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Abstract—The interpolation method and feedrate adaptation 
control are the two most important factors to influence the 
quality and accuracy of manufacturing for NURBS on CNC 
systems. In this paper, we propose an integrated approach to 
solve the feedrate adaptation control NURBS interpolation 
problem by considering interpolation and feedrate control 
together with the “tail” handling. We propose a 
de-Boor-algorithm-based NURBS interpolation model with the 
second-order Taylor expansion and design a new algorithm to 
calculate actual deceleration points to remove the “tail” based 
on a novel concept, reverse NURBS interpolation. To 
supplement the tail removal in velocity control, a novel feedrate 
adaptation control algorithm is proposed. The experimental 
results show that our integrated method can significantly 
improve the accuracy. 

I. INTRODUCTION 
Here are many different representations for parametric 
curves, among them, NURBS has become the standard 

curve and surface description in the field of CAD 
(Computer-Aided Design). The interpolation method and 
feedrate adaptation control are the two most important factors 
to influence the quality and accuracy of manufacturing for 
NURBS on CNC systems. Therefore, in this paper, we focus 
on solving the feedrate adaptation control NURBS 
interpolation problem.  

A lot of techniques have been proposed to solve the 
feedrate adaptation control NURBS interpolation problem. In 
[1], an approach is proposed to solve the chord error of 
NURBS curve that is approximate to the distance between the 
mid-point of curve and the mid-point of chord length. This 
approach may bring some errors in curve inflection points. In 
[2], the arc is used to displace the original NURBS curve to 
compute the chord error that can achieve the required 
accuracy. In [3], a NURBS interpolation technique is 
proposed which can keep constant material removal rate. In 
[4], the acceleration is concerned in the feedrate control 
algorithm. The above techniques only focus on solving one 
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part of the problem, either on interpolation or feedrate control. 
Here we can achieve better accuracy by considering both 
together. 

Another important problem is neglected from the previous 
work is to handle “tail”. The “tail” is rising from the 
discreterization in the pre-interpolation acc/dec 
(acceleration/deceleration). Since the actual deceleration 
point may be different from the theoretical deceleration point, 
the velocity and the distance may not arrive at the zero point 
simultaneously, which lowers the accuracy and increases the 
interpolation processing time.   

In this paper, we propose an integrated approach to solve 
the above problems by considering interpolation and feedrate 
control together with the tail handling. The main 
contributions of our work are summarized as follows: 1) The 
NURBS curve interpolation method based on de Boor 
algorithm is analyzed, and the second-order Taylor expansion 
for NURBS is deduced for convolution. 2) Based on this 
NURBS interpolation model, we propose a new 
pre-interpolation acc/dec method to solve the tail problem.  3) 
We propose a novel feedrate adaptation control algorithm 
which is the supplement of the tail removal in velocity control. 
4) We conduct a series of experiments with our method.  

This paper is organized as follows: The NURBS curve 
interpolation based on de Boor algorithm is presented in 
Section II. In Section III, we propose our NURBS curve 
feedrate adaptation control interpolation. The experiments 
and discussions are presented in Section IV. Finally, we 
conclude the paper in Section V.  

II. NURBS CURVE INTERPOLATION BASED ON DE BOOR 
ALGORITHM 

In this section, we present the NURBS interpolation 
algorithm.  

A.  NURBS 
NURBS is the abbreviation of Non-Uniform Rational 

B-spline. For the NURBS curve interpolation algorithm, one 
of the core problems is the computation of the B-spline basic 
function. The basic method is to calculate it directly [5]. This 
method is easy, but the computation load is heavy. Another 
method is to use the de Boor interpolation algorithm [6].  As 
the de-Boor-based interpolation algorithm can avoid the 
convolution computation of B-spline basic function, its can 
greatly simplify the interpolation calculation so as to improve 
the real-time property and interpolation efficiency. 

 Another core problem in NURBS interpolation 

T 

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrA13.5

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4075



  

computation is the convolution procedure of computing knot 
vector, which can be solved in many different methods such 
as the adams-moulton expansion and the Hermite. The Taylor 
expansion has many advantages over above expansion 
methods since it has a more clear expression and the order of 
expansion can be changed according to the accuracy demand. 
When using the taylor expansion, the second-order algorithm 
is more accurate than first-order one [7]. However, as more 
computation is needed, the second-order term is neglected 
from the previous work. With the performance improvement 
of processors, however, to calculate the second-order term is 
not a problem any more in modern CNC systems.  As it is 
needed in our tail removal and feedrate control, we will use 
the Taylor expansion with the second-order term in this 
paper. 

B. NURBS and B-Spline Function 
NURBS is a one more order expression form of B-spline 

curve with weight factor as shown below: 
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in which, ωi (i=0,1,…,n) is the weight factors corresponding 
to the control points di(i=0,1,…,n). Ni,k(u) is k degree B-spline 
basic function, and it is determined by the de Boor-Cox 
recursive formula which is defined on the knot vector 
U=[u0,u1,…,un+k+1], 
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Here, 0/0=0. 
From Equations 1-3, the coordination value corresponding 

to u along NURBS curve can be computed. 

C. The  NURBS based on de Boor Algorithm 
From Equation 1, the denominator and numerator of 

NURBS curve are both the B-spline curve, so they can be 
computed separately with de Boor algorithm by the ratio of 
the two values. The de Boor algorithm of the NURBS is, 
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Here, 0/0=0. 
Because the r order derivative vector of k order B-spline 

curve is (k-r) order B-spline curve, the new derivative vector 
of B-spline curve can still be used in Equations 4-6. For the r 
order derivative vector q(r)(u) [7],  
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The new control points are, 
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Here, , 1, , ; 1, 2, ,j i k i k i r l r= − − + − = . 
The knot vector is, 

0 1 2 1 1, , , [0, ,0, , , ,1, ,1]r r r r
n k r k nU u u u u u+ − + +⎡ ⎤= =⎣ ⎦     (9) 

in which, the number of 0 and 1 is (k+1-r). 
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From Equations 4-6, we can get p(u) from C(u) and W(u),  
( ) ( ) ( )p u C u W u=                                     (10) 

Differentiating eq.(10), we can achieve the one order 
derivative vector of P(u), 

( ) ( ) 2( ) ( ) ( ) ( ) [ ( )]p u W u C u W u C u W u′ ′ ′= −       (11) 

Differentiating eq.(11), we can achieve the two order 
derivative vector of P(u), 
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in which, C’(u) , W’(u) , C’’(u) , W’’(u) can be computed by 
de Boor algorithm of Equations 4-9. Equations 11 and 12 will 
be used in the NURBS real-time interpolation and feedrate 
adaptation control algorithm. 

D. The NURBS Curve Real-time de Boor Interpolation 
Algorithm Without Velocity Control 
For NURBS interpolation, this procedure is to compute the 

value of ui+1 base on  ui . So it is a procedure of convolution 
computing for ui. 

By differentiating u to t for the second order Taylor series 
expansion, we obtain: 
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in which, ti+1-ti=T.  
For three-axis interpolation, 
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Substitute Equation 14 and 15 into Equation 13, and in 
which, x(ui)',x(ui)'',y(ui)',y(ui)'',z(ui)',z(ui)'' can be computed 
by de Boor algorithm from Equations 7-12. For constant 
velocity NURBS interpolation, V(ti)=V0, ( )( ) 0

it t
dV t dt

=
=  

and neglect the high-order terms, so 
0
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From Equation 16, and the value of ui+1, the interpolation 
coordinate, in the next cycle can be calculated based on ui. 

The flowchart of the NURBS curve real-time de Boor 
interpolation algorithm with no velocity control is shown in 
Figure 1, in which Fg is the flag of interpolation finishing and 
(xe,ye,ze) is the end point coordinate value of NURBS curve. 

Initializing parameter array wi, ui  and weighted 
control point vector widi  of NURBS curve 

Computing C(ui) and W(ui) by eq.(4) to eq.(6)

Computing P(ui) by eq.(10)

Computing new control point vector of 
C'(u), W'(u), C''(u), W''(u) by eq.(7) to 
eq.(9), which are first-order and second-
order derivative vectors of C(u) and W(u)

Fg==FALSE End

Computing C'(ui), W'(ui), C''(ui), W''(ui) 
by eq.(4) to eq.(6)

Computing x(ui)',x(ui)'',y(ui)',y(ui)'',z(ui)',z(ui)'' by 
eq.(11) and eq.(12)

Computing next cycle ui+1 by eq.(17)

ui+1>1.0
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i e i
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Fig.1 The flowchart of NURBS curve real-time de Boor interpolation 

algorithm 

III. MODEL OF NURBS CURVE FEEDRATE ADAPTATION 
CONTROL 

In this section, we propose our feedrate adaptation control 
NURBS interpolation technique.  

A. NURBS Curve Pre-interpolation acc/dec 
1) Pre-interpolation acc/dcc and The Tail Phenomenon  
Because the pre-interpolation is performed through a 

discreterization computation procedure, the velocity and the 
distance may not arrive at the zero point simultaneously in the 
end. So it takes extra time to adjust the distance at a very low 
velocity. This is the “tail” phenomenon. As the tail will lower 

the accuracy and increase the interpolation processing time, 
we need to remove it in the interpolation. 

The key to solve the tail problem is to calculate the actual 
deceleration point. A deceleration point is the transfer point 
from a constant velocity zone into a deceleration zone. 
Theoretical deceleration point is defined as the point obtained 
based on the idealized continuous velocity profile; actual 
deceleration point is defined as the point from which the 
interpolation actually begins to decelerate. For linear or arc 
interpolation procedure, it is relatively easy to calculate the 
deceleration point [8]. However, the problem becomes more 
complicated for NURBS interpolation.  

In NURBS curve acc/dec, because the shape of curve is 
related with velocity, the prediction of deceleration zone is 
very difficult. In order to compute the deceleration point, the 
new flag should be introduced. In this paper, we use the 
velocity instead of length to predict the deceleration point.  

In order to compute the deceleration point of NURBS 
curve. We propose a new concept, NURBS reverse 
interpolation. NURBS reverse interpolation is the procedure 
in which we let the start point of NURBS curve become end 
point, the end point become start point, and then generate the 
NURBS curve by the reverse interpolation. NURBS curve 
reverse interpolation is used to compute the start velocity 
Vachieve of deceleration zone. If Vachieve is less than or equal to 
the next cycle velocity Vnext, it should begin to decelerate in 
current cycle. And then, let the current velocity Vcurrent equal 
to Vachieve, and let the current u value equal to 1-ur, where ur is 
corresponding to velocity Vachieve. Let Vachieve be the start 
velocity, 1-ur be start u value, and al be the acceleration in 
deceleration zone, the velocity V and knot vector u can reach 
the zero point simultaneously. Next we give our detailed 
algorithm for calculating the deceleration point. 

2)  The Method for Determining NURBS curve 
deceleration point 

In NURBS curve forward interpolation procedure, it 
should predict the next cycle velocity Vnext repeatedly, and the 
reverse interpolation is running simultaneously to compute 
the velocity Vachieve. And follow the whole procedure, u 
changes from zero to 1-uc, where uc is corresponding to the 
current interpolation point. And the interpolation uses al as 
the acceleration value. The relationship between parameters 
of the reverse NURBS interpolation and forward 
interpolation is, 
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The recursive formula of reverse interpolation ur,i is, 
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The recursive procedure is finished when ur,i+1≥1-uc, and 
the times of iteration n' is computed. Then the computation 
formula of Vachieve is, 

1

n

achieve l
i

V a
′

=

= ⋅∑ T                            (20) 

The flowchart of computing Vachieve is given in Figure 2. 
Here, Fgc represents the finishing flag of NURBS reverse 
interpolation. 

Y

N

N

Y

N Y

computing ,la cu−1

Preprocessing of reverse interpolation (modifying the 
parameters of orginal NURBS curve) 

ccurrent uu −≥ 1

FALSEFgc =,

,TRUEFgc = currentrachieve VV ,=

, ,, r next r currentcomputing u u u uΔ = + Δ

lcurrentrnextr aVV += ,,

nextnextr VV >,

FALSEFgc ==End

,TRUEFgc = nextrachieve VV ,=

 
Fig.2 Flowchart of computing Vachieve 

In Figure 2, in order to improve the efficiency, during the 
computation of reverse interpolation, when the velocity 
Vr,current  corresponding to u is bigger than velocity Vnext at the 
next cycle, we jump out of the reverse interpolation 
procedure and enter into the calculation for next cycle 
because the current point does not enter into the deceleration 
zone. With this method, the recursive procedure is 
dramatically simplified. So the real-time property of CNC can 
be satisfied. 

B. Feedrate Adaptation Control of NURBS Curve 
1)  The Analysis and Processing of Chord Error 
During NURBS curve interpolation, for each interpolation 

cycle, it is the procedure of line substituting arc. Because all 
the interpolation points are on the NURBS curve, there is no 
accumulative error. But the chord error is introduced as 
shown in Figure 3. 

iδ
iu

1+iu
 

Fig.3. principle chart of chord error δ 
The chord error δ is related to the feed step length ΔL, and 

the curvature radius ρ. If using arc segment instead of curve, 
in the normal condition, ρ>>δ, the chord error relation 
formula of NURBS curve interpolation can be represented as:  

( ) iiiiiiL δρδρδ 824 ≈−=Δ                   (21) 

In practical, in order to limit the chord error to a permitted 
range during whole NURBS interpolation, the largest 
permitted chord error δmax is given. When the current chord 
error is larger than δmax, the chord error is restricted on δmax by 
modifying the feed step length ΔLi to ΔLi,c based on Equation 
21, 

( ) maxmaxmax, 824 δρδρδ iiciL ≈−=Δ       (22) 

The calculation formula of the curvature radius ρi in 
Equations 21 and 22 is,  
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in which, x(ui)', y(ui)', z(ui)', x(ui)'', y(ui)'', z(ui)'' are calculated 
by de Boor algorithm in Equations 7 and 12. 

From Equations 22  and 23, we can obtain ΔLi,c; if 
ΔLi,c<ΔLi, then let feed step length be ΔLi,c. So the chord error 
can be limited in a range to guarantee the accuracy of the 
interpolation track. 

2)  The Analysis and Processing of Acceleration 
When dealing with acc/dec of NURBS curve, we should 

not only concern the tangent acceleration along the NURBS 
curve, but also concern the normal acceleration of the curve. 
When the velocity is very high and the curvature radius is 
very small, the oversize normal acceleration will cause the 
path accuracy lower and bring unnecessary impact to 
machine tool. So we should restrict the resultant acceleration 
under the permitted value of machine tool. We should also 
adjust the feed step length to satisfy the constraint of 
permitted acceleration. 

Let the tangent acceleration of ith interpolation point be ai,г, 
normal acceleration be ai,n, the unit tangent vector be г, unit 
normal vector be n, and the permitted maximum acceleration 
be amax, then the relation formula is , 

max,, aana ini <+ ττ                            (24) 

That is, 
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Comparing Equation 21 with Equation 25, we obtain: 

max
2
,4

2

,
64

aa
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a i
i
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Deforming Equation 26, we obtain 

2
,

2
max

2

8 τδ ii aaT
−<                               (27) 

in which, ai,г is the changing value of velocity ΔVi in 
consecutive interpolation cycles. From Equation 27, the 
restriction of NURBS curve acceleration converts to the 
restriction of chord error.  

Let 2
,

2
max

2

max 8 τδ ia aaT
−= . When δamax<δmax, substitute 
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δamax into Equation 21. Then we can obtain the restriction feed 
step length ΔLi,a which is generated by acceleration 
constraint. 

Based on the above analysis and ΔLi=Vi·T, we obtain 

{ }, ,min , ,i s i i c i a,L L L LΔ = Δ Δ Δ                (28) 

T
L

V si
si

,
,

Δ
=                                     (29) 

Computing al, Fgd=FALSE, FirstFg=FALSE

Reaching the end point?
N

Fgd==TRUE
N

Vcurrent=V0
Y N

Vnext=V0 Vnext=Vcurrent+al

Velocity adaptation control and obtaining the modified Vnext

Reverse interpolation and computing Vachieve

Vachieve<Vnext

Y
Fgd=TRUE

FirstFg=TRUE
Y

Vnext=Vachieve, FirstFg=FALSE

Vcurrent-al<al
NY

Vnext=al Vnext=Vcurrent-al

Interpolation model

Fg=TRUE, Vnext=0

Y

Y

N

N

Modified Vnext==Vnext

Y

Fgd=FALSE,
FirstFg=TRUE

N

Velocity adaptation control and obtaining the modified Vnext

 
Fig.4 flowchart of pre-interpolation linear acc/dec of NURBS curve 

From Equation 29, the whole NURBS curve interpolation 
procedure achieves the feedrate adaptation ability, which is, 
by repeatedly changing the velocity, the error and 
acceleration of NURBS curve are restricted under the 
permitted values. 

Combining the feed adaptation control algorithm and the 
velocity model of pre-interpolation linear acc/dec, the 
real-time character of NURBS interpolation can finally be 
satisfied. 

Suppose Fg is the end flag of NC program, Fgd is flag of 
entering the deceleration zone, FirstFg is flag of entering the 
deceleration zone at the first time, the flowchart of 
pre-interpolation linear acc/dec of NURBS is shown in 
Figure 4. 

IV. SIMULATION AND EXPERIMENT RESULT 
We conduct a series of experiments to verify the 

effectiveness and correctness of our approach. The 
experimental parameters are given as follows: the order of 
NURBS curve is k=2, the feedrate is V0=12.0m/min, the 
linear acc/dec acceleration time is tl=1200ms, the 
interpolation cycle is T=4ms, the permitted maximum chord 
error is δmax=10μm, the permitted maximum acceleration is 
amax=2.5m/s2.  The parameter points we test in the 

experiments are shown in Table 1.  
Parameter 
number 

Coordinate value of 
control points(mm) 

weights Knot 
vector 

1 (0,0,0) 1 
2 (-50,80,80) 25 
3 (0,100,100) 25 
4 (50,80,80) 25 
5 (0,0,0) 25 
6 (80,30,30) 25 
7 (100,0,0) 25 
8 (80,-30,-30) 25 
9 (0,0,0) 25 
10 (50,-80,-80) 25 
11 (0,-100,-100) 25 
12 (-50,-80,-80) 25 
13 (0,0,0) 25 
14 (-80,-30,-30) 25 
15 (-100,0,0) 25 
16 (-80,30,30) 25 
17 (0,0,0) 1 

0,0,0,0.06
,0.09,0.15
,0.20,0.24
,0.32,0.40
,0.56,0.60
,0.66,0.72
,0.80,0.88
,0.94,1,1,

1 

TALBE.1 DATA TABLE OF NURBS PARAMETER POINTS 

 
Fig.5 simulation of NURBS curve figure 

The NURBS simulation curve which is generated by the 
new second-order de Boor algorithm is shown in Figure 5. 
The NURBS curve is drawn in a three-axis x-y-z coordinate 
system. In this figure, 1 is the NURBS curve using the 
parameters in Table 1, while 2 is from the original control 
polygon whose vertexes are control points.  

Figure.6 shows the changes of curvature k of NURBS 
along the NURBS curve interpolation, in which x-axis 
represents the NURBS parameter u and y-axis represents k, 
the vertical coordinate. 

 
Fig.6 curvature changing figure along NURBS curve 

Figure.7, Figure.8 and Figure.9 shows the changes of 
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velocity, chord error and consultant acceleration of whole 
NURBS interpolation respectively when time elapses.  

From Figures 6-9, we can see that: 
1) Comparing with Figure 6, Figure 8 and Figure 9, 

corresponding the maximum value of curvature radius k, the 
chord error δ and resultant acceleration ai,c are also reached 
the maximum value point. 2) From Figure 7, in order to 
improve the system accuracy and acceleration property, it 
decelerates when the chord error or the consultant 
acceleration becomes bigger, which increases the processing 
time. 3) From Figure 8, when concerning the interpolation 
algorithm with limited chord error, it can successfully limit 
the chord error under the permitted maximum chord error 
δmax=10μm. Because this restriction is also applied for the 
acceleration with the maximum permitted resultant 
acceleration amax, we can further decrease the chord error and 
improve the accuracy of path by more than 10 times. 4) From 
Figure9, when concerning the interpolation algorithm of 
restricting permitted maximum resultant acceleration amax, the 
acceleration can be successfully restricted under the 
maximum acceleration amax=2.5m/s2. And this computation 
procedure has significant effect in acceleration extreme 
points. 

V. CONCLUSION 
In this paper, we proposed an integrated approach to solve 

the feedrate adaptation control NURBS interpolation problem 
in CNC systems.  In our approach, we considered 
interpolation and feedrate control together with the tail 
handling. We proposed a de-Boor-algorithm-based NURBS 
interpolation model with the second-order Taylor expansion 
and designed a new algorithm to calculate actual deceleration 
points to remove the “tail” based on a novel concept, reverse 
NURBS interpolation. We proposed a novel feedrate 
adaptation control algorithm to supplement the tail removal in 
velocity control. We conducted a series of experiments and 
the experimental results show that our integrated method can 
significantly improve the accuracy.  

 
Fig.7 comparison figure of velocity 

 
Fig.8 comparison figure of chord error 

 
Fig.9 comparison figure of consultant acceleration 
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