) =zT Qz + zT
m∆m

{
GmR

−1
(z)G

T

m −BmR−1
l BT

m

}

×∆mzm − 2zT
m∆mΨ

h

[m−1]z[m−1] − 2zT
m∆mΨ

h

mzm

≥c‖z‖2 + zT
m∆m

{
GmR

−1
(z)G

T

m −BmR−1
l BT

m

−1
k

Ψ
h

[m−1](Ψ
h

[m−1])
T − 1

k
Ψ

h

m(Ψ
h

m)T

}
∆mzm,

where c := λmin(Q) − k and λmin(Q) implies the smallest
eigenvalue of Q. If we choose k < λmin(Q) and take

R
−1

(z) =G
+

m

{
BmR−1

l BT
m +

1
k

Ψ
h

[m−1](Ψ
h

[m−1])
T

+
1
k

Ψ
h

m(Ψ
h

m)T

}
(G

+

m)T ,

(18)

then q(z) ≥ c||z||2 > 0. Furthermore, R(z) = R
T
(z) > 0

for all z, R(0) = Rl, and qzz(0) = Q since R
−1

(z) =
R
−T

(z) > 0 for all z and R
−1

(0) = R−1
l . In fact, any

matrix R(z) = R
T
(z) > 0 for all z such that R(0) = Rl

and it satisfies (18) with the equality replaced to “≥” can
achieve local optimality and global inverse optimality. For
the choice of R(z), the controller (16) is locally optimal in
z-coordinate since ∂µ

∂z (0)z = µl(z). With the designed q(z)
and R(z), the time derivative of the CLF V (z) is reduced to

V̇ =− q(z)− uT R(z)u + γ2wT w − γ2‖w − ν‖2
+ (u− µ)T R(z)(u− µ).

(19)

Thus, the global inverse optimality is guaranteed because
(16) and (17) satisfy (9) in z-coordinate, that is,

min
u

max
w

{
q(z) + uT R(z)u− γ2wT w + V̇ (z)

}
= 0.

From this, it is seen that the CLF V (z) = zT ∆z is actually
the value function of the dynamic game minu maxw J(u,w)
of the multi-input nonlinear system (15) for the cost func-
tional (8) in z-coordinate. In addition to this, the optimal
control law (16) and the worst case disturbance (17) render
(19) to

V̇ =− q(z)− uT R(z)u + γ2wT w ≤ −c||z||2 + γ2wT w,

which implies that z(t) → 0 as t → ∞ if w(t) ∈ L2

and z(t) ∈ L∞ if w(t) ∈ L∞ (see [7] and [9]). Finally, if
w ≡ 0, the origin becomes the globally exponentially stable
equilibrium point.
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IV. CONCLUSION

In this paper, a nonlinear controller for a class of multi-
input nonlinear systems is proposed. The designed controller
guarantees the local optimality and the global inverse opti-
mality. The key tool for the development of the proposed
controller is the block Cholesky factorization. In the absence
of the disturbance, the controller renders the closed-loop
system to be globally exponentially stable. This is achieved
by hardening the control. If the global exponential stability
is not necessary, then the design techniques in [7] can be
utilized for less hardened control. Finally, the result of this
paper can be extended further to the multi-input nonlinear
systems that have C1 (but not smooth) vector fields by using
the techniques in [10].

V. ACKNOWLEDGMENTS

This work has been supported by Korea Electrical Engi-
neering and Science Research Institute (KESRI, R-2005-7-
048), which is funded by the Ministry of Commerce, Industry
and Energy (MOCIE), Korea.

REFERENCES

[1] H.K. Khalil, Nonlinear Systems, 3rd Ed., Prentice-Hall, 2002.
[2] R. Sepulchre, M. Jankovic, and P.V. Kokotović, Constructive Nonlin-
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APPENDIX
BLOCK CHOLESKY FACTORIZATION

The conventional block Cholesky factorization is of the
form P = LLT , where L is block lower triangular matrix.
On the other hand, it is necessary in this paper to factorize
P = LT ∆L, where L and ∆ are block lower triangular and
diagonal matrices, respectively. Thus, we give the modified
version of the conventional block Cholesky factorization for
the completeness of the paper. The following two properties
of a block matrix will be used for the proof of the forthcom-
ing lemma.
M1: If L is a block lower/upper triangular matrix with
identity matrices along the diagonal, then its inverse L−1

is of the same form, that is, L−1 is also a block lower/upper
triangular matrix with identity matrices, which are of the
same dimensions as the ones in L, along the diagonal.

M2: For any given symmetric positive definite matrix P , P[i]

is also symmetric positive definite for all i.
Lemma 3: For any given symmetric positive definite ma-

trix P ∈ Rn×n and positive integers µi for i = 1, . . . , m
where µ1+· · ·+µm = n, there exists the unique factorization
P = LT ∆L such that

L =




I1 0 · · · 0
L11 I2 · · · 0

...
...

. . .
...

Lm−1,1 Lm−1,2 · · · Im


 ,

∆ = diag(∆1, ∆2, · · · , ∆m),

where ∆i, Ii ∈ Rµi×µi , ∆i = ∆T
i > 0 for all i, and other

matrices are of appropriate dimensions.
Proof: Define S := P−1. We will seek the factorization

S = UT DU , where U is a block upper triangular matrix and
D is a block diagonal matrix.

For i = 1, define U[1] := I1 and D[1] := S[1] = S11. Then
S[1] = UT

[1]D[1]U[1] with D[1] = DT
[1] > 0 by M2.

For i > 1, suppose that S[i−1] = UT
[i−1]D[i−1]U[i−1],

where U[i−1] and D[i−1] have the same form as in LT
[i−1] and

∆[i−1], respectively, and Dj = DT
j > 0 for j = 1, . . . , i−1.

We postmultiply a block upper triangular matrix on S[i] to
obtain the expression like below:
[

S[i−1] Ŝi

ŜT
i Sii

][
U−1

[i−1] −S−1
[i−1]Ŝi

0 Ii

]

=

[
UT

[i−1] 0
ŜT

i U−1
[i−1]D

−1
[i−1] Ii

][
D[i−1] 0

0 Sii − ŜT
i S−1

[i−1]Ŝi

]

where Ŝi := [ST
1i · · · ST

i−1,i]
T . Postmultiply the inverse of

the block upper triangular matrix on the above equation, then

S[i] =

[
UT

[i−1] 0
ŜT

i U−1
[i−1]D

−1
[i−1] Ii

][
D[i−1] 0

0 Sii − ŜT
i S−1

[i−1]Ŝi

]

×
[

U[i−1] D−1
[i−1]U

−T
[i−1]Ŝi

0 Ii

]

=: UT
[i]D[i]U[i].

Let Di := Sii − ŜT
i S−1

[i−1]Ŝi, then Di = DT
i > 0 since S[i]

is positive definite by M2 and Di is the Schur complement
of the matrix S[i]. Thus, S can be factored as S = UT DU
which is the case for i = m. By letting L := U−T and
∆ := D−1, P can be written as P = LT ∆L, where L and
∆ are the ones in Lemma 3. To show the uniqueness of the
factorization, suppose that P has two factorizations, namely,
P = LT

1 ∆1L1 = LT
2 ∆2L2. By premultiplying L−T

1 and
postmultiplying L−1

2 on the equation, we have ∆1L1L
−1
2 =

L−T
1 LT

2 ∆2. The left hand side of the equation is a block
lower triangular matrix with the diagonals are in ∆1 and the
right hand side is a block upper triangular matrix with the
diagonals are in ∆2. Therefore, ∆1 = ∆2 and L1L

−1
2 = I .
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