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Abstract— This paper defines a new class of systems and
presents a novel controller synthesis method. This new method-
ology is motivated by and applied to the problem of path follow-
ing of a wheeled mobile robot (WMR). The new class of systems
proposed in this paper is called piecewise-affine parameter-
varying (PWAPV), which is a combination of piecewise-affine
(PWA) and linear parameter-varying (LPV) systems. The syn-
thesis of PWAPV controllers for uncertain PWAPV systems can
be cast as a parameterized set of matrix inequalities, which can
be approximated by a finite set of LMIs and solved efficiently
using available software. As an application, actuator input
voltage laws are designed to guarantee that a WMR follows a
desired path that is parameterized by a time-varying curvature.
Simulation results show the effectiveness of the new control law.

I. INTRODUCTION

The problem of path following for autonomous vehicles is

very important and has received a great deal of attention in

the past ten years. The importance of path following is made

evident by the vast amount of work carried out in the area of

path parameterization for the motion control of unicycle-type

land robots [19], [23], marine vehicles [8], [11], and aerial

vehicles (UAVs) [1], [22].

Initial research focused primarily on path following and

trajectory tracking for nonholonomic vehicles using only

kinematic models. A good survey of the work done up until

1995 was conducted by Kolmanovsky and McClamroch [16].

An increasing amount of research is now examining the

combination of kinematic and dynamic models. One of the

first publications to use backstepping to include dynamics is

the work by Fierro and Lewis [13]. Since then, different

control methods have been examined, including adaptive

backstepping [5], [7], [14], discontinuous backstepping [24],

dynamic feedback linearization [20], approximate feedback

linearization [15], and sliding mode control [6]. More re-

cently, research has focused on the robustness of controllers

to unmodeled dynamics and parameter uncertainty [9], [10],

[23]. However, little research has been conducted in order to

include the dynamics of the actuators in the controller design

process [2], [4], [17].

The new path following control method proposed in this

paper consists of a three-step procedure. In the first step,

a kinematic steering control law is designed assuming the

path curvature is time-varying (for the case where the path

curvature is constant see [18]). Two curvature limits and

a curvature rate of change limit are first defined for the

desired path and then the nonlinear WMR parameterized

path kinematics described in [23] are approximated by an

uncertain PWAPV system, while assuming that the WMR

forward velocity is constant. Then, a PWAPV steering con-

trol law is designed using a parameter-dependent quadratic

Lyapunov function. In the second step, a backstepping-type

approach is used to include the vehicle dynamics and design

the wheel control torques that guarantee convergence of the

WMR forward and rotational velocities to the desired values.

Finally, in the third step, the actuator dynamics are included

and the input voltages are designed using backstepping.

There are four primary advantages to the new path fol-

lowing controller synthesis method proposed here. First, the

PWAPV controller synthesis method can be formulated as

a convex optimization program subject to a parameterized

set of inequalities, which can be approximated by a finite

set of LMIs and solved efficiently using available software.

Second, it includes both the general, non-singular path pa-

rameterization proposed in [23] and the actuator dynamics.

Third, the PWAPV control law can also stabilize the original

nonlinear parameter-dependent system. And fourth, it is a

first step toward including hard nonlinearities in the actuator

dynamics, which are important PWA characteristics.

The outline of the paper is as follows. Section II defines

the class of PWAPV systems introduced in this paper. Then,

the new PWAPV controller synthesis method for uncertain

PWAPV slab systems is derived in Section III. Section IV

develops an application to path following control. Then,

section V shows a numerical example, followed by the

conclusions in Section VI.

II. PWAPV APPROXIMATION OF NONLINEAR SYSTEMS

A. Class of Systems

Consider a nonlinear system of the form

ẋ(t) = A(ρ)x(t) + a(ρ) + f(x) + B(ρ)u(t), (1)

where ρ = ρ(t) is the time-varying parameter, x(t) ∈ R
n is

the state vector, and u(t) ∈ R
nu is the input vector. Matrices

A(ρ) ∈ R
n×n, a(ρ) ∈ R

n and B(ρ) ∈ R
n×nu are affine in

the parameter ρ, while the vector f(x) ∈ R
n is nonlinear in

the state vector x(t).
This paper introduces a class of uncertain PWAPV systems

to approximate the nonlinear system (1). The dynamics of

uncertain PWAPV systems are described by

ẋ(t) = [Ai(ρ) + ∆A(x)] x(t)
+ [ai(ρ) + ∆a(x)] + Bi(ρ)u(t),

(2)
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for x(t) ∈ Ri, where matrices Ai(ρ) ∈ R
n×n, ai(ρ) ∈ R

n

and Bi(ρ) ∈ R
n×nu are affine in the time-varying parameter

ρ and represent the nominal PWAPV system, while matrices

∆A(x) ∈ R
n×n and ∆a(x) ∈ R

n are the uncertainty terms.

The polytopic regions, Ri, i ∈ I = {1, . . . , M}, partition

a subset of the state space X ⊂ R
n such that ∪M

i=1Ri =
X , Ri∩Rj = ∅, i �= j, where Ri denotes the closure of Ri.

It is assumed that the desired closed-loop equilibrium point

xcl is the origin. The region in which xcl lies is denoted as

Ri⋆ . A slab is a special case of a polyhedron, and is defined

as follows.

Definition 1: A slab is defined as

S = {x ∈ R
n | h1 < HT x < h2}, (3)

where H ∈ R
n and h1, h2 ∈ R. �

Definition 2: A PWAPV slab system is a PWAPV system

for which the regions are slabs. �

For PWAPV slab systems, each region Ri can be equiv-

alently described by a degenerate ellipsoid E i, such that

Ri ⊆ Ei and Ei ⊆ Ri, where

Ei = {x ∈ R
n | ‖Lix + li‖ < 1}. (4)

This covering is described by
{

Li = 2HT /(h2 − h1)
li = −(h2 + h1)/(h2 − h1)

. (5)

Finally, the following a priori assumptions, adapted from

previous work in the robust piecewise-linear (PWL) control

literature [12], are made for the uncertainty terms:
{

∆AT (x)∆A(x) < UT
Ai

UAi

∆a(x)∆aT (x) < Uai
UT

ai

, (6)

for x(t) ∈ Ri. As shown in the proof of the following

theorem, the nonlinear parameter-dependent system (1) is

equivalent to an uncertain PWAPV system of the form (2)

under certain conditions.

Theorem 1: The nonlinear parameter-dependent system

(1) is equivalent to the uncertain PWAPV system (2) with






Ai(ρ) = A(ρ) + Ãi

ai(ρ) = a(ρ) + ãi

Bi(ρ) = B(ρ)
(7)

if

f(x) − Ãix(t) − ãi = ∆A(x)x(t) + ∆a(x), (8)

for x(t) ∈ Ri. �

Proof: System (1) can be rewritten as

ẋ(t) = A(ρ)x(t) + a(ρ) + f(x) + B(ρ)u(t)

+[Ãix(t) + ãi] − [Ãix(t) + ãi],
(9)

for x(t) ∈ Ri. Using the constraint (8), this last equation

becomes

ẋ(t) = A(ρ)x(t) + a(ρ) + Ãix(t) + ãi

+∆A(x)x(t) + ∆a(x) + B(ρ)u(t),
(10)

for x(t) ∈ Ri. This can be rewritten as

ẋ(t) = [Ai(ρ) + ∆A(x)]x(t)
+[ai(ρ) + ∆a(x)] + Bi(ρ)u(t),

(11)

for x(t) ∈ Ri, where







Ai(ρ) = A(ρ) + Ãi

ai(ρ) = a(ρ) + ãi

Bi(ρ) = B(ρ)
.

This concludes the proof. �

In order to obtain the uncertain PWAPV system (2), the

following steps must be carried out:

1) The nonlinear system (1) is approximated by a nominal

PWAPV system.

2) The uncertainty bounds (6) are determined such that

the original nonlinear system is contained in the un-

certain PWAPV system.

The next two subsections address these steps.

B. PWAPV Approximation

The first step in approximating the nonlinear system (1)

by the uncertain PWAPV system (2) is to obtain a nominal

PWAPV system of the form

ẋ(t) = Ai(ρ)x(t) + ai(ρ) + Bi(ρ)u(t), (12)

for x(t) ∈ Ri, using (7). Matrices A(ρ), a(ρ) and B(ρ) in

(7) are obtained from (1), and matrices Ãi and ãi come from

the PWA approximation of the nonlinear function

f(x) ≈ Ãix(t) + ãi, (13)

for x(t) ∈ Ri.

The PWA approximation (13) of the nonlinear function

f(x) in (1) can be obtained by solving the following convex

optimization problem [21]:

Problem 1: Given a partition of the state space X , the

sampling points xk, k = 1, . . . , Ns, and matrices ÃL, ãL:

min
∑Ns

k=1 eT (xk)e(xk)

s.t. e(xk) = f(xk) − Ãixk − ãi,

(Ãi − Ãj)xk⋆ + (ãi − ãj) = 0,

Ãi⋆ = ÃL, ãi⋆ = ãL,
i = 1, . . . , M, j ∈ Ni,
k = 1, . . . , Ns,

where M is the number of state space partitions, xk are

sampling points, xk⋆ are the sampling points corresponding

to the boundary between two neighbouring regions, and the

linearization of the nonlinear function f(x) in (1) at x cl is

given by ÃLx(t) + ãL. �

A numerical method for determining the PWA uncertainty

bounds (6) is proposed in the next subsection.
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C. PWA Uncertainty Bounds

The error function e(xk) defined in Problem 1, at the

sampling points xk is

∆A(xk)xk + ∆a(xk) = e(xk) = f(xk) − Ãixk − ãi, (14)

for i = 1, . . . , M, k = 1, . . . , Ns, where matrices ∆A(xk)
and ∆a(xk) are the uncertainty terms in (2) and are assumed

to be polynomial functions in xk of order np. Moreover,

defining WAi
= UT

Ai
UAi

and Wai
= Uai

UT
ai

, the PWA

constraints (6) can be written as the LMIs
[

WAi
∆AT (xk)

∆A(xk) I(n)

]

> 0 (15)

and
[

Wai
∆a(xk)

∆aT (xk) 1

]

> 0, (16)

for xk ∈ Ri, k = 1, . . . , Ns.

The PWA uncertainty bounds (6), WAi
, Wai

can be ob-

tained by solving the following convex optimization problem.

Problem 2: Given the sampling points xk, k = 1, . . . , Ns,

the scalar np, and the nominal PWAPV system (12):

min
∑M

i=1 trace [WAi
+ Wai

]
s.t. (14), (15), (16)

i = 1, . . . , M,
k = 1, . . . , Ns,

where ∆A(xk) and ∆a(xk) are assumed to be polynomial

functions in xk of order np. �

Remark 1: Note that the PWA uncertainty bounds (6)

resulting from the solution of Problem 2 are dependent on

the sampling points xk. Therefore, it cannot be guaranteed

in general that the uncertainties satisfy the bounds (6) for

∀x(t) ∈ R
n. However, sampling methods can be used to

offer this guarantee for certain cases. �

III. PWAPV CONTROLLER SYNTHESIS

This section states and solves the PWAPV controller

synthesis problem for the class of uncertain PWAPV slab

systems defined in the previous section. The synthesis of a

PWAPV controller will be used in the first step of the path

following method proposed in the next section.

A. Design Objectives

The objective is to design a feedback control law that glob-

ally exponentially stabilizes the uncertain PWAPV system

(2) to the origin. The PWAPV state feedback control law

proposed here is of the form

u(t) = Ki(ρ)x(t) + ki(ρ), (17)

for x(t) ∈ Ri. Substituting (17) into (2) yields the closed-

loop uncertain PWAPV system

ẋ(t) = Ācl
i (ρ)x(t) + ācl

i (ρ), (18)

for x(t) ∈ Ri, where
{

Ācl
i (ρ) = {[Ai(ρ) + ∆A(x)] + Bi(ρ)Ki(ρ)}

ācl
i (ρ) = {[ai(ρ) + ∆a(x)] + Bi(ρ)ki(ρ)}

. (19)

Some background material must be reviewed before the

PWAPV controller synthesis problem is stated.

B. Mathematical Preliminaries

This subsection presents two lemmas and one theorem to

be used in the ensuing development.

Lemma 1: [3] Let X and Y be real constant matrices of

compatible dimensions, then the following equation

XT Y + Y T X ≤ ǫXT X + ǫ−1Y T Y

holds for any ǫ > 0. �

Lemma 2: If M ≥ 0, then

BMBT ≤ trace(M)BBT

for any matrix B with appropriate dimensions. �

Proof: It suffices to show that trace(M)I −M ≥ 0. This

is true because the eigenvalues λi (βI − M) are equal to

β − λi(M) for any β. Therefore, since the trace is the sum

of all eigenvalues and since M ≥ 0, the eigenvalues of

[trace(M)I − M ] are all greater than or equal to zero, which

finishes the proof. �

In the following theorem, ρmin and ρmax are limits on ρ,

and ρ̇max is a limit on the magnitude of ρ̇.

Theorem 2: Consider the closed-loop system (18), and let

xcl = 0 be an equilibrium point of this system. Let V : R
n →

R be a continuously differentiable function such that

V (x, ρ) = xT P (ρ)x (20)

with P (ρ) = P T (ρ) > 0, and

V̇ (x, ρ, ρ̇) = ẋ
T P (ρ)x + xT Ṗ (ρ)x + xT P (ρ)ẋ

= ẋ
T P (ρ)x + xT ρ̇dP

dρ
x + xT P (ρ)ẋ

< −αV (x, ρ)

(21)

for ∀ρ ∈ [ρmin, ρmax], |ρ̇| ≤ ρ̇max and ∀t ≥ 0, where α >
0. Then the system (18) is globally exponentially stable to

xcl and the function V (x, ρ) is called a parameter-dependent

quadratic Lyapunov function, where α > 0 is an upper bound

on the decay rate of the magnitude of the state vector x(t).
Proof: The proof is based on the LPV arguments presented

in the work of Wu [25]. It is omitted here because of space

constraints. �

C. PWAPV Controller Synthesis

The synthesis of PWAPV controllers for uncertain

PWAPV slab systems is now presented as a theorem.

Theorem 3: Consider the closed-loop PWAPV system

(18). Let I(n) be an identity matrix of dimension n, where n
is the number of state variables. If, given α > 0, k lim > 0,

µi < 0, i = 1, . . . , M , ǫj > 0, j = 1, . . . , 6 and λmax > 0,

for ∀ρ ∈ [ρmin, ρmax] and |ρ̇| ≤ ρ̇max, it is true that
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Ωi I(n) I(n) Q(ρ)UT
Ai

I(n) −ρ̇−1
max|λmax|−1I(n) 0 0

I(n) 0 −ǫ1I(n) 0
UAi

Q(ρ) 0 0 −ǫ−1
1 I(n)









< 0, (22)













Ω̄i I(n) I(n) Q(ρ)UT
Ai

Q(ρ)LT
i

I(n) −ρ̇−1
max|λmax|−1I(n) 0 0 0

I(n) 0 −ǫ1I(n) 0 0
UAi

Q(ρ) 0 0 −ǫ−1
1 I(n) 0

LiQ(ρ) 0 0 0 −Γ−1
i













< 0, (23)

Q(ρ) = QT (ρ) > 0, dQ
dρ

− λmaxI(n) ≤ 0, inequality (22)

is verified for i = i⋆, and inequality (23) is verified for

i �= i⋆ with 1 − l2i < 0, where

Ωi = Ai(ρ)Q(ρ) + Bi(ρ)Yi(ρ) + Q(ρ)AT
i (ρ)

+Y T
i (ρ)BT

i (ρ) + αQ(ρ)

for i = i⋆ and

Ω̄i = Ai(ρ)Q(ρ) + Bi(ρ)Yi(ρ) + Q(ρ)AT

i (ρ)
+Y T

i (ρ)BT

i (ρ) + αQ(ρ)
+µi[1 + l2i (1 − l2i )

−1]∗
[(1 + ǫ−1

2
)ai(ρ)aT

i (ρ) + (1 + ǫ2)Uai
UT

ai
]

+µi[1 + l2i (1 − l2i )
−1]∗

[ai(ρ)kT

i (ρ)BT

i (ρ) + Bi(ρ)ki(ρ)aT

i (ρ)]
+[µiǫ3k

2

lim + µiǫ4k
2

lim + ǫ5]Uai
UT

ai

+li(1 − l2i )
−1[ai(ρ)LiQ(ρ) + Q(ρ)LT

i aT

i (ρ)]
+[µiǫ

−1

3
+ µiǫ

−1

4
l4i (1 − l2i )

−2 + ǫ6
+µik

2

lim{1 + l2i (1 − l2i )
−1}]Bi(ρ)BT

i (ρ)

with Γi = [ǫ−1
5 l2i (1− l2i )

−2 +ǫ−1
6 l2i (1− l2i )

−2k2
lim +µ−1

i (1−
l2i )

−1] for i �= i⋆ and if

[

k2
lim ki(ρ)

kT
i (ρ) 1

]

> 0, i = 1, . . . , M, (24)

then the closed-loop uncertain PWAPV system (18) is glob-

ally exponentially stable to the origin. �

Proof: The proof is omitted for lack of space. It is based

on Lemmas 1 and 2 and on Theorem 2.

D. Numerical Solution

To approximate the inequalities in Theorem 3 by a finite

set of LMIs, it will be assumed that Q(ρ), Yi(ρ) and ki(ρ)
are affinely dependent on the time-varying parameter ρ(t),
that is,







Q(ρ) = Q0 · ρ(t) + Q1

Yi(ρ) = Y 0i · ρ(t) + Y 1i

ki(ρ) = k0i · ρ(t) + k1i

. (25)

Based on these assumptions, the PWAPV controller syn-

thesis problem can be formulated as follows.

Problem 3: Given scalars α > 0, ǫj > 0, j = 1, . . . , 6,

klim > 0, µi < 0, ρmin, ρmax, ρ̇max, λmax > 0, vectors

Y lim
i , and a set of grid points ρk, k = 1, . . . , Nρ:

find Q0, Q1, Y 0i, Y 1i, k0i, k1i

s.t. Q(ρk) = Q0 · ρk + Q1,
Q(ρk) = QT (ρk) > 0,
Q0 − λmaxI(n) ≤ 0,
Yi(ρk) = Y 0i · ρk + Y 1i,
−Y lim

i ≺ Yi(ρk) ≺ Y lim
i ,

ki(ρk) = k0i · ρk + k1i,
[

k2
lim ki(ρk)

ki(ρk)T 1

]

> 0,

i = 1, . . . , M, k = 1, . . . , Nρ,

and inequality (22) evaluated at ρ = ρk for i = i⋆ and

inequality (23) evaluated at ρ = ρk for i �= i⋆ with

1 − l2i < 0. The symbols ≻ and ≺ denote component-wise

inequalities. �

The gains for the PWAPV control law (17) are then

{

Ki(ρ) = Yi(ρ)Q−1(ρ)

ki(ρ) = k0i · ρ(t) + k1i
(26)

and the Lyapunov function (20) is parameterized by P (ρ) =
Q−1(ρ), where Yi(ρ) and Q(ρ) are given in (25).

IV. PATH FOLLOWING CONTROLLER SYNTHESIS

This section proposes an application of the methodology

of this paper to the path following problem for a WMR.

A. Kinematic Controller Synthesis

We begin by considering only the WMR parameterized

path kinematics taken from [23] with constant velocity u =
udes, rewritten as





θ̇
ṡ1

ẏ1



 =





0 0 0
0 0 cc(t)ṡ
0 −cc(t)ṡ 0









θ
s1

y1



 +





−cc(t)ṡ
−ṡ
0





+





0
udes cos θ
udes sin θ



 +





1
0
0



 r(t),

(27)

which is a nonlinear parameter-dependent system of the form

(1), where the state vector is x1(t) = [θ, s1, y1]
T , the input

vector is u1(t) = r(t), and cc = cc(t) is the time-varying

parameter ρ(t). The desired closed-loop equilibrium point is

xcl
1 = [0, 0, 0]T .
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Partitioning the state variable θ into M regions and using

the methods described in Section II, the nonlinear parameter-

dependent system (27) is first approximated by an uncertain

PWAPV system of the form (2). A PWAPV control law of

the form

r(t) = Ki(cc)x1(t) + ki(cc), (28)

for x1(t) ∈ Ri, can then be designed such that the closed-

loop uncertain PWAPV system (18) satisfies the Lyapunov

conditions (20) and (21) for ∀cc ∈ [ccmin
, ccmax

], |ċc| ≤
ċcmax

, and ∀t ≥ 0, where α > 0. This PWAPV control law

can be obtained by solving Problem 3 yielding

{

Ki(cc) = Yi(cc)Q
−1
1 (cc)

ki(cc) = k0i · cc(t) + k1i
(29)

and the Lyapunov function (20) is parameterized by

P1(cc) = Q−1
1 (cc).

In the proof of the following theorem, it will be shown

that the PWAPV steering control law (28), designed for the

uncertain PWAPV system, can also globally exponentially

stabilize the nonlinear system (27) to θ = 0, s1 = 0, and

y1 = 0.

Theorem 4: The PWAPV control law (28) resulting from

the solution of Problem 3 globally exponentially stabilizes

the nonlinear parameter-dependent system (27) to the origin

if the bounds (6) are such that the difference between system

(27) and the nominal PWAPV system (12) satisfies these

bounds ∀x1(t) ∈ R
n. �

Proof: It was shown in Section III that the PWAPV control

law (28) resulting from the solution of Problem 3 globally

exponentially stabilizes the uncertain PWAPV system (2)

for all uncertainties verifying the bounds (6). Using the

numerical methods of Section II, if uncertainty bounds (6)

are obtained such that the difference between system (27)

and the nominal PWAPV system (12) satisfies these bounds

for ∀x1(t) ∈ R
n, it can be concluded from Theorem 1 that

the closed-loop nonlinear parameter-dependent system

ẋ1(t) = [A(cc) + B(cc)Ki(cc)]x1(t)
+[a(cc) + B(cc)ki(cc)] + f(x1)

(30)

satisfies

V̇1(x1, cc, ċc) = ẋ
T
1 P1(cc)x1 + xT

1 ċc
dP1

dcc
x1 + xT

1 P1(cc)ẋ1

< −αV1(x1, cc),
(31)

for ∀cc ∈ [ccmin
, ccmax

] and |ċc| ≤ ċcmax
. �

B. Dynamic Controller Synthesis

We now use an integrator backstepping-type approach to

include the WMR dynamics. Consider the WMR kinematics





θ̇
ṡ1

ẏ1



 =





−cc(t)ṡ
cc(t)ṡy1 − ṡ
−cc(t)ṡs1



 +





0
cos θ
sin θ



u +





1
0
0



 r (32)

or

ẋ1 = g(x1, cc) + gu(x1)u + gr(x1)r. (33)

Combining the kinematics with the WMR dynamics yields






ẋ1 = g(x1, cc) + gu(x1)u + gr(x1)r
u̇ = 1

Mrw
(TR + TL)

ṙ = c
Irw

(TR − TL)
. (34)

We now consider r as a virtual control, and call the

PWAPV steering control law (28) a stabilizing function and

denote it by rdes. The new control inputs are the torques














































TR = Mrw

2

{

u̇des −
α
2 ξu −

(

∂V1

∂x1

)T

gu(x1)

}

+ Irw

2c

{

ṙdes −
α
2 ξr −

(

∂V1

∂x1

)T

gr(x1)

}

TL = Mrw

2

{

u̇des −
α
2 ξu −

(

∂V1

∂x1

)T

gu(x1)

}

− Irw

2c

{

ṙdes −
α
2 ξr −

(

∂V1

∂x1

)T

gr(x1)

}

,

(35)

for x1(t) ∈ Ri.

Theorem 5: Consider the system (34). Let there exist a

constant forward velocity udes and a stabilizing function rdes

given by (28), as well as a parameter-dependent quadratic

Lyapunov function V1(x1, cc) that satisfies (20) and (21).

Then the wheel control torques TR and TL given by (35)

render the system (34) globally exponentially stable to u =
udes, r = rdes, θ = 0, s1 = 0, and y1 = 0 for ∀cc ∈
[ccmin

, ccmax
] and |ċc| ≤ ċcmax

. �

Proof: It follows from [18]. �

C. Actuator Controller Synthesis

Consider the WMR kinematics and dynamics rewritten as
2

6

6

6

4

u̇
ṙ

θ̇
ṡ1

ẏ1

3

7

7

7

5

=

2

6

6

6

4

0
0

r − cc(t)ṡ
u cos θ + cc(t)ṡy1 − ṡ
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+
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5
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(36)

or as

ẋ2 = g(x2, cc) + gTR
(x2)TR + gTL

(x2)TL. (37)

Combining the WMR kinematics and dynamics with the

actuator dynamics results in






ẋ2 = g(x2, cc) + gTR
(x2)TR + gTL

(x2)TL

ṪR = −KmRa

La
iR − KmKb

La
φ̇R + Km

La
VR

ṪL = −KmRa

La
iL − KmKb

La
φ̇L + Km

La
VL

. (38)

We now consider TR and TL as virtual controls, and call

the control torque laws (35) stabilizing functions denoted by

TRdes
and TLdes

. The new control inputs to the augmented

system (38) are the actuator voltages VR and VL. Using a

similar reasoning as before, it can be shown that the control

laws


























VR = La

Km
ṪRdes

− α
2

La

Km
ξTR

− La

Km

(

∂V2

∂x2

)T

gTR
(x2) + Kbφ̇R + RaiR

VL = La

Km
ṪLdes

− α
2

La

Km
ξTL

− La

Km

(

∂V2

∂x2

)T

gTL
(x2) + Kbφ̇L + RaiL

,

(39)
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Fig. 1. Plot of desired and actual trajectories

for x1(t) ∈ Ri, globally exponentially stabilize the system

(38) to TR = TRdes
, TL = TLdes

, u = udes, r = rdes,

θ = 0, s1 = 0, and y1 = 0 for ∀cc ∈ [ccmin
, ccmax

] and

|ċc| ≤ ċcmax
, where

(

∂V2

∂x2

)T

= 2P2(cc)(x2 − xcl
2 ) with

P2(cc) =





1
2 0 0
0 1

2 0
0 0 P1(cc)



 . (40)

V. SIMULATION RESULTS

For the synthesis of the PWAPV steering control law

(28), Problem 3 is solved with α = 0.01, µi = −100,

klim = 1, ccmin
= −1.0 m−1, ccmax

= +1.0 m−1, ċcmax
=

+2.0 m−1s−1, Y lim
i = [20, 20, 20]T , λmax = 10−6, a set

of Ncc
= 20 grid points over the interval cc = [−1.0, +1.0],

ǫ1 = 7.2 × 10+6, ǫ2 = 5.0 × 10+1, ǫ3 = 1.0 × 10+2,
ǫ4 = 5.0 × 10+2, ǫ5 = 5.0 × 10+1, ǫ6 = 5.0 × 10−1.

Simulations were performed with all initial conditions

equal to zero, except for the heading error, which was set

to θ = π rad. The desired and actual trajectories are shown

in Figure 1, where it can be seen that the actual trajectory

converges to the desired one.

VI. CONCLUSIONS

This paper presented a PWAPV controller synthesis

method that can be formulated as a convex optimization

program subject to a parameterized set of inequalities. These

inequalities were approximated by a finite set of LMIs and

then solved efficiently using available software. The method

was applied to a non-singular path parameterization model

for a wheeled mobile robot including the actuator dynamics.
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