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Abstract— In this work, the multimodel approach is exploited
in order to ameliorate the discrete second order sliding mode
control (2-DSMC) performances in the case of highly non sta-
tionary systems. Simulation results show a notable improvement
relatively to the classical 2-DSMC, especially in the reaching
phase.

I. INTRODUCTION

Variable structure systems and sliding mode control

(SMC) theory have, since the 70’s, raised up the researchers

interest thanks to its robustness with respect to parameter

variations and external perturbations [4], [6], [14], [22], [31].

Sliding mode control systems which are particular cases of

the variable structure systems are closed loop systems with

discontinuous controller gains that switch the system struc-

ture in order to maintain its trajectory inside a predetermined

subspace called ”sliding surface” [31]. The main idea is to

react immediately to any deviation from the sliding surface

by a powerful enough control input. The system’s dynamics,

in sliding mode, depend on the sliding surface’s parameters.

Face of the many advantages of the digital control strategy

[1], the discretization of the SMC has become an interest-

ing research field. Unfortunately, discretisized sliding mode

control laws are confronted to the dilemma performance-

robustness because they need a model of the system [19],

[23]. The discontinuous term which guaranties the robustness

of sliding mode control laws must not be of a large amplitude

in discrete ones, otherwise, it generates oscillations on the

sliding function and can even lead to instability. This is due

to the fact that the sampling rate is reduced [30]. Many

approaches have been suggested in order to overcome this

phenomenon [7], [8], [20], [25], [29], [30], However, the

reduction of the oscillations amplitude was obtained at the

cost of the control law robustness.

In the eighties, Levantovsky [13] and Emelyanov [5] pro-

posed a control technique, called high order sliding mode

control, where not only the sliding function is reduced to

zero, but also its high order derivatives. In the case of the

r-order sliding mode control, the discontinuity is applied on

the (r − 1) derivative of the control. The effectif control is

obtained by (r−1) integrations and can, then, be considered

as a continuous signal. In other words, the oscillations

generated by the discontinuous control are transferred to

the higher derivatives of the sliding function. This approach

permits to reduce the oscillations amplitude, the notorious
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sliding mode systems’s robustness remaining intact [12].

This approach can be exploited in order to resolve the

chattering problem in discrete time. However, the results

are less brilliant than in continuous time implementation. In

fact, in case of relatively important parameter variations and

external perturbations, the amplitude of the discontinuous

term, noted M , which must be large enough to dominate

them, can involve a static error on the sliding surface and on

the output.

In this work, we propose a solution to this last problem.

The idea is based on the multimodel approach. It consists in

diminishing the distance between the model and the system

parameters, which allow us to use a smaller amplitude of M .

II. SLIDING MODE CONTROL

In continuous time, the control input is updated continu-

ously so that the sliding function sign is opposite to the sign

of its derivative. That means:

S(t, x)Ṡ(t, x) < 0 (1)

where S(t, x) is the sliding function and x is the state. This

inequality is the fondamental condition for sliding mode[2].

One choice of control input that can be used is:

u(t) = −Msign(S(t, x)) (2)

M is a positive constant whose choice depends on the

system’s model parameters, the setpoint, the perturbations

and the model parameters variations. Because it is impossible

to apply such a control law in practice (the imperfection of

the actuators and sensors does not allow the SMC application

at an infinite frequency), oscillations appear on the sliding

surface and on the state. The oscillations amplitude largeness

is proportional to that of M . The equivalent control is among

the ways to reduce them. It is the average value of the

discontinuous control (2), assumed to involve a sliding mode,

and it is calculated using a model of the system. The discon-

tinuous term (2) is added to the equivalent control in order

to guaranty the robustness of the control law. Its amplitude

is then reduced to a value relatively low, but sufficient to

compensate external perturbations and parameters variations.

As calculators are more and more used for control algo-

rithms’ implementation. So, many researches have aimed

to conceive discrete time sliding mode control laws. Un-

fortunately, the variable structure theory have been formally

developed for continuous time implementation and its per-

formances are guaranteed only for a reduced sampling step.

A first order approximation of the condition (1) induces the

chattering phenomenon and can even lead to instability [21]
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and [29]. Many authors tried to resolve this problem. Among

the first contributions, we can cite those of Milosavljevic

[20], Sarpturk [29], Furuta [7] and Sira Ramirez [30]. These

works are based on the quasi sliding mode concept intro-

duced by Milosavljevic [20]. This concept asserts that the

continuous SMC existence conditions do not guaranty its

existence in discrete time.

Most of discrete sliding mode control laws use an equivalent

control calculated by using a model of the system. In order

to ensure robustness with respect to parameter variations

and external perturbations, a high frequency term is added

to the equivalent control. This last term is generally in

the form −M sign(S(k)) . Softened forms are also met

: saturation, hyperbolic tangent [9], [21]... This last strategy

diminishes the chattering amplitude, but on the other hand,

deteriorates the system’s robustness. Some authors proposed

an on line estimation of the perturbations [21], [24], [32].

In this case, the perturbation variation rate influence the

estimation performance.

Gao proposed the reaching law [8]. For a discrete time

system of the form:
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Hx(k)

(3)

where x(k) is the state vector and y(k) is the output, the

control law is:

u(k) = (CT B)−1[ϕS(k) − CT Ax(k) − TeMsign(S(k))]
(4)

with Te is the sampling step, ϕ ∈ [0, 1[ and S(k) = CT x(k)
where CT is the sliding function parameters’ vector.

A particular case of high order sliding mode control is

the second order sliding mode control and was essentially

used for chattering suppression purpose. In discrete time,

the performances are acceptable within a certain range of

parameter variations, beyond which, the reaching phase can

be controlled no more. If we try to increase the discontinuous

term amplitude in order to overcome the high parameter

variations, a static error appears on the state and on the

output. A solution to this last problem is proposed in this

work by using the multimodel approach.

III. AN ASYMPTOTIC NUMERICAL SECOND ORDER

SLIDING MODE CONTROL

Let’s consider the non linear system defined by:

ẋ = f(t, x, u) (5)

with :

• x(t) = [x1(t), ..., xn(t)]
T
∈ X state vector, X ⊂ Rn.

• u(t, x) is the control.

• f(t, x, u) is a function supposed sufficiently differen-

tiable, but in an uncertain manner.

We denote by S(t, x) the sliding function. It is a differen-

tiable function with its (r − 1) first derivatives relatively to

the time depending only on the state x(t) (that means they

contain no discontinuities) [10].

The objective of first order sliding mode control is to force

the state to move on the switching surface S(t, x) = 0. In

high order sliding mode control, the purpose is to force the

state to move on the switching surface S(t, x) = 0 and to

keep its (r − 1) first successive derivatives null [10] :

S(t, x) = Ṡ(t, x) = ... = S(r−1)(t, x) = 0 (6)

r is the sliding mode order.

In second order sliding mode control, the following con-

dition must be satisfied:

S(t, x) = Ṡ(t, x) = 0 (7)

Salgado [10] considered a new sliding surface σ(t, x)
defined by:

σ(t, x) = Ṡ(t, x) + αS(t, x) (8)

with α is a positive constant.

The equivalent control expression is given by:

u̇eq(t) = − 1
CT ∂

∂u
f(t,x,u)

(

CT ∂
∂
f(t, x, u)

+CT ∂
∂x

f(t, x, u)ẋ(t) + αṠ(t, x)
) (9)

The effective control to apply to the system (5) is obtained

by integration of the following relation:

u̇(t) = u̇eq(t) + udis(t) (10)

with udis(t) = −M sign (σ(t, x))
The convergence conditions are described in [10]. For the

discrete-time system defined by (3). The sliding function is

taken in this linear form:

S(k) = CT (x(k) − xd(k)) (11)

with xd(k) is the desired state vector.

We consider the new sliding function σ(k) defined by:

σ(k) = S(k + 1) + βS(k) (12)

with β ∈ [0, 1[ and:

S(k + 1) = CT (x(k + 1) − xd(k + 1))
= CT (Ax(k) + Bu(k) − xd(k + 1))

(13)

The equivalent control that forces the system to evolute

on the sliding function is deduced from :

σ(k + 1) = σ(k) = 0 (14)

The equations (12), (13) and (14) give:

S(k + 1) + βS(k) = 0 (15)

with,

S(k + 1) = σ(k + 1) − βS(k) = CT (x(k + 1) − xd(k + 1))
= CT (Ax(k) + Bueq(k) − xd(k + 1))

(16)

Then :

ueq(k) = (CT B)−1[−β S(k)−CT Ax(k) + CT (xd(k + 1)]
(17)
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The robustness is ensured by the use of a discontinuous term

(sign of the new sliding function σ(k)). By analogy with

the continuous-time case, we apply to the system (3) the

integral of the discontinuous term. In this last case, a first

order transformation is considered:

udis(k) = udis(k − 1) − TeM sign (σ(k)) (18)

The control at the instant k is then :

u(k) = ueq(k) + udis(k) (19)

In what follow, this control law is noted 2-DSMC.

IV. LIMITS OF THE 2-DSMC

Although the 2-DSMC proved to be better than the 1-

DSMC in terms of chattering reduction, an improvement

can be made in the case of highly non stationary systems

necessitating a relatively large amplitude of the discontinuous

term M . In fact, an important value of M induces oscillations

of the sliding surface σ(k). A non null average of these

oscillations involve a static error on the sliding surface

S(k) and on the output. This phenomenon is illustrated via

simulations. The non stationary model of a muscle engine

is considered [14]. A nominal continuous model of the

considered system can be written as follow:
{

ẋ(t) = Acx(t) + Bcu(t)
y(t) = Hcx(t)

(20)

with :

Ac =

[

0 1
−65, 1 −20, 3

]

Bc =

[

0
73, 1

]

Hc = [1 0]

By consideration of the non stationarity, a discrete model is:
{

x(k + 1) = (A + ∆A)
(

x(k)
)

+ (B + ∆B)u(k)
y(k) = Hx(k)

(21)

with :

A =

[

1 Te

−65.1Te (1 − 20.3Te)

]

B =

[

0
73.1Te

]

∆A =

[

0 1
−65.1sg(k) ∆v Te −20.3sg(k) ∆v Te

]

∆B =

[

0
−73.1sg(k) ∆v Te

]

H = [1 0]

sg(k) =

{

1 if k < 120
−1 ifnot

∆v is the parametric variation amplitude.

The sliding step Te is chosen, according to the system’s

dynamics, equal to 0.05s.

We represent on the figures 1 to 2 the obtained results with

high parametric variations ∆v = 0.2 and low parameter

variations ∆v = 0.02, M ’s amplitude being kept constant

(equal to 0.03). We observe that if the parametric variation

is relatively important, the sliding surface’ behavior does no

more correspond to the desired one (figure 1). Besides, the

output response is affected (figure 3). Finally, we observe
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Fig. 1. Evolutions of σ(k) for two different levels of parametric
variation.
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Fig. 2. Evolutions of S(k) for two different levels of parametric
variation.
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Fig. 3. Output’s evolutions for two different levels of parametric
variation.
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Fig. 4. Control’s evolutions for two different levels of parametric
variation.

no chattering since M ’s amplitude remained relatively low

(figure 4).

If we increase the amplitude of the discontiuous term M

in order to ensure its dominance over the relatively high

parametric variation (∆v = 0.2), we remark that oscillations
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appear on the control (figure 7) and induce chattering on

the sliding function σ(k) (figure 5). Consequently, a static

error appear on the output signal (figure 6). From the curves

corresponding to the two values of M , we can conclude that

the gained convergence rapidity was at the cost of a presence

of the chattering and of the static error. As a solution to
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Fig. 5. Evolutions of σ(k) for two different values of M .

50 100 150 200 250 300 350

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

y(k)

k

Large parametric variation

M=0,03

M=0,3

Fig. 6. Outputs’s evolutions for two different values of M .
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Fig. 7. Control’s evolutions for two different values of M .

that problem, we propose to reduce the distance between the

model and the system’s parameters, which shall allow us to

diminish M ’s amplitude. The multimodel approach, carac-

terised by good performances in case of relatively important

parametric variations, is chosen for the system modeling.

In the following paragraph, we introduce the multimodel

aproach. Then, we present the discrete multimodel second

order sliding mode approach. The improvement offered by

this last approach is illustrated via a numerical simulation.

V. IMPROVEMENT OF THE 2-DSMC PERFORMANCES BY

THE MULTIMODEL APPROACH

Instead of exploiting one global model of the system for

the equivalent control calculation, the multimodel approach

suggests the use of some partial models that express the

process dynamics. Two problems must be resolved: the

construction of the partial models and the choice of the

right one at the right time [18]. If the final model is build

by the fusion technique, we must, of course, compute partial

models validities.

A. Construction of the partial models

Some approaches have been proposed for the systematic

determination of a generic models base. In [11], Ksouri L.

proposed a models’ base based on the Kharitonov’s algebric

approach. Four extreme models and a medium one can

be exploited by the multimodel strategy. Ben Abdennour

et al. [15], [16], [17], [26], [27], [28] have proposed two

contributions for the systematic determination of the mod-

els’base. The first is based on the Chiu’s approach for fuzzy

classification [3] and the second exploites the classification

strategy based on the Kohenen card.

B. The validities computing

The validities estimation is insured by the residue ap-

proach:

vi(k) =

1 − ri(k)
md
∑

c=1

rc(k)

md − 1
, i ∈ [1 , md] (22)

ri(k) = |y(k) − yi(k)| (23)

with y(k) is the system’s output, yi(k) is the output of the

ith model and md is the models number.

In order to reduce the perturbation phenomenon due to the

inadequate models, we reinforce the validities as follow:

v
renf
i (k) = vi(k)

md
∏

c = 1
i 6= c

(

1 − e
−

(

rc(k)
g

)2
)

(24)

with g is a positive coefficient. The normalized reinforced

validities are given by:

v
renf
in (k) =

v
renf
i (k)

md
∑

c=1
v

renf
c (k)

(25)

C. The Multimodel 2-DSMC

As already mentioned, the 2-DSMC helps to reduce the

chattering phenomenon by the integration of the discontinu-

ous term which is supposed to guaranty the robustness of the

control law. The choice of the discontinuous term amplitude

is related to the parametric variations and to the external

perturbations affecting the system. Consequently, if they are

relatively important, M must be large enough to ensure a

rapid convergence of the sliding function. Unfortunately, this

4724



induces a static error on the sliding function and on the

system’s state. As a solution to this problem, we propose

to reduce the distance between the model and the system

parameters and then keep a relatively low amplitude of the

discontinuous term M .

The multimodel discrete second order sliding mode control

(MM-2-DSMC) approach structure is shown by the figure 8.

Fig. 8. The structure of a multimodel discrete second order sliding
mode control (MM-2-DSMC).

The control applied to the system is given by the following

relation:

u(k) = v1(k)u1eq(k)+v2(k)u2eq(k)+v3(k)u3eq(k)+udis(k);
(26)

with

• vi(k) : validity of the local model Mi,

• uieq(k) : the equivalent 2-DSMC calculated using the

local model Mi,

• udis(k) : the discontinuous term of the control.

D. Simulation results

The proposed control law (MM-2-DSMC) is applied on

the above considered non stationary system. The 2-DSMC

given by the relation (4) is also applied for a comparison

study. The considered parametric variation is relatively im-

portant (∆v = 0.2). For the 2-DSMC calculation a medium

model is used.

For the MM-2-DSMC calculation, we use a model’s base

composed of tree partial models: the medium model and the

two extremal models. The models are of the following form:

Mi :

{

x(k + 1) = Aix(k) + Biu(k)
y(k) = Hix(k)

(27)

with:

• M1:
A1 =

[

1 Te

−3.25 −0.015

]

B1 =

[

0
3.65

]

H1 = [1 0]

• M2:
A2 =

[

1 Te

−3.32 −0.115

]

B2 =

[

0
3

]

H2 = [1 0]

• M3:
A3 =

[

1 Te

−3.19 0.085

]

B3 =

[

0
4.3

]

H3 = [1 0]
The validities are evaluated by using the residue approach.

Tree partial controls are calculated according to the three

partial models by the expression:

ui(k) = uieq(k) + udis(k) i = 1, 2, 3 (28)

uieq(k) is calculated by the expression :

uieq(k) = (CT Bi)
−1[−β S(k)−CT Aix(k)+CT (xd(k+1)]

udis(k) is approximated by a first order discretisation:

udis(k) = udis(k − 1) − TeM sign (σ(k))

We take, M = 0.03, β = 0.3 and φ = 0.3 for the evaluation

of the MM-2-DSMC and the 2-DSMC performances.

The evolutions of the output, the sliding function, the

control and the phase plane trajectory are represented respec-

tively on the figures 9, 10, 11 and 12. A notable improvement

is observed in the case of the MM-2-DSMC relatively to the

2-DSMC. In fact, the sliding function keeps a null value

apart from the parametric variations. On the contrary, with

the 2-DSMC, the sliding function leaves the sliding surface in

case of relatively important parameter variations. A notable

improvement is also noted on the output evolution which

observes the desired dynamic and is robust with respect to

the parameter variations.
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Fig. 9. The output evolutions.
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Fig. 10. Evolutions of the sliding function σ(k) .
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Fig. 11. The control evolutions.
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Fig. 12. The phase plane.

VI. CONCLUSION

In this work, we proposed a combination between the

multimodel approach and the 2-DSMC in order to insure

the robustness of the closed loop system, essentially during

the reaching phase and in presence of large parameter

variations. The use of a multimodel improved, remark-

ably, the convergence rapidity without a need to increase

the discontinuous term’s amplitude and, thus, avoiding the

chattering phenomenon. Simulation results show a notable

performances improvement offered by the proposed MM-2-

DSMC relatively to case where the 2-DSMC is exploited.
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