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Abstract— We incorporate optimization results of spatially
distributed systems to design the optimal spatiotemporal allo-
cation of sensors moving in unison. By viewing the positioning
of the mobile agents within a network as the discrete spatial
representation of the density of an equivalent single mobile
sensor, the problem of motion-in-unison is converted into the
problem of obtaining the spatial distribution and motion of a
single sensing device. The single mobile sensor is integrated
within the process at which it interacts with, and then the
optimal sensor distribution uses the covariance of the associate
statistical estimator of the process as a performance metric.
To minimize the computational and algorithmic complexity of
viewing the optimal estimator with a variable lower time limit of
a cost-to-go, we consider instead a hybrid equivalent, wherein
the time horizon is decomposed into a sequence of disjoint
integrals mimicking model predictive control.

I. INTRODUCTION

There has been an increasing number of work on sensor

networks in the last decade dealing with various aspects

such as collision avoidance, obstacle avoidance, limited

communications, and flocking, see for example [1], [2], [14]

and references therein. Many works addressed specific issues

both on the theoretical level as well as on the algorithmic

and computational level. An interesting aspect of this work

is to employ a mobile sensor network (or schedule a fixed

sensor network) to improve state estimation. This becomes

more involved when the sensors interact directly with the

process at which they are obtaining information for. In

particular, when a sensor network (whether fixed-in-space or

mobile) provides information for systems governed by partial

differential equations, such as reaction-diffusion equations,

then the inclusion of the sensors in the system modeling is

necessary and provides a natural interpretation of the role of

the sensor in the spatial domain [9], [10], [11], [12], [13].

In this work, we consider the case of moving a spatially

distributed sensor inside the spatial domain of definition

of the process of interest. Such a process is governed by

the 1D reaction-diffusion process that may model species

concentration or temperature distribution. The basic idea is

to move this single spatially distributed sensor in order to

improve a state estimator. While the kinematics of mobile

sensors have been included in many works addressing finite

dimensional systems, such as [8], the current work on a

class of infinite dimensional systems, considers only the

positioning of the spatially distributed sensor within the spa-

tial domain without explicitly incorporating the kinematics.
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However, it provides the abstract mathematical framework to

view spatially distributed sensors that move within a spatial

domain in order to improve state estimation and parameter

identification. Spatially distributed in this manuscript is taken

to mean that a given sensor is defined over a region of the

spatial domain having a spatially varying weight. Such a

spatial weight is termed as the spatial distribution of the

sensing device. Such a sensor provides spatially distributed

measurement on the state of the process.

In earlier work, the “motion” of a single spatially dis-

tributed sensor was utilized to improve state estimation for a

class of distributed parameter systems [7]. Variations of that

also included combined state estimation and detection of a

moving source (intrusion detection) [4], [5], [6]. However,

in this work we utilize such knowledge to the case of mul-

tiple sensors moving within the spatial domain to improve

state estimation. However, consideration of the motion of N

mobile sensors might lead to algorithmic and computational

challenges. Instead, we consider the case wherein a set of

N sensors, each with an identical spatial distribution, is

moving in unison (string formation [14]) in order to provide

collective information on the spatially distributed process.

A related definition for moving in a coordinated fashion is

flocking, but we avoid using such a term since each of the

N individual sensors has a pre-assigned distance from the

leader sensor and it assumed that each of the N−1 followers

can maintain such a distance and orientation with respect to

the leader. This leader is taken to be the centroid of the

equivalent single-sensor spatial distribution. The remaining

N−1 followers must maintain the distance from the centroid

in order for the spatial distribution resulting by combining all

N sensors to stay the same as the initial spatial distribution.

So one now considers the motion of a single equivalent

spatially distributed sensor. An immediate extension is to

have each of the N − 1 followers adjust their velocity in

accordance to a weighted average of the difference of their

velocity with those of the other sensors in the network, [3].

Such an average will not have the same form as that of

the finite dimensional case but instead will involve a spatial

average in the form of the first spatial moment.

The mathematical formulation of the PDE process is given

in § II. The optimization of a single sensor position and

spatial distribution are summarized in § III. Additionally,

the optimization of the equivalent N sensors comprising the

equivalent single sensor are also given along with a summary

of the practical considerations regarding the optimization of

a single equivalent sensor resulting from the combination of

multiple sensors within a sensor network. The use of a single

“moving” sensor for improvement of the state estimator is
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presented in § IV and numerical results are presented in § V.

II. MATHEMATICAL FORMULATION

We consider a 1D diffusion process whose (distributed)

state is to be estimated

∂

∂t
x(t,ξ) = α1

∂2

∂ξ2
x(t,ξ)+α2

∂

∂ξ
x(t,ξ)+α3x(t,ξ)

+b1(ξ)w(t)+b2(ξ)u(t).

(1)

The state of the process is denoted by x(t,ξ) and represents

its value at time t and spatial position ξ within the spatial

domain Ω, which is assumed to be Ω = [0, ℓ] ⊂ R. The

constants α1,α2,α3 are the parameters of the associated

elliptic operator and b1(ξ) and b2(ξ) denote the spatial distri-

butions of the disturbances and control inputs, respectively.

Associated with (1), are the appropriate boundary conditions

x(t,0) = x(t, ℓ) = 0, and initial conditions x(0,ξ) = x0(ξ).
For process measurements, it is assumed that N mobile

sensing agents are available, each supplying information

on the state x(t,ξ) over a small spatial region within Ω.

The motivation for employing mobile sensors stems from

a desire to improve the state estimator. However, instead

of coordinating N mobile sensors, we consider the case of

guiding a single equivalent sensor for such improved state

estimation. Such an equivalent single sensor represents the

collective information from the N individual sensors found

as their weighted sum.

Regarding sensor measurements, we mention two different

types: spatially averaged and spatially distributed. For the

spatially averaged sensor, the information on the state x(t,ξ)
is averaged over a small spatial region within the domain Ω
and may be weighted by a function, as for example

yaveraged(t) =
∫ ℓ

0
f (ξ)x(t,ξ)dξ,

where the function f (ξ) is the spatial distribution of the

sensing device and which acts as the weight in the spatial

averaging of the state x(t,ξ). The output y(t) is a scalar func-

tion that depends on time only. In the spatially distributed

sensor, the output is a weighted function of the state x(t,ξ),
distributed over a small region within Ω. For example,

ydistributed(t,ξ) = g(ξ)x(t,ξ),

provides an output that is distributed over the domain of defi-

nition of the function g(ξ), and which is spatially distributed.

For simplicity, we first consider the case of fixed-in-space

spatially distributed sensors resulting

yi(t) = ci(ξ)x(t,ξ), i = 1,2, . . . ,N, (2)

where the spatial function ci(ξ) denotes the spatial distri-

bution of the ith spatially distributed sensor and produces

a spatially weighted state over the domain (support) of the

function ci(ξ). To incorporate the location of the centroid

of the ith sensing device, the above spatial distribution is

redefined and rewritten as c(ξ;ξi) denoting the ith device at

the spatial location ξi. Hence the function ci(ξ) is a simplified

notation of c(ξ;ξi). When we subsequently consider mobile,

the notation for c(ξ;ξi(t)) reduces to ci(t)(ξ). It is assumed

that the network of spatially distributed sensors occupies a
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Fig. 1. Examples of spatial distribution of two individual sensors and the
spatial distribution of the equivalent sensor.

small continuous region P within the spatial domain Ω. The

problem now is how to distribute (or locate) the N spatially

distributed sensors within the spatial domain. This is simply

the problem of sensor positioning. Figure 1 depicts various

cases of spatial distributions of two sensors (left column)

and the equivalent spatial distribution of a single sensor (right

column) found by combining the two distributions with equal

weights. The individual sensors are positioned within the

region P = [0,0.2].

The above partial differential equation along with the

expression for spatially distributed measurements may be

viewed in an abstract framework in terms of an evolution

equation in appropriate infinite dimensional (Hilbert) space.

We let X denote a Hilbert space with inner product 〈·, ·〉
and corresponding induced norm | · |. Additionally, the inter-

polating space V is a Banach space with norm ‖ · ‖, and is

assumed to be embedded densely and continuously in X [15].

The conjugate dual of V is denoted by V ∗ and ‖·‖∗ denotes

the usual operator norm on V ∗. Then V →֒ X →֒ V ∗. Now

consider the operator A : V → V ∗ which satisfies bound-

edness and coercivity conditions. For the specific PDE in

(1), the operator is Aφ = α1
d2φ
dξ2 +α2

dφ
dξ

+α3φ, φ ∈ Dom(A).

We define the disturbance operator B1 : R → V ∗ and control

input operator B2 : R → V ∗ via B1w(t) = b1(ξ)w(t) and

B2u(t) = b2(ξ)u(t). Therefore, the PDE in (1) is written as

ẋ(t) = Ax(t)+B1w(t)+B2u(t), x0 ∈ X . (3)

The proposed method to place the N spatially distributed

sensors within the region P, is to find the optimal spatial dis-

tribution of a single spatially distributed sensor constrained

within the region P, and then approximate such a distribution

by N test functions. Each of these test functions corresponds

to the spatial distribution of the N sensors. The resulting

Fourier coefficients of the approximation will be directly

related to the position of the N sensing devices.

The optimization problem now is decomposed into two

parts: (i) how to find the optimal distribution of a single
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sensor and (ii) how to find the position of the N sensors

that best approximate the spatial distribution of the single

optimal sensor distribution found in (i). However, such an

optimization problem might be infeasible, since one is usu-

ally given the spatial distribution of a given sensing device.

Thus, the above problems can be redefined and combined

into a single part: (i)
′

how to find the optimal distribution of a

single sensor subject to the fact that the N individual sensors

have a prescribed spatial distribution. This will also provide

the position of the N sensing devices within the domain of

definition P of the equivalent single sensor.

III. OPTIMIZATION OF SENSOR DISTRIBUTION AND

LOCATION

Before we proceed with the coordinated motion of the sen-

sor network, we describe the case in which one first finds the

optimal location and optimal distribution of a single fixed-

in-space sensor that is distributed over the region P. Such

a constrained optimization relies on the optimization of the

observability measure, i.e. find the sensor position (centroid

of sensor distribution) that maximizes the system’s observ-

ability. This is made possible by optimizing the location-

plus-distribution-parameterized observability gramian.

A. Optimization of spatial distribution and spatial location

of a single fixed-in-space sensor

Earlier approaches on sensor optimization focused on

the optimal position of a sensing device within the spatial

domain, with the spatial distribution assumed given. The

prevalent reason for such a justifiable assumption was that

the sensor distribution was already a priori given by the

devices used. No freedom for choosing the spatial distri-

bution was incorporated as this was not realistic or even

feasible - one would never be able to design a sensing device

with a prescribed spatial distribution. However, one may be

able to combine a finite number of sensing devices with

a prescribed spatial distribution and consider them as an

equivalent single sensing device with a spatial distribution

equal to the weighted sum of the individual sensors’ spatial

distributions. This can be viewed as a way of strengthening

the information (signal) from a given group of sensing

devices by grouping them together in certain orientation. An

approximation to a sensing device with a uniform-in-space

spatial distribution (i.e. boxcar function) is the grouping of

sensors with spatial delta (pointwise) distributions. This is

illustrated in Figure 2(a).

When N point sensors are placed next to each other with

equal spacing between them, then their combination (inter-

polation) can be viewed as equivalent to a single distributed

sensor with a spatial distribution given by the boxcar func-

tion Figure 2(a). However, when three different clusters of

point sensors are grouped together, the resulting interpolated

spatial distribution for an equivalent single sensor has a non-

constant distribution, see Figure 2(b), where the equivalent

spatial distribution of a single sensor has a W-shape.

Here both the distribution and location (positioning of

the subregion P within Ω) will be found in an optimal

way. The ith distributed output may be written as yi(t,ξ) =
ci(ξ)x(t,ξ). When the finite dimensional approximation

x(t,ξ) = ∑n
j=1 x j(t)φ

n
j(ξ) is used, then we can assume the ex-

pansion yi(t,ξ) = ∑n
j=1 yi j(t)φ

n
j(ξ), where yi j(t), j = 1, . . . ,n

are the Fourier expansion coefficients for the ith sensor. At

the same time

yi(t,ξ) = ci(ξ)x(t,ξ) = ci(ξ)
n

∑
j=1

x j(t)φ
n
j(ξ)

and therefore, when the above are viewed in weak form
∫ ℓ

0
yi(t,ξ)φn

k(ξ)dξ =
∫ ℓ

0
ci(ξ)

n

∑
j=1

x j(t)φ
n
j(ξ)φn

k(ξ)dξ,

for k = 1, . . . ,n, produce Myi(t) = Mi
cx(t) where

yi(t)=
[

yi1(t) . . . yin(t)
]′

, x(t)=
[

x1(t) . . . xn(t)
]′

and M and Mi
c denote the mass and weighted mass matri-

ces [M] jk =
∫ ℓ

0 φ j(ξ)φk(ξ)dξ, [Mi
c] jk =

∫ ℓ
0 ci(ξ)φ j(ξ)φk(ξ)dξ,

with j,k = 1, . . . ,n. Therefore, the coefficients of the ith dis-

tributed sensor are given by yi(t) =
(

M−1Mi
c

)
x(t) = Cix(t),

with Ci ,

(
M−1Mi

c

)
. The matrix Ci, and more specifically

the matrix Mi
c, contains all the information on the spatial

distribution and location of the ith distributed sensor. To

optimize the location and distribution ci(ξ) is equivalent to

optimizing an appropriate observability measure with respect

to the parametrization of the matrix Mi
c. Towards that, we

assume that the spatial distribution of a single distributed

sensor ci(ξ) can be expressed as a weighted sum of some

approximating functions. We denote by ϕm
j (ξ), j = 1, . . . ,m

the spatial distributions of these m functions. Then the

problem of optimizing the spatial distribution and centroid of

a distributed sensor that is defined in a region P spanned by

the ϕm
j (ξ)’s, reduces to locating the m functions in the region

P. Thus ci(ξ) = ∑m
j=1 si

jϕ
m
j (ξ). It should be noted that the

individual shaping functions ϕm
j (ξ) incorporate information

on their location within P as well. When the above expansion

is utilized in the expression for the Fourier coefficients of the

distributed output signal, then

yi(t) = M−1
( m

∑
k=1

si
kMi

ck

)
x(t)

=
( m

∑
k=1

si
kM−1Mi

ck

)
x(t) =

( m

∑
k=1

si
kC

i
ck

)
x(t),

(4)

where the m matrices Mi
ck are given by

[Mi
ck]IJ =

∫ ℓ

0
ϕm

k (ξ)φn
I (ξ)φn

J(ξ)dξ, I,J = 1, . . . ,n,

and the finite dimensional representation of the single spa-

tially distributed sensor is given by

Ci
k =

( m

∑
k=1

si
kC

i
ck

)
=

( m

∑
k=1

si
kM−1Mi

ck

)
.

When the plant in (1) is approximated by the above and

viewed in variational form, the following system emerges

ẋ(t) = Ax(t)+B1w(t)+B2u(t),

yi(t) = Ci
kx(t), i = 1, . . . ,N.

(5)

One way to find the optimal sensor location and distribution
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Fig. 2. Combination of point sensors in different configurations and their equivalent interpolated spatial distributions for a single sensor.

for the system, is to enhance its observability. This is done

by parameterizing the observability gramian by the param-

eterized sensor location and optimize the resulting gramian

with respect to the location that makes the system “more”

observable. Thus, the optimal distribution and location is

c
opt
i (ξ) = arg max‖S(ξ;ξi)‖ (6)

where S(ξ;ξi) denotes the location-parameterized gramian

S(ξ;ξi)A
′
+AS(ξ;ξi) = −(Ci

k)
′
Ci

k.

B. Spatial orientation of N fixed-in-space sensors within

subdomain P

Once the spatial distribution and location of a single sensor

is found, then one may find the equivalent distribution of N

individual sensors with a prescribed spatial distribution. This

is in essence an interpolation of a given spatial function by

a set of given test functions; the test functions are the spatial

distributions of the sensing devices. In this case, the spatial

distribution of each of the sensing devices is ci(ξ) and thus

the N dimensional output is given by

y(t,ξ) =
[

y1(t,ξ) . . . yN(t,ξ)
]′

=
[

c1(ξ)x(t,ξ) . . . cN(t,ξ)x(t,ξ)
]′

.

Following the earlier results for a single sensor, the finite

dimensional representation of the N dimensional vector of

distributed outputs is given by

y(t,ξ) =
[ (

∑m
k=1 s1

kC1
ck

)′
. . .

(
∑m

k=1 sN
k CN

ck

)′ ]′
x(t)

=
[

(C1
k )′ . . . (CN

k )′
]′

x(t).

The above may then be used to parameterize the centroid-

which would determine the location of the sensor within

the spatial domain-with respect to the centroids. Enhancing

the observability of the resulting system would then provide

the optimal location of the N sensors. However, this may

lead to many algorithmic and computation issues. Since

this is beyond the scope of this work, we simply pose

the optimization problem and direct the reader to already

established results that deal with positioning of multiple

sensing devices in systems governed by PDEs.

We denote the N dimensional vector of the centroids

of the sensing devices by ~ξ = [ ξ1 ξ2 . . . ξN ]
′

and

parameterize the N×n output matrix by~ξ. Then the optimal

location is given by

~ξopt = arg max‖S(ξ;~ξ)‖

where S(ξ;~ξ) is the sensor centroid-parameterized observ-

ability gramian S(ξ;~ξ)A
′
+AS(ξ;~ξ) = −(Ci

k(
~ξ))

′
Ci

k(
~ξ).

C. Practical considerations: finding the optimal distribution

of a single sensor by combining N individual sensors with

prescribed spatial distributions

In this case, one combines the N distributed outputs into a

single distributed output. In terms of the spatial distributions

of the sensing devices, this is expressed as

cequiv(ξ) =
N

∑
i=1

αici(ξ) (7)

where ci(ξ) denote the spatial distributions of each of the

N sensing devices defined over a spatial region P, and

the problem now is to find the optimal weights αi such

that the observability of the resulting system is enhanced.

By adopting the notation in § III-A, we denote by Ci the

finite dimensional representation of each of the N sensing

devices and thus the above becomes Cequiv(~α) = ∑N
i=1 αiC

i.

Therefore, the optimization becomes

~αopt = arg max ‖S(ξ;~α)‖ (8)

with ~α = [α1 . . . ,αN ], where S(ξ;~α) is the sensor weight-

parameterized observability gramian S(ξ;~α)A
′
+ AS(ξ;~α) =

−C
′

equiv(~α)Cequiv(~α). One may impose constraints on the

weights of the form ∑N
i=1 αi ≤ N and αi ∈ {0,1} to ensure

that the equivalent sensor is comprised of individual sensors

with either full strength (αi = 1), or zero strength (αi = 0).

In the remainder, it is assumed that one is given N

individual sensors with prescribed spatial distributions ci(ξ)
and that the equivalent sensor is found by constraining the

weights αi to take values in the set {0,1} (i.e. αi is either

zero or one), and that the above method for finding these

weights by enhancing the observability of the system is
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Fig. 3. Optimal sensor location by optimization of the H2 system norm
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used. To consider the motion of the single equivalent sensor,

it is further assumed that the spatial distribution does not

change, i.e. the relation of the individual sensors to each

other (i.e. the weights αi) are fixed initially and are the

same for all times, as in the case of a sensor that does not

move. The only varying parameter is simply the centroid

(location) of these sensors. As an example, we consider

N = 5 and set αi = 1, i = 1, . . . ,5. These five sensors would

cover 20% of the spatial domain [0,1]. The observability

gramian was parameterized by the single equivalent sensor

resulting from the addition of these 5 sensors. Therefore, the

interval [0.1,0.9]1 was divided into 100 equidistant points

and each one serves as the candidate centroid of the single

sensor. The observability gramian was found for each of

these 100 points and the resulting H2 norm of the system

(A,B1,Cequiv(~α)) was evaluated and plotted in Figure 3a.2

In Figure 3b, the spatial distribution of the optimal location

of the single sensor, resulting from the maximum of the H2

norm, is depicted along the prescribed spatial distributions

of the 5 individual sensors.

IV. STATE ESTIMATION WITH A SINGLE “MOVING”

SENSOR

It is henceforth assumed that one has a single distributed

sensor to obtain information on the process. This translates

to a time varying sensor centroid ξi(t). For a sensor with a

moving centroid, the process is described by

ẋ(t) = Ax(t)+B1w(t)+B2u(t)

y(t;ξi(t)) = C (ξi(t))x(t)+D(ξi(t))v(t)
(9)

where D(ξi(t)) denotes the operator associated with the

spatial distribution of the measurement noise, and v(t) its

1the centroid of a single equivalent sensor is at the center of the spatial
support which occupies 20% of the spatial domain; therefore the left
endpoint of the centroid is at ξ = 0.1 with the sensor distributed over [0,0.2]
and the right endpoint is at ξ = 0.9 with the sensor distributed over [0.8,1].

2The optimization method used here was essentially exhaustive search
due to the low-dimensionality of the problem. In more elaborate geometries
and higher dimensions (2D or 3D) a more sophisticated optimization method
must be considered to make the proposed scheme computationally viable.
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Fig. 4. Scheduling of a “moving” sensor from centroid position ξi(tk) to
position ξi(tk+1) using spatially distributed output estimation error ε(t;ξi).

associated temporal component. The state estimator is

˙̂x(t) = A x̂(t)+B2u(t)+L(ξi(t))(y(t;ξi(t))−C (ξi(t))x̂(t))
(10)

where x̂(0) = x̂0 with x̂(0) 6= x(0). The associated state

estimation error e(t) , x(t)− x̂(t) is governed by

ė(t) =
(

A −L(ξi(t))C (ξi(t))
)

e(t)+B1w(t)

−L(ξi(t))D(ξi(t))v(t)

e(t) = x(0)− x̂(0).

(11)

Due to the nature of the sensing device, the output estimation

error ε(t;ξi(t)) , y(t;ξi(t))− C (ξi(t))x(t) is also spatially

distributed and is an available signal. The output estimation

error provides distributed information throughout the spatial

support of the sensing device, i.e. over [ξi(t)−∆ξ,ξi(t) +
∆ξ]. Specifically, the spatial support of the single moving

distributed sensor is given by P = [ξi(t)− ∆ξ,ξi(t) + ∆ξ],
where ∆ξ is the one-half spatial support of the sensing device.

The proposed moving sensor guidance policy for improved

state estimation is based on a gradient scheme, whereby

one considers the distributed output estimation error over

a given time interval, and chooses the next sensor position

to the location of the largest value of the distributed error.

An indirect way to consider delays due to the motion of a

mobile sensor, is to assume that over a given time interval,

the sensor can move a maximum of a distance ∆ξ from its

current position. We consider the time instances t0 + k∆t,

k = 0,1,2, . . .. The proposed mobile sensor centroid is

ξi(tk+1) = arg max
ξi(tk)−∆ξ≤ξ≤ξi(tk)+∆ξ

|ε(t;ξi(tk))|, (12)

which basically finds the maximum value of the spatially

distributed output estimation error over the domain [ξ(tk)−
∆ξ,ξ(tk)+∆ξ] of the current sensor position ξ(tk) and moves

the sensor to that maximum. Figure 4 depicts a scenario with

the current single sensor centroid ξ(tk) = 0.3 and subsequent

sensor centroid ξ(tk+1) = 0.348, with ∆ξ = 0.1.

V. NUMERICAL RESULTS

The PDE in (1) was simulated using n = 100 linear

elements in Ω = [0,1] and an initial condition x(0,ξ) =
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Fig. 5. L2 norm evolution for state error with fixed sensor (dashed), state
error with mobile sensor network (dotted). and for state (solid).

sin(2πξ)cos(πξ) and x̂(0,ξ)= 0. The coefficients of the ellip-

tic operator were α1 = 0.005,α2 =−0.15,α3 =−0.003. For

simplicity, u = 0 and the spatial distribution of disturbances

was b1(ξ) = sin(πξ)sin(πξ/2). A gaussian noise with zero

mean and variances 10−3 and 10−5 were used for the process

and measurement noise.

The state estimator given by (10) along with the sin-

gle spatially distributed sensor scheduling policy (12) was

implemented for the above system described by (9). The

evolution of the state error norm when using a single

equivalent distributed sensor that is mobile (red dotted line)

and a single equivalent distributed sensor that is fixed (green

dashed line) in the position ξ(t) = 0.9, ∀t > 0 are depicted

in Figure 5. Additionally, the L2 norm of the process state

is included for comparison. It is observed that the norm

of the estimation error converges to zero (in norm) faster

when the equivalent single sensor is allowed to be moved

within the spatial domain. Similarly, Figure 6 depicts the

state estimation error e(t,ξ) vs the spatial variable at different

time instances. Finally, the single sensor distribution along

with the 5 individual mobile sensors are depicted in Figure 7

for different time instances.
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