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Abstract— This paper studies the fault tolerant control (FTC)
problem for a class of nonlinear discrete-time systems with
guaranteed H∞ performance objective in the presence of actu-
ator faults. The mode of faults under consideration is typical
aberration of actuator effectiveness. The novelty of this paper is
that the effect of the nonlinear terms is described as an index in
order to transform the FTC design problem into a semi-definite
programming (SDP). The proposed optimization approach is
to find zero optimum for this index. Combined with H∞

performance index, the conceived multi-objective optimization
problem is solved by using sum of squares method (SOS) in a
reliable and efficient way. A numerical example is included to
verify the applicability of this new approach for the nonlinear
FTC synthesis.

I. INTRODUCTION

The increasing demands for higher system performance,

product quality, productivity and cost efficiency lead to a

continuous growth of the complexity and automation degree

of technical processes. Associated with these development

trends, high reliability, availability and safety become an

important system requirement which is included in many

international standards and regulations. The objective of

fault tolerant control (FTC) system is to maintain current

performances closed to desirable performances and preserve

stability conditions in the presence of component and/or

instrument faults; in some circumstances reduced perfor-

mance could be accepted as a trade-off. The routine analysis

procedures always need be modulated when taking additional

fault tolerance characteristic into account. Accommodation

capability of a control system depends on many factors

such as the severity of the failure, the robustness of the

nominal system, and the actuators redundancy. FTC can be

motivated by different goals depending on the application

under consideration, for instance, safety in civil aviation or
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reliability or quality improvements in industrial processes.

Various approaches for FTC have been suggested in the liter-

ature [4]-[6], [8], [15], [16] but often deal with linear systems

or lack effective numerical methods for nonlinear systems.

For nonlinear systems, the design of fault tolerant controllers

is far more complicated. Analysis of FTC performance

for nonlinear system always suffers from one drawback:

When consider additional fault tolerance, accommodating

the original control mechanism or reconstructing a control

mechanism in similar way to remove the influence of faults

is hard. The conservation of the original control strategy is

to be confined to give enough space for consideration of

additional fault tolerant performance.

In this paper, a passive fault tolerant approach is adopted,

so no fault detection algorithm is needed. A computational

fault tolerant strategy is developed so as to reduce actuator

fault effect on nonlinear systems, the developed method pre-

serves the system performances by passive FTC mechanism

in faulty situation. To transform FTC design problem into

a tractable semi-definite programming (SDP), the effect of

the nonlinear terms is described as an index. The proposed

optimization approach is to find zero optimum for this

index. Combined with optimal cost performance index or H∞

optimal performance index, the original FTC control problem

is converted into a multiobjective optimization problem. It

includes a constraint set of state dependent linear polynomial

matrix inequalities. Then sum of squares method (SOS)

is used to solve this kind of optimization problems in a

reliable and efficient way. One key difference between the

proposed design and some existing FTC control designs is

that the controller is built through algorithmic construction

of Lyapunov functions. This is meaningful because the SOS

approach often provides less conservative results than other

relaxation methods for nonlinear systems [3]. For nonlinear

systems, the existing results from the standard robust control

technique [1] cannot numerically handle the fault tolerant

control problem with performance optimization. This paper

attempts to develop a tractable computational method to

solve high-order performance FTC problem.

The paper is organized as follows. In Section II, we present

some preliminary results concerning the sum of squares

decomposition and its application to solving state dependent

linear polynomial inequalities. Then in Sections III, the

state feedback H∞ control problem is settled. The result

is obtained under an assumption that the faults happen in

actuator aberration mode. A numerical example is presented

to illustrate the proposed method in Section IV, and finally,

the paper is ended by some conclusions in Section V.
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The notation used throughout the paper is fairly standard.

For matrices or vectors, ∗T indicates transposition, and Φsos

is defined as the set of all SOS polynomials in n variables.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

The computational method used in this paper relies on the

sum of squares decomposition of multivariate polynomials.

A multivariate polynomial f (x) (where x ∈ Rn) is a sum

of squares if there exist polynomials f1(x), . . . , fm(x) such

that f (x) = ∑m
i=1 f 2

i (x). This can be shown equivalent to the

existence of a special quadratic form stated in the following

proposition.

Proposition 2.1. Let f (x) be a polynomial in x∈Rn of degree

2d. In addition, let Z(x) be a column vector whose entries are

all monomials in x with degree no greater than d. Then f (x)
is a sum of squares iff there exists a positive semi-definite

matrix Q such that

f (x) = ZT (x)QZ(x). (1)

Proof: See [10].

Remark 2.2. A sum of squares decomposition for f (x)
can be computed using semi-definite programming, since it

amounts to searching for an element Q in the intersection of

the cone of positive semi-definite matrices and a set defined

by some affine constraints that arise from (1). What is even

more instrumental for control applications is the fact that

when the polynomial f (x) is not exactly determined but

its coefficients are otherwise affinely parameterized in terms

of some unknowns, the search for coefficient values which

render f (x) a sum of squares can still be performed using

semi-definite programming. This has been exploited for al-

gorithmically constructing Lyapunov functions for nonlinear

systems [10], [13].

In this paper, the above methodology is used to solve state

dependent linear polynomial matrix inequalities. What is

meant by state dependent linear polynomial matrix inequal-

ities (LPMI) is an infinite dimensional convex optimization

problem of the form

minimize ∑m
i=1 aici

subject to F0(x)+∑m
i=1 ciFi(x) ≥ 0

(2)

where the ai’s are some fixed real coefficients, the ci’s are

the decision variables, and the Fi(x) are some symmetric

matrix functions of the indeterminate x ∈ Rn. The matrix

inequality (2) basically means that the left hand side of the

inequality is positive semi-definite for all x ∈ Rn. Solving the

above optimization problem amounts to solving an infinite

set of polynomial inequalities and hence is computationally

hard. However, when the Fi(x)’s are symmetric polynomial

matrices in x, the sum of squares decomposition can provide

a computational relaxation for the condition (2). This

relaxation is stated in the following proposition [14].

Proposition 2.3. Let F(x) be an N × N symmetric

polynomial matrix of degree 2d in x ∈ Rn, furthermore, let

Z(x) be a column vector whose entries are all monomials in

x with degree no greater than d, and consider the following

conditions.

(1) F(x) ≥ 0 f or all x ∈ Rn.

(2) T here exists a real vector v ∈ RN

such that vT F(x)v is a sum o f squares.

(3) T here exists a positive semide f inite matrix Q

such that vT F(x)v = (v⊗Z(x))T Q(v⊗Z(x)),

where ⊗ denotes the Kronecker product.

Then (1)⇐=(2) and (2) ⇐⇒ (3).
Proof: see [2]

Remark 2.4. The converse implication (1) =⇒ (2) generally

does not hold. A special case for which this implication

holds is when n = 1 [7]. In the same reference, a symmetric

polynomial matrix F(x) such that vT F(x)v is a sum of

squares is termed a sum of squares matrix. By Proposition

2.3, it is clear that any solution to the sum of squares

optimization problem

minimize ∑m
i=1 aici

subject to vT (F0(x)+∑m
i=1 ciFi(x))v ≥ 0

(3)

is a sum of squares, (3) is also a solution to the state de-

pendent linear polynomial matrix inequalities (2). However,

(3) is much easier to solve than (2) from computational

perspective. In particular, semi-definite programming can be

used for this purpose, e.g. with the help of the software [12].

For nonlinear discrete-time system, the FTC design problem

will be converted into state dependent linear polynomial

matrix inequalities in the form of (3) where ‘x ’ is substituted

by ‘x(k)’.

B. Problem Statement

Consider the nonlinear system described as follow:

x(k +1) = f
(

x(k)
)

+gw

(

x(k)
)

ω(k)+gu

(

x(k)
)

u(k)

z(k) = hz

(

x(k)
)

+ Jzw

(

x(k)
)

w(k)+ Jzu

(

x(k)
)

u(k)

y(k) = hy

(

x(k)
)

+ Jyw

(

x(k)
)

w(k)

which can be approximated by the following state dependent

linear-like representation:

x(k +1) = A
(

x(k)
)

x(k)+Bw

(

x(k)
)

w(k)+Bu

(

x(k)
)

u(k)

z(k) = Cz

(

x(k)
)

x(k)+Dzw

(

x(k)
)

w(k)+Dzu

(

x(k)
)

u(k) (4)

y(k) = Cy

(

x(k)
)

x(k)+Dyw

(

x(k)
)

w(k)

where the state vector x(k) ∈ Rn and other vectors are

of monomials. All other matrices are of polynomials, and

they have appropriate dimensions. y(k) is the measured

output, and z(k) is a vector of output signals related to the

performance of the control system.

To formulate the fault tolerant control problem, the fol-

lowing fault model from [11] is adopted in this paper:

uF
i j(k) = ρ

j
i ui(k),ρ

j
i ∈ [ρ j

i
, ρ̄

j
i ], ρ̄ j

i > ρ j

i
≥ 0,

i = 1, · · · ,m, j = 1, · · · ,L (5)

where uF
i j(t) represents the signal from the ith actuator that

failed in the jth faulty mode, ρ
j

i is an unknown constant,
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the index j denotes the jth faulty mode and L is the number

of total faulty modes. For every faulty modes, ρ j

i
and ρ

j
i

represent the lower and upper bounds of ρ
j

i , respectively.

Note that, when ρ j

i
= ρ

j
i = 1, there is no fault for i−th

actuator ui is outrange in the jth faulty mode. When 0≤
ρ j

i
≤ ρ

j
i < 1, in the jth faulty mode the type of actuator

faults is loss of effectiveness.

Denote

uF
j (k) = [uF

1 j(k),u
F
2 j(k), · · · ,uF

m j(k)]
T = ρ ju(k) (6)

where ρ j = diag[ρ j
1 ,ρ

j
2 , · · · ,ρ j

m], j = 1, · · · ,L. Considering

the lower and upper bounds ρ j

i
and ρ

j
i , the following set

can be defined

Nρ j = {ρ j|ρ j = diag[ρ j
1 ,ρ

j
2 , · · · ,ρ j

m],ρ j
i = ρ j

i
or ρ

j
i = ρ

j
i }
(7)

Thus, the set Nρ j contains a maximum of 2m elements.

For convenience in the following sections, for all possible

faulty modes L, the following uniform actuator fault model

is exploited:

uF(k) = ρu(k),ρ ∈ {ρ1
, · · · ,ρL} (8)

and ρ can be described by ρ = diag[ρ1, · · · ,ρm].
For the system described by (4) with actuator faults (8), state-

feedback and output-feedback FTC controllers are designed

for the closed-loop system to guarantee H∞ performance.

III. STATE FEEDBACK H∞ CONTROL WITH FAULT

TOLERANT OBJECTIVE

A. Extended PMI Characterization of the H∞ Specification

In this paper, a special Lyapunov function is defined to

check the stability of system (4).

V
(

x(k)
)

= xT (k)P
(

x(k)
)

x(k) (9)

where P
(

x(k)
)

is defined to be a n×n polynomial matrix

whose (i, j)− th entry is given by

pi j(k) = p
(0)
i j +

n

∑
l=1

p
(l)
i j xl(k) = p

(0)
i, j +[p

(1)
i, j , · · · , p

(n)
i, j ]T x(k)

(10)

p
(l)
i j i = 1, · · · ,n, j = 1, · · · ,n, l = 1, · · · ,n are scalars. So

V
(

x(k)
)

is linearly parameterized in n2 one-degree poly-

nomials pi, j. The connection of the system (4) with the

linear-like controller to be defined will provide the linear-

like system with closed-loop state-space representation.

x(k +1) = A
(

x(k)
)

x(k)+B
(

x(k)
)

w(k)

z(k) = C
(

x(k)
)

x(k)+D
(

x(k)
)

w(k) (11)

Then the standard H∞ analysis changes to the following form.

Lemma 3.1 (H∞ norm) The inequality ‖Hwz(ζ )‖2
∞ < µ holds

if there exists a symmetric polynomial matrix P
(

x(k)
)

such

that








P
(

x(k)
)

A
(

x(k)
)

P
(

x(k +1)
)

B
(

x(k)
)

∗T P
(

x(k +1)
)

0

∗T ∗T I

∗T ∗T ∗T

0

P
(

x(k +1)
)

C T
(

x(k)
)

DT
(

x(k)
)

µI









> 0 (12)

is feasible.

Proof: The proof can be easily obtained from the

literature of linear system [9].

Remark 3.2 As expected, the condition requires that matrix

A
(

x(k)
)

be Schur stable since the fundamental Lyapunov

inequality
[

P
(

x(k)
)

A
(

x(k)
)

P
(

x(k +1)
)

∗T P
(

x(k +1)
)

]

> 0 (13)

appears as one of their diagonal blocks.

Remark 3.3 Unfortunately, P
(

x(k + 1)
)

does not depend

linearly on p
(l)
i, j in general. It has been shown in (de Oliveira

et al. 1999 a) that it is possible to extended the Lyapunov

inequality (13) with the introduction of an additional in-

strumental matrix variable. This technique is used here to

reduce the number of P
(

x(k +1)
)

in the form (12), and it

is generalized in the next theorem to cope with the H∞ norm

calculation.

Theorem 3.4 (Extended H∞ norm) The inequality

‖Hwz(ζ )‖2
∞ < µ holds if, and only if, there exists a poly-

nomial matrix G
(

x(k)
)

and a symmetric polynomial matrix

P
(

x(k)
)

such that








P
(

x(k)
)

A
(

x(k)
)

G
(

x(k)
)

B
(

x(k)
)

∗T G
(

x(k)
)

+G T
(

x(k)
)

−P
(

x(k +1)
)

0

∗T ∗T I

∗T ∗T ∗T

0

G
(

x(k)
)

C T
(

x(k)
)

DT
(

x(k)
)

µI









> 0

(14)

is feasible.

Proof: (Necessity) Choose G
(

x(k)
)

= G
(

x(k)
)T

=
P(x(k +1)).

(Sufficiency) Assume that the inequality (14) are fea-

sible. Hence G
(

x(k)
)

+ G
(

x(k)
)T

> P
(

x(k + 1)
)

> 0.

Note that this implies that G
(

x(k)
)

is non-singular. Since

P
(

x(k + 1)
)

is positive definite the inequality
(

P
(

x(k +

1)
)

−G
(

x(k)
)

)T

P−1
(

x(k+1)
)

(

P
(

x(k+1)
)

−G
(

x(k)
)

)

>

0 holds. Therefore establishing G T
(

x(k)
)

P−1
(

x(k +
1)

)

G
(

x(k)
)

≥ G
(

x(k)
)

+ G T
(

x(k)
)

− P
(

x(k + 1)
)

which

yields








P
(

x(k)
)

A
(

x(k)
)

G
(

x(k)
)

B
(

x(k)
)

∗T G
(

x(k)
)

P−1
(

x(k +1)
)

G
(

x(k)
)

0

∗T ∗T I

∗T ∗T ∗T

0

G
(

x(k)
)

C T
(

x(k)
)

DT
(

x(k)
)

µI









> 0
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which recovers (12) if multiplied on the right by T
(

x(k)
)

=
diag[ I, G−1

(

x(k)
)

P
(

x(k + 1)
)

, I, I ] and on the left by

T T
(

x(k)
)

.

Remark 3.5 The introduction of this extra variable provides

much advantage in the analysis of nonlinear polynomial sys-

tems, because the polynomial feedback control strategy can

be chosen as high order to get more excellent performance.

The cancelation of nonlinear terms can give convenience

for numerical computation in high order polynomial. What’s

more, for linear system ( the system matrix is choose as

constant matrix ), this new extended stability condition

may also provide advantage in the context of synthesis of

nonlinear controllers to reduce conservation.

B. Multi-objective Optimization Method for H∞ Fault Toler-

ant Control

In this subsection, state-feedback H∞ control against actu-

ator fault is settled with the aforementioned methodology in

part A of subsection II. Throughout this subsection it is the

assumed that the state vector x(k) is available for feedback.

Moreover, the state information is not corrupted by the input

w(k). These assumptions are standard and can be enforced on

the measurement equation of system (4) by assigning to the

matrices Cy

(

x(k)
)

and Dyw

(

x(k)
)

the values Cy

(

x(k)
)

= I and

Dyw

(

x(k)
)

= 0. The following nonlinear static state-feedback

control law

u(k) = K
(

x(k)
)

x(k) (15)

is sought ( K
(

x(k)
)

is in polynomial form). This feedback

structure produces a system in the form (11) where the

closed-loop matrices are given by

A
(

x(k)
)

:= A
(

x(k)
)

+Bu

(

x(k)
)

K
(

x(k)
)

, (16)

B
(

x(k)
)

:= Bw

(

x(k)
)

, (17)

C
(

x(k)
)

:= Cz

(

x(k)
)

+Dzu

(

x(k)
)

K
(

x(k)
)

, (18)

D
(

x(k)
)

:= Dzw

(

x(k)
)

, (19)

Then the nonlinear transformation ( change-of-variables )

X
(

x(k)
)

:= G (x(k)), (20)

L
(

x(k)
)

:= K (x(k))G (x(k)), (21)

P
(

x(k)
)

:= P(x(k)), (22)

is able to reduce partial nonlinear conditions after replacing

(16)—(22) into the inequalities of Theorems 3.4, then poly-

nomial matrix inequality (PMI) on the synthesis variables

X ,L and P is given as follow.

Denote

Γk(A,X ,Bu,L) = A(k)X(k)+Bu(k)L(k),

Γk(A,X ,Buρ,L) = A(k)X(k)+Bu(k)L(k),

Γk(X ,C,L,Dzu) = XT (k)+Cz(k)+LT (k)DT
zu(k).

Theorem 3.6 (H∞ state-feedback FTC): Suppose that for the

system (4) there exist polynomial matrices X(k) and L(k) and

the symmetric polynomial matrices P(k), P(k+1), a constant

ε1 > 0, and a sum of squares ε2(x(k)) with ε2(x(k)) > 0 for

x 6= 0, such that the following SOS optimization problem has

zero optimum of µ

minimize µ

subject to

vT [P
(

x(k)
)

− ε1I]v ∈ Φsos,

vT [P
(

x(k +1)
)

− ε1I]v ∈ Φsos,









v1

v2

v3

v4









T 







P(k) Γk(A,X ,Bu,L) Bw(k)
∗T X(k)+XT (k)−P(k +1) 0

∗T ∗T I

∗T ∗T ∗T

0

Γk(X ,C,L,Dzu)
DT

zw(k)
µI

















v1

v2

v3

v4









∈ Φsos

(23)








v1

v2

v3

v4









T 







P(k) Γk(A,X ,Buρ,L) Bw(k)
∗T X(k)+XT (k)−P(k +1) 0

∗T ∗T I

∗T ∗T ∗T

0

Γk(X ,C,L,Dzu)
DT

zw(k)
µI

















v1

v2

v3

v4









∈ Φsos

(24)

where v, v1, v2, v3, v4 are mutually independent scalar vec-

tors. Then for the state feedback law u(k) = K
(

x(k)
)

x(k),
the zero equilibrium of the closed-loop system is asymptoti-

cally stable, and the closed-loop system has ‖Hwx(ζ )‖2
∞ < µ

in the normal or faulty situation.

Proof: This theorem can be proved with the introduc-

tion of change-of-variables by theorem 3.4. The key point is

that the inequality (14) is affine in the set of extreme matrices

Nρ j .

Remark 3.7 For the existence of nonlinear term in P(k +
1), the set of V (k) and K (k) satisfying these conditions

is not jointly convex, hence a simultaneous search for such

V (k) and K (k) is hard. The following theorem converts this

problem into a semi-definite programming.

Denote

−→p i, j = [p
(1)
i, j , · · · , p

(n)
i, j ]T (25)

Ξ(v,p) = Σi, j=1,··· ,n viv j
−→
P i, j (26)

P̃
(

x(k +1)
)

= (p̃i, j)n×n (27)

=
(

p
(0)
i, j +[p

(1)
i, j , · · · , p

(n)
i, j ]T A

(

x(k)
)

x(k)
)

n×n

(28)

Theorem 3.8 ( Optimization for H∞ state-feedback FTC ):

Suppose that for the system (4), there exist polynomial ma-

trices X(k) and L(k) and the symmetric polynomial matrices

P(k), P(k + 1), a constant ε1 > 0, and a sum of squares

ε2(x(k)) with ε2(x(k)) > 0 for x 6= 0, such that the following
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SOS optimization problem has zero optimum of µ

minimize γ + µ

subject to

vT [P(k)
)

− ε1I]v ∈ Φsos, (29)

vT [P(k +1)− ε1I]v ∈ Φsos, (30)

vT
5

[

γ Ξ(v,p)Bu(k)
∗T I

]

v5 ∈ Φsos, (31)









v1

v2

v3

v4









T 







P(k) Γk(A,X ,Bu,L) Bw(k)
∗T X(k)+XT (k)− P̃(k +1) 0

∗T ∗T I

∗T ∗T ∗T

0

Γk(X ,C,L,Dzu)
DT

zw(k)
(µ − ε2(x(k))I

















v1

v2

v3

v4









∈Φsos

(32)








v1

v2

v3

v4









T 







P(k) Γk(A,X ,Buρ,L) Bw(k)
∗T X(k)+XT (k)− P̃(k +1) 0

∗T ∗T I

∗T ∗T ∗T

0

Γk(X ,C,L,Dzu)
DT

zw(k)
(µ − ε2(x(k))I

















v1

v2

v3

v4









∈Φsos

(33)

for all ρ ∈ {ρ1, · · · ,ρL}
where v, v1, v2, v3, v4, v5 are mutually independent

scalar vectors. Then for the state feedback law u(k) =
K

(

x(k)
)

x(k), the zero equilibrium of the closed-loop system

is asymptotically stable, and the closed-loop system has

‖Hwx(ζ )‖2
∞ < µ in the normal or faulty situation.

Proof: Note that

P
(

x(k +1)
)

=
(

pi j(k +1)
)

n×n
=

(

p
(0)
i j +

n

∑
l=1

p
(l)
i j xl(k +1)

)

n×n

=
(

p
(0)
i, j +[p

(1)
i, j , · · · , p

(n)
i, j ]T

(

A
(

k
)

+Bu

(

k
)

K (k)
)

x(k)
)

n×n

vT
2 P

(

x(k +1)
)

v2 = vT
2 P̃

(

x(k +1)
)

v2 +Ξ(v,p)Bu

(

x(k)
)

K
(

x(k)
)

x(k)

The nonlinear terms in (23)-(24) equal to

Ξ(v,p)Bu(k)K (k)x(k) and Ξ(v,p)Bu(k)ρK (k)x(k). By

the Schur complement,
[

γ Ξ(v,p)Bu(k)
∗T I

]

≥ 0 (34)

implies
(

Ξ(v,p)Bu(k)
)(

Ξ(v,p)Bu(k)
)T ≤ γ . It can be seen

that γ is nonnegative. If the minimum of γ is zero, then

Ξ(v,p)Bu(k) = 0, which makes two nonlinear terms disappear.

By Proposition 2.3, it follows that (31) is the sum of squares

relaxation of (34).

Remark 3.3 If the optimum value of µ is not zero, from

(29)-(30), by Hölder’s inequality

−vT
4 S(k)v4 +Ξ(v,p)Bu(k)u(k) ≥ ε2(x(k))v

T
4 v4 +Ξ(v,p)Bu(k)u(k)

≥ ε2(x(k))v
T
4 v4 −

√
(Ξ(v,p)Bu(k))(Ξ(v,p)Bu(k))T u(k)T u(k)

,

−vT
4 Sρ(k)v4 +Ξ(v,p)Bu(k)ρu(k)

≥ ε2(x(k))v
T
4 v4 +Ξ(v,p)Bu(k)ρu(k)

≥ ε2(x(k))v
T
4 v4 −

√
(Ξ(v,p)Bu(k))(Ξ(v,p)Bu(k))T u(k)T ρT ρu(k)

where S and Sρ represents (21) and (22). It can be seen that

if

u(k)T u(k) ≤ ε2
2 (x(k))(vT

4 v4)
2

max{ρi
k}2γ

(35)

holds, we can also get the same result, thus, (35) can be

used as a discriminant condition of γ . When the input u and

γ satisfy (35), then the objective of this fault tolerant control

strategy is attained. So ε2(x(k)) should be enlarged to get a

feasible control law. It can be seen that if γ equals zero, (35)

is obviously satisfied.

IV. EXAMPLE

Consider a nonlinear system with an approximate polyno-

mial form given by

A(k) =

[

−1+ x2(k)
2
3
− x1(k)

2

x1(k) x2(k)

]

,Bw(k) =

[

x2(k) 1

1 3

]

,

Bu(k) =

[

1 0

x1(k) 2

]

,Cz(k) =

[

1 0

3 4

]

,

Dzw(k) =

[

0 0

6 7

]

,Dzu(k) =

[

0 0

1 7

]

,

Choose the four faulty modes as follows:

Normal mode 1: Both of the two actuators are normal, that

is, ρ1
1 = ρ1

1 = 1.

Faulty mode 2: The first actuator is outrage and the second

actuator may be normal or loss of effectiveness, described

by ρ2
1 = 0, 0.5 ≤ ρ2

2 ≤ 1.

Faulty mode 3: The second actuator is outrage and the first

actuator may be normal or loss of effectiveness, described

by ρ3
2 = 0, 0.4 ≤ ρ3

1 ≤ 1.

Faulty mode 4: Both actuators may be normal or loss of

effectiveness, described by 0.4 ≤ ρ4
1 ≤ 1, 0.6 ≤ ρ4

2 ≤ 1.

In the simulation, the disturbance that used is

w1(k) = w2(k) =

{

1, 10 ≤ t ≤ 11,

0, otherwise

and the fault case is at 2 second , the first actuator becomes

loss of effectiveness of 50%.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

Time(s)

Fig. 1. Response curve of the first state of system in the faulty
situation : controller without FTC consideration (dash), controller with FTC
consideration (solid).
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A state feedback controller is designed using the result stated

in Theorem 3.8, augmented with the minimization of γ . The

values of ε1 and ε2(x(k)) are chosen as 0.1 and 2(x2
1(k)+

x2
2(k)).The optimization returns 1.26 as the optimal value of

µ . Hence, we conclude that the H∞ gain from w to z of the

closed-loop system is no greater than 1.26. For comparison, a

state feedback controller without fault tolerant consideration

designed for the original system in faulty condition returns

2.13 as the optimal H∞ gain of the closed-loop system. In

the normal situation, this controller returns 0.97 as H∞ gain.

This value is a lower bound on the best achievable nonlinear

H∞ performance, and thus we see that the FTC nonlinear

design is not overly conservative. Although µ obtained from

the FTC based design is higher than that of the original one,

the performance of the controller designed for the original

nonlinear system is guaranteed in faulty situation.

V. CONCLUDING REMARKS

In this paper, we have addressed the state feedback FTC

H∞ problems for a class of nonlinear discrete-time systems.

Our approach is built upon representing the nonlinear sys-

tems in a state dependent linear-like form, and the solution

is stated in terms of state dependent linear polynomial

inequalities that incorporate index optimization. It is then

converted into sum of squares optimization problem, which

can be solved using semidefinite programming. A numerical

example is presented to illustrate the availability and effi-

ciency of the method.
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