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Abstract—Cellular differentiation is a complex process for 

which systematic design of control strategies has not been 

widely investigated.  As a first step towards this aim, a control 

strategy for achieving a desired percentage of differentiating 

cells is proposed.  A population balance model structure 

parallels the known granulocyte/monocyte differentiation 

pathway.  Transition rate functions that characterize the 

movement of cells from one differentiation state to the next 

were identified from experimental data obtained via flow 

cytometry.  An additional experiment demonstrates the efficacy 

of the proposed model and control strategy. 

I. INTRODUCTION  

ellular processes involve complex interactions which 

present unique challenges for the modeling and control 

of such systems.  Cellular differentiation is a process that has 

largely been researched experimentally with some modeling 

efforts, but a systematic approach to control such processes 

has not been researched [1-3].  A model for the 

differentiation process of human promyelocytic leukemia 

(HL60) cells into mature granulocytes and monocytes is 

presented here.   

HL60 cells can naturally differentiate into monocytes and 

granulocytes in small numbers; however, in an effort to 

minimize the heterogeneity of a cell population, full-scale 

differentiation is desired and must be induced using chemical 

agents.  Dimethyl sulfoxide (DMSO) initiates differentiation 

into granulocytes [4].   The dynamics of this process is 

largely dependent on the concentration of DMSO.  Using 

this model, it is possible to make predictions of the DMSO 

concentration necessary to achieve a target level of maturing 

cells.  Future work will design controllers to rationally 

manipulate the composition of the differentiation population 

throughout a given time period. 

II. MODEL DEVELOPMENT 

An age-structured population-balance model (PBM) 

naturally accommodates this process within its structure.  A 

PBM describes how the population distribution progresses 

through discrete stages over time.  For an age-structured 

PBM, the transition between these discrete stages is a 
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function of the time since its last state transition, the “age” of 

the cell [5].  This initial age-structured PBM uses the 

continuous cell-age variable to account for the variable time 

period in which the intracellular signal transduction and 

regulatory gene networks direct the differentiation process.   

The PBM describes how a population of HL60 cells 

moves through discrete differentiation stages towards mature 

granulocytes and monocytes as shown in Fig 1.  The discrete 

differentiation phases were defined based on experimentally 

distinguishable benchmarks (via flow cytometry).  The first 

indication of differentiation is the expression of the cell 

surface marker CD-11b.  A maturing granulocyte will then 

express the marker CD-16, and a maturing monocyte will 

express the marker CD-14 [6].   

The number density of cells in the i
th

 phase is ni(τ,t), where 

τ is age and t is time.  The population balance equation is 

written as  ),()(
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As most cells begin as undifferentiated HL60 cells, the initial 

age distribution in each phase is ( ) 00, =τn .  A boundary 

condition describes the cells that have transitioned out of one 

stage and have become new cells in another stage: 
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Fig 1.  Phases of the HL60 differentiation model.  Cells transition out of 

phases according to an age-dependent transition rate ( ( )τΓ ).  Cells may 

die in any phase according to a constant, phase-independent death rate, 

k.  A constant growth rate associated with each phase, bi, which is due 

to cell division (not shown).   
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The method of characteristics was employed to simulate 

the model [5].  A Nelder-Mead simplex optimization 

function was used to find the state transition rate functions 

that best fit the experimental data.  The transition functions 

were assumed to be lognormal and could be parameterized 

by two unknowns (mean and standard deviation).   

III. PROBLEM FORMULATION 

The objective of this study was to determine the 

concentration of the inducing agent (DMSO) that would 

produce a population of HL60 cells in which 65% expressed 

CD-11b seven days after induction.  Using an interpolation 

method, the DMSO concentration and transition rate 

parameters necessary to achieve this differentiation level 

were found.  These results were verified using experimental 

data gathered at the target DMSO concentration. 

IV. RESULTS 

The number of cells expressing CD-11b, CD14, and CD16 

over seven days of incubation in 1.2% DMSO was found 

experimentally and is shown in Fig 2.  The percentage of 

cells beginning to differentiate (expressing CD-11b) after 

seven days of incubation was 74%.  Similarly, in 0.6% 

DMSO, 40% of the population expressed CD-11b.  Using a 

spline interpolation, a concentration of 1% DMSO would 

yield a population in which 64% expressed CD-11b.  
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Fig 2. To find the parameter set, the model was fit to experimental data 

taken at 1.2% DMSO. One sample was taken every day for seven days.  For 

each sample, the cells were labeled with fluorescent antibodies to the CD-

11b, CD16, and CD14 surface markers.  Samples were analyzed using flow 

cytometry techniques.  The process was similar to [7]. 
 

  Using the model and optimization technique described 

above, the means and standard deviations of the lognormal 

transition functions were found for each of the two 

experimental DMSO concentrations.  This data is 

summarized in Table I.  The mean and standard deviation for 

each of the three transition rates was determined for a 

concentration of 1% DMSO using six individual spline 

interpolations and are shown in Table II.   

As a verification of the linearity assumptions utilized in 

this interpolation strategy design, experimental data was 

collected for a population incubated in 1% DMSO and was 

analyzed to determine the phase percentages.  The 

percentage of HL60 cells expressing CD-11b was 64.5%, 

less than 1% error from the target value.   

From the experimental time course data at 1% DMSO, the 

transition rate parameters were found, fitting the model to the 

experimental data with the Nelder-Mead simplex 

optimization function.  A comparison of the parameters 

obtained via interpolation and optimization can be seen in 

Table II.  

The interpolated transition-rate parameters provide close 

approximations for those obtained via optimization 

techniques on the differentiation model.  The transition rate 

parameter identification process is a computationally 

expensive and time consuming process; it may be 

advantageous to utilize interpolations to identify initial 

estimates which can be refined using local optimization.   

V. SUMMARY AND FUTURE WORK 

The proposed model identifies three distinct transition 

rates governing the differentiation dynamics of HL60 cells.  

The quantitative description of this process provided by the 

developed PBM predicts the movement of cells through the 

differentiation phases and thus provides a structure for 

systematically designing controllers to manipulate the 

outcome in a desired manner.  As a first step towards 

achieving this aim, this work determined a strategy to 

achieve a target percentage at a given time point.  

Anticipated future work will utilize a model predictive 

control strategy to systematically direct the time-course 

differentiation dynamics. 
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TABLE I 

( )τ1Γ  ( )τ2Γ  ( )τ3Γ  DMSO 

Concentration 
1µ  1σ  2µ  2σ  3µ  3σ  

1.2% 3.93 1.45 5.08 0.28 70.00 49.02 

0.6% 5.02 1.64 10.54 10.17 52.08 34.12 

Transition-rates parameters for two levels of DMSO (values in days) 

TABLE II 

( )τ1Γ  ( )τ2Γ  ( )τ3Γ  DMSO 

Concentration 
1µ  1σ  2µ  2σ  3µ  3σ  

1%  (Interpolation) 4.29 1.51 6.90 3.58 64.03 44.05 

1%  (Model) 4.53 1.30 5.24 4.30 61.34 39.84 

Transition-rate parameters for 1% DMSO (values in days) 
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