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Abstract— This paper defines a new class of systems and
presents a novel controller synthesis method. This new method-
ology is motivated by and applied to the problem of path follow-
ing of a wheeled mobile robot (WMR). The new class of systems
proposed in this paper is called piecewise-affine parameter-
varying (PWAPYV), which is a combination of piecewise-affine
(PWA) and linear parameter-varying (LPV) systems. The syn-
thesis of PWAPYV controllers for uncertain PWAPYV systems can
be cast as a parameterized set of matrix inequalities, which can
be approximated by a finite set of LMIs and solved efficiently
using available software. As an application, actuator input
voltage laws are designed to guarantee that a WMR follows a
desired path that is parameterized by a time-varying curvature.
Simulation results show the effectiveness of the new control law.

I. INTRODUCTION

The problem of path following for autonomous vehicles is
very important and has received a great deal of attention in
the past ten years. The importance of path following is made
evident by the vast amount of work carried out in the area of
path parameterization for the motion control of unicycle-type
land robots [19], [23], marine vehicles [8], [11], and aerial
vehicles (UAVs) [1], [22].

Initial research focused primarily on path following and
trajectory tracking for nonholonomic vehicles using only
kinematic models. A good survey of the work done up until
1995 was conducted by Kolmanovsky and McClamroch [16].
An increasing amount of research is now examining the
combination of kinematic and dynamic models. One of the
first publications to use backstepping to include dynamics is
the work by Fierro and Lewis [13]. Since then, different
control methods have been examined, including adaptive
backstepping [5], [7], [14], discontinuous backstepping [24],
dynamic feedback linearization [20], approximate feedback
linearization [15], and sliding mode control [6]. More re-
cently, research has focused on the robustness of controllers
to unmodeled dynamics and parameter uncertainty [9], [10],
[23]. However, little research has been conducted in order to
include the dynamics of the actuators in the controller design
process [2], [4], [17].

The new path following control method proposed in this
paper consists of a three-step procedure. In the first step,
a kinematic steering control law is designed assuming the
path curvature is time-varying (for the case where the path
curvature is constant see [18]). Two curvature limits and
a curvature rate of change limit are first defined for the
desired path and then the nonlinear WMR parameterized
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path kinematics described in [23] are approximated by an
uncertain PWAPV system, while assuming that the WMR
forward velocity is constant. Then, a PWAPYV steering con-
trol law is designed using a parameter-dependent quadratic
Lyapunov function. In the second step, a backstepping-type
approach is used to include the vehicle dynamics and design
the wheel control torques that guarantee convergence of the
WMR forward and rotational velocities to the desired values.
Finally, in the third step, the actuator dynamics are included
and the input voltages are designed using backstepping.

There are four primary advantages to the new path fol-
lowing controller synthesis method proposed here. First, the
PWAPYV controller synthesis method can be formulated as
a convex optimization program subject to a parameterized
set of inequalities, which can be approximated by a finite
set of LMIs and solved efficiently using available software.
Second, it includes both the general, non-singular path pa-
rameterization proposed in [23] and the actuator dynamics.
Third, the PWAPYV control law can also stabilize the original
nonlinear parameter-dependent system. And fourth, it is a
first step toward including hard nonlinearities in the actuator
dynamics, which are important PWA characteristics.

The outline of the paper is as follows. Section II defines
the class of PWAPYV systems introduced in this paper. Then,
the new PWAPV controller synthesis method for uncertain
PWAPV slab systems is derived in Section III. Section IV
develops an application to path following control. Then,
section V shows a numerical example, followed by the
conclusions in Section VL.

II. PWAPV APPROXIMATION OF NONLINEAR SYSTEMS
A. Class of Systems

Consider a nonlinear system of the form

X(t) = A(p)x(t) + a(p) + () + Blpyu(H), (1)

where p = p(t) is the time-varying parameter, x(t) € R™ is
the state vector, and u(t) € R™ is the input vector. Matrices
A(p) € R™*", a(p) € R™ and B(p) € R™*™ are affine in
the parameter p, while the vector f(x) € R™ is nonlinear in
the state vector x(t).

This paper introduces a class of uncertain PWAPYV systems
to approximate the nonlinear system (1). The dynamics of
uncertain PWAPV systems are described by

(1) = [Ai(p) + AAX)] x(t)

[as(p) + Aa(x)] + Bi(pu(t), P
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for x(t) € R;, where matrices A;(p) € R"*", a;(p) € R”
and B;(p) € R™*™« are affine in the time-varying parameter
p and represent the nominal PWAPV system, while matrices
AA(x) € R™™™ and Aa(x) € R™ are the uncertainty terms.
The polytopic regions, R;, i € T = {1,..., M}, partltlon
a subset of the state space X C R"™ such that MR =
X, RiNR; =0, i # j, where R; denotes the closure of R;.
It is assumed that the desired closed-loop equilibrium point
x° is the origin. The region in which x¢ lies is denoted as
Ri~. A slab is a special case of a polyhedron, and is defined
as follows.
Definition 1: A slab is defined as

S={xeR" | h < H'x < hy}, 3)

where H € R” and hq, hy € R. O
Definition 2: A PWAPV slab system is a PWAPV system
for which the regions are slabs. |

For PWAPV slab systems, each region R; can be equiv-
alently described by a degenerate ellipsoid &;, such that
Ri g (SZ and 81 g Ri, where

gi:{XERn | ||L1X+le < 1} )
This covering is described by

{ L;= 2HT/(h2 — h1)
li = —(ha+ h1)/(h2 — h1)

Finally, the following a priori assumptions, adapted from
previous work in the robust piecewise-linear (PWL) control
literature [12], are made for the uncertainty terms:

AAT(x)AA(x) < UZ Ua, ©)
Aa(x)Ad” (x) < U,, UL

(&)

for x(t) € R;. As shown in the proof of the following
theorem, the nonlinear parameter-dependent system (1) is
equivalent to an uncertain PWAPV system of the form (2)
under certain conditions.

Theorem 1: The nonlinear parameter-dependent system
(1) is equivalent to the uncertain PWAPV system (2) with

Ai(p) = Alp) +
ai(p) = alp) + @i (M
Bi(p) = B(p)
if
f(x) — Aix(t) — a; = AAX)X(t) + Aa(x),  (8)
for x(t) € R;. O

Proof: System (1) can be rewritten as

x(t) = A(p)x(t) +alp) + f ({i)

Pomn

for x(t) € R;. Using the constraint (8), this last equation
becomes

x(t) = Ap)x(t) +
+AA(x)

a(p) + Aix(t) + a,

x(t) + Aa(x) + B(pyu(), 1?0

for x(t) € R,. This can be rewritten as

x(t) = [Ai(p) + AAX)]x(?)

Haip) + Aa®)] + Bi(ppu(), D

for x(t) € R;, where

This concludes the proof. O
In order to obtain the uncertain PWAPV system (2), the
following steps must be carried out:

1) The nonlinear system (1) is approximated by a nominal
PWAPV system.

2) The uncertainty bounds (6) are determined such that
the original nonlinear system is contained in the un-
certain PWAPV system.

The next two subsections address these steps.

B. PWAPV Approximation

The first step in approximating the nonlinear system (1)
by the uncertain PWAPV system (2) is to obtain a nominal
PWAPYV system of the form

x(t) = Ai(p)x(t) + ai(p) + Bi(p)u(t),

for x(t) € R;, using (7). Matrices A(p), a(p) and B(p) in
(7) are obtained from (1), and matrices A; and a; come from
the PWA approximation of the nonlinear function

12)

f(x) ~ Aix(t) + a, (13)
for x(t) € R;.

The PWA approximation (13) of the nonlinear function
f(x) in (1) can be obtained by solving the following convex
optimization problem [21]:

Problem 1: Given a partition of the state space X, the
sampling points X, k = 1,..., N, and matrices Ay, ar:

min Y73 e (xi)e(xx)

s.t. (Xk) f(Xk) A;Xp — a;,
(A A )Xk* (ai - dj) = 0,
Az* - AL, af’L* - aLa
i=1,....M, jEN;,
k=1,.... N,

where M is the number of state space partitions, xj are
sampling points, Xy~ are the sampling points corresponding
to the boundary between two neighbouring regions, and the
linearization of the nonlinear function f(x) in (1) at x° is
given by Arx(t) +ar. O

A numerical method for determining the PWA uncertainty
bounds (6) is proposed in the next subsection.
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C. PWA Uncertainty Bounds

The error function e(x;) defined in Problem 1, at the
sampling points xj, is

AA(x)xk + Aa(xi) = e(xi) = f(xx) — Aixy, — a;, (14)

fori=1,...,M, k =1,...,N,, where matrices AA(Xy)
and Aa(xy) are the uncertainty terms in (2) and are assumed
to be polynomial functions in xj of order n,. Moreover,
defining Wo, = UX Ua, and W,, = U, UL, the PWA
constraints (6) can be written as the LMIs

WA,; AAT(Xk)]
and
Wai Aa(xk)
{AGT(X“ ) ] >0, (16)

forxy € R;, k=1,...,N,.
The PWA uncertainty bounds (6), W 4,, W,, can be ob-
tained by solving the following convex optimization problem.

Problem 2: Given the sampling points X, k = 1,..., Ny,
the scalar n,,, and the nominal PWAPV system (12):

min Zf\il trace [Wa, + Wq,]

st (14), (15), (16)
i=1,.... M,
k=1,....N.,

where AA(xy) and Aa(xy) are assumed to be polynomial
functions in x;, of order n,,. O

Remark 1: Note that the PWA uncertainty bounds (6)
resulting from the solution of Problem 2 are dependent on
the sampling points x;. Therefore, it cannot be guaranteed
in general that the uncertainties satisfy the bounds (6) for
Vx(t) € R™. However, sampling methods can be used to
offer this guarantee for certain cases. O

III. PWAPV CONTROLLER SYNTHESIS

This section states and solves the PWAPV controller
synthesis problem for the class of uncertain PWAPV slab
systems defined in the previous section. The synthesis of a
PWAPYV controller will be used in the first step of the path
following method proposed in the next section.

A. Design Objectives

The objective is to design a feedback control law that glob-
ally exponentially stabilizes the uncertain PWAPV system
(2) to the origin. The PWAPV state feedback control law
proposed here is of the form

u(t) = Ki(p)x(t) + ki(p),

for x(t) € R;. Substituting (17) into (2) yields the closed-
loop uncertain PWAPV system

x(t) = A7 (p)x(t) + a5 (p),

a7

(18)

for x(t) € R;, where

t)
{ A (p) = {[Ai(p) + AA(X)] + Bi(p)Ki(p)}
ast(p) = {lai(p) + Aa(x)] + Bi(p)ki(p)}

Some background material must be reviewed before the
PWAPYV controller synthesis problem is stated.

19)

B. Mathematical Preliminaries

This subsection presents two lemmas and one theorem to
be used in the ensuing development.

Lemma 1: [3] Let X and Y be real constant matrices of
compatible dimensions, then the following equation

XTY +YTX <eX"X +e'YTY
holds for any € > 0. O
Lemma 2: If M > 0, then
BM BT < trace(M)BBT

for any matrix B with appropriate dimensions. O

Proof: 1t suffices to show that trace(M)I — M > 0. This
is true because the eigenvalues A, (31 — M) are equal to
8 — Ai(M) for any (. Therefore, since the trace is the sum
of all eigenvalues and since M > 0, the eigenvalues of
[trace(M)I — M] are all greater than or equal to zero, which
finishes the proof. m]

In the following theorem, p,,,in and p.,q. are limits on p,
and Pnqz 1 @ limit on the magnitude of p.

Theorem 2: Consider the closed-loop system (18), and let
x°l = 0 be an equilibrium point of this system. Let VV : R™ —
R be a continuously differentiable function such that

V(x,p) =x' P(p)x (20)
with P(p) = PT(p) > 0, and
V(x,p,p) =% P(p)x+x"P(p)x+x"P(p)x
=x"P(p)x+x"piEx+xTP(p)x 21

< —OéV(X, p)

for Vp € [pmins Pmaz)s 10| < Pmaz and Vi > 0, where o >
0. Then the system (18) is globally exponentially stable to
x° and the function V(x, p) is called a parameter-dependent
quadratic Lyapunov function, where o > 0 is an upper bound
on the decay rate of the magnitude of the state vector x(t).

Proof: The proof is based on the LPV arguments presented
in the work of Wu [25]. It is omitted here because of space
constraints. O

C. PWAPV Controller Synthesis

The synthesis of PWAPV controllers for uncertain
PWAPYV slab systems is now presented as a theorem.

Theorem 3: Consider the closed-loop PWAPV system
(18). Let I (n) be an identity matrix of dimension n, where n
is the number of state variables. If, given o > 0, ki, > 0,
i <0,i=1,...,M,¢; >0, j=1,...,6 and Az > 0,
for Vo € [pmin,Pmaz] and |p| < Pmaz, it is true that
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Qi ) Iiny ) Iy  Q(pUZL,
I(n) _p:nu,w|/\max|7 I(n) 0 0
I(n) 0 —ell(n) 0 < O’ (22)
UAiQ(p) 0 0 —€ I(n)
2 Iin) Iy QUL Q(p)LT
I(n) _p:n%mc|/\mar|_1](n) 0 0 0
I(n) 0 —€1I(n) 0 0 <0, (23)
Ua,Q(p) 0 0 —'m 0
LiQ(p) 0 0 0 Tt
Qlp) = Q%(p) > 0, % — Amazl(n) < 0, inequality (22) Y™, and a set of grid points pj, k=1,..., N,
is verified for ¢ = 4*, and inequality (23) is verified for -
i #i* with 1 —1? < 0, where find Q0, Q1, Y0;, Y1;, k0, k1;
st. Qpr) = QU-pr + QL
Qlpx) = Q" (px) > 0,
2 = Ai(p)Qp) + Bi(p)Yi(p) + Q(0) AT (p) Q0 — Aozl <0,
+Y"(p)Bf (p) + aQ(p) Yi(pr) = Y0i - pro + Y1,
. " _}/illm {E(pk) ~ };illm’
for ¢ = ¢* and ki(pr) = kO; - px + k1,
— 2 i
Qi = 4(9)Q(p) + Bi(p)Yi(p) + Qo) AT (p) [ Kiim ’fz(pk)} -0,
+Y () BY (p) + aQ(p) [ki(pr) 1
il + 21— 1)) i=1,...,M, k=1,...,N,,
1+ € ai(p)ai 1 0 Us, . . o
il +l[_2((1+_€l22))j]ip)al (p) (1 + 2)Ua,Ua] and inequality (22) evaluated at p = pj for ¢ = 7* and
[Zai(p)kf-‘r(p)BZT(p)+Bi(p)ki(p)aiT(p)] inequality (23) evaluated at p = p, for ¢ # ¢* with

+[pi€skisy + pi€akfy, + €5)Ua, Ud,
+1;(1 = 13) Mai(p) LiQ(p) + Q(p) LT af (p)]
ezt + e M — 1) 7% 466

+pikisn {1+ (1= 17) " HBi(p) B (p)

with [y = [e 17 (1—17) 72 +eg P (1= 12) " 2kfy, 1y (1-
12)71] for i # i* and if

2 .
|:klim kl(p):| >0’ 7;:17...7M7 (24)

K(p) 1
then the closed-loop uncertain PWAPYV system (18) is glob-
ally exponentially stable to the origin. O

Proof: The proof is omitted for lack of space. It is based
on Lemmas 1 and 2 and on Theorem 2.

D. Numerical Solution

To approximate the inequalities in Theorem 3 by a finite
set of LMISs, it will be assumed that Q(p), Y;i(p) and k;(p)
are affinely dependent on the time-varying parameter p(t),
that is,

Q(p) = Q0 - p(t) + Q1
Yilp) = Y0 - p(t) + V1, 25)
ki(p) = k0; - p(t) + k1,

Based on these assumptions, the PWAPV controller syn-
thesis problem can be formulated as follows.

Problem 3: Given scalars o > 0, ¢; > 0, j = 1,...,6,
klim > 0’ i < 0’ Pmins Pmaxs pmam’ )\mam > 0’ vectors

1 — 12 < 0. The symbols = and < denote component-wise

inequalities. g
The gains for the PWAPV control law (17) are then
kz(p) = kOZ . p(t) + kll

and the Lyapunov function (20) is parameterized by P(p) =
Q~(p), where Y;(p) and Q(p) are given in (25).
IV. PATH FOLLOWING CONTROLLER SYNTHESIS

This section proposes an application of the methodology
of this paper to the path following problem for a WMR.

A. Kinematic Controller Synthesis

We begin by considering only the WMR parameterized
path kinematics taken from [23] with constant velocity u =
Udes, TEWTIttEN as

0 0 0 0 0 —co(t)$
$11 =10 0 Cc(t)é s1| + —$
yl 0 —cc(t)s 0 Y1 0
0 1
+ |ugescos@| + |0 r(¢),
Uges SIN 0 0
(27)

which is a nonlinear parameter-dependent system of the form
(1), where the state vector is x1(¢) = [0, s1, y1]7, the input
vector is uy(t) = r(t), and ¢, = c.(t) is the time-varying
parameter p(t). The desired closed-loop equilibrium point is
x§' =0, 0, 0]T.
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Partitioning the state variable 6 into M regions and using
the methods described in Section II, the nonlinear parameter-
dependent system (27) is first approximated by an uncertain
PWAPYV system of the form (2). A PWAPV control law of
the form

T(t) = K; (CC)Xl (t) + k; (CC), (28)

for x;(t) € R;, can then be designed such that the closed-
loop uncertain PWAPV system (18) satisfies the Lyapunov
conditions (20) and (21) for Ve, € [ce iy Comanls |Ce|l <
Ceman» and ¥Vt > 0, where « > 0. This PWAPV control law
can be obtained by solving Problem 3 yielding

{ Ki(ce) = Yi(ce)Q1 ' (ce)

ka(ee) = KO, - co(1) + K1, @)

and the Lyapunov function (20) is parameterized by
Py(cc) = Qfl(CC)-

In the proof of the following theorem, it will be shown
that the PWAPV steering control law (28), designed for the
uncertain PWAPV system, can also globally exponentially
stabilize the nonlinear system (27) to # = 0, s; = 0, and
y1 =0.

Theorem 4: The PWAPV control law (28) resulting from
the solution of Problem 3 globally exponentially stabilizes
the nonlinear parameter-dependent system (27) to the origin
if the bounds (6) are such that the difference between system
(27) and the nominal PWAPV system (12) satisfies these
bounds Vx; (t) € R™. O

Proof: Tt was shown in Section III that the PWAPV control
law (28) resulting from the solution of Problem 3 globally
exponentially stabilizes the uncertain PWAPV system (2)
for all uncertainties verifying the bounds (6). Using the
numerical methods of Section II, if uncertainty bounds (6)
are obtained such that the difference between system (27)
and the nominal PWAPV system (12) satisfies these bounds
for Vx;(t) € R™, it can be concluded from Theorem 1 that
the closed-loop nonlinear parameter-dependent system

(1) = [A(ce) + Bleo) Kiec) (1) 0
+la(ce) + Blee)kilcee)] + f(x1)
satisfies

= X] Pi(cox + Xféc‘;—ilm +xT Py (ce)xs
< _a‘/l (X17 CC)a

‘./1(X17 CCv CC)

(3D
for VCC € [ccnn'n’ccnzam] and |Cc| S écnlaz' U
B. Dynamic Controller Synthesis

We now use an integrator backstepping-type approach to
include the WMR dynamics. Consider the WMR kinematics

0 —co(t)$ 0 1
s11 = |ee(t)syr — §| + |cos@| v+ (O] r (32)
71 —c.(t)$s1 sin 0 0
or
X1 = g(X1, ¢c) + gu(X1)u + gr(x1)r. (33)

Combining the kinematics with the WMR dynamics yields
X1 = g(X1,¢c) + gu(X1)u + g (X1)r
U = erw (TR + TL)
= Ifw (Tr — T1)
We now consider r as a virtual control, and call the
PWAPV steering control law (28) a stabilizing function and
denote it by r4es. The new control inputs are the torques

T
TR = —MZT“’ {udes - %gu - (g_;/ll) gu(X1)}
X AV; T
{Tdes - %gr - (3,(;) gr(Xl)}
T b)
TL = —M;‘“ {ades - %gu - (g_;/ll) QU(Xl)}

T
_127’—6“’ {f’des - %f’r‘ - (g_;/ll) gr(Xl)}
(35)

(34)

Iry
+ 2c

for x1(t) € R;.

Theorem 5: Consider the system (34). Let there exist a
constant forward velocity u 4¢5 and a stabilizing function 7 ges
given by (28), as well as a parameter-dependent quadratic
Lyapunov function V7(xq,c.) that satisfies (20) and (21).
Then the wheel control torques T'r and 717 given by (35)
render the system (34) globally exponentially stable to u =
Udes, T = Tges, 8 = 0, s1 = 0, and y; = 0 for Ve, €
[Comins Coman) a0d |Ce] < ée, . O

Proof: 1t follows from [18]. O

C. Actuator Controller Synthesis

Consider the WMR kinematics and dynamics rewritten as
1 1

u 0 Mo Moy
r 0 Tro e
o] = r—ce(t)s + Tr+ | 0 |TL
$1 wcos O + co(t)sy1 — 0 0
7 usin @ — c.(t)$s1 0 0
(36)
or as
X2 = g(X2,¢c) + g1 (X2)TR + g1, (X2)Tr.  (37)

Combining the WMR kinematics and dynamics with the
actuator dynamics results in

Xy = g(X2, ¢c) + g1y (X2) TR + g1, (%2) T2,

KmRa; KnK K
T = —2ptein — £p50p + 22 Vi (38)
Ty = —Bpllajy — Kaleg, 4 Buyy

We now consider T'r and T, as virtual controls, and call
the control torque laws (35) stabilizing functions denoted by
TR,., and T7,, . The new control inputs to the augmented
system (38) are the actuator voltages Vi and Vy. Using a
similar reasoning as before, it can be shown that the control

laws

_ Las
Ve = %=TRy., —

— La
K’r’b
_ Lo
Ve =1L, —

— Lo
K

Lq

m

975 (X2) + Kybr + Raig
¢ty ’

g1, (%2) + Ky, + Rair,
(39

Ie)

Erp

Q
N
=

Q)
e
9

Q
=~
Hx
3

— R ——
~
&

Q)
e
9
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Fig. 1. Plot of desired and actual trajectories

for x1(t) € R;, globally exponentially stabilize the system

(38) to TR = TRdesa TL = TLdes’ U = Udes, T = Tdes>

0 =0,s =0,and y1 = 0 for Vee € [Cepniny Coman) @nd
T

6el < e where (2)7 = 2Py(cc)(x2 — x5') with

aXQ
20 0
Py(c.)= [0 2 0 (40)
0 0 Pilc)

V. SIMULATION RESULTS

For the synthesis of the PWAPV steering control law
(28), Problem 3 is solved with « = 0.01, u; = —100,
kiim =1, ¢cc,,,, = —1.0m Y ¢, . =+1.0m™ 1, ¢, . =
+2.0 m~Ls™L, V™ = [20, 20, 20]7, Apar = 1076, a set
of N, = 20 grid points over the interval ¢, = [-1.0, +1.0],

€ =72x10%0 € =5.0x10"", e3=1.0x10%"2,
€4 =50x10T2, e =50x10T", € =5.0x10"1.

Simulations were performed with all initial conditions
equal to zero, except for the heading error, which was set
to § = m rad. The desired and actual trajectories are shown
in Figure 1, where it can be seen that the actual trajectory
converges to the desired one.

VI. CONCLUSIONS

This paper presented a PWAPV controller synthesis
method that can be formulated as a convex optimization
program subject to a parameterized set of inequalities. These
inequalities were approximated by a finite set of LMIs and
then solved efficiently using available software. The method
was applied to a non-singular path parameterization model
for a wheeled mobile robot including the actuator dynamics.
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