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Abstract— Even though many consensus protocol algorithms
have been developed over the last several years in the literature,
robustness properties of these algorithms involving nonlinear
dynamics have been largely ignored. Robustness here refers
to sensitivity of the control algorithm achieving semistability
and consensus in the face of model uncertainty. In this paper,
we develop robust control algorithms for network consensus
protocols with information model uncertainty of a specified
structure. In particular, we construct homogeneous control
protocol functions that scale in a consistent fashion with
respect to a scaling operation on an underlying space with the

additional property that the protocol functions can be written
as a sum of functions, each homogeneous with respect to a
fixed scaling operation, that retain system semistability and
consensus.

I. INTRODUCTION

Due to advances in embedded computational resources
over the last several years, a considerable research effort has
been devoted to the control of networks and control over net-
works. Network systems involve distributed decision-making
for coordination of networks of dynamic agents involving
information flow enabling enhanced operational effective-
ness via cooperative control in autonomous systems. These
dynamical network systems cover a very broad spectrum
of applications including cooperative control of unmanned
air vehicles (UAV’s) and autonomous underwater vehicles
(AUV’s) for combat, surveillance, and reconnaissance; dis-
tributed reconfigurable sensor networks for managing power
levels of wireless networks; air and ground transportation
systems for air traffic control and payload transport and traf-
fic management; swarms of air and space vehicle formations
for command and control between heterogeneous air and
space vehicles; and congestion control in communication
networks for routing the flow of information through a
network.

To enable the applications for these multiagent systems,
cooperative control tasks such as formation control, ren-
dezvous, flocking, cyclic pursuit, cohesion, separation, align-
ment, and consensus need to be developed [1–3]. To realize
these tasks, individual agents need to share information of
the system objectives as well as the dynamical network.
In particular, in many applications involving multiagent
systems, groups of agents are required to agree on certain
quantities of interest. Information consensus over dynamic
information-exchange topologies guarantees agreement be-
tween agents for a given coordination task. Distributed con-
sensus algorithms involve neighbor-to-neighbor interaction
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between agents wherein agents update their information state
based on the information states of the neighboring agents. A
unique feature of the closed-loop dynamics under any control
algorithm that achieves consensus in a dynamical network is
the existence of a continuum of equilibria representing a state
of consensus. Under such dynamics, the limiting consensus
state achieved is not determined completely by the dynamics,
but depends on the initial state as well.

In systems possessing a continuum of equilibria, semista-
bility, and not asymptotic stability is the relevant notion of
stability [4], [5]. Semistability is the property whereby every
trajectory that starts in a neighborhood of a Lyapunov stable
equilibrium converges to a (possibly different) Lyapunov
stable equilibrium. Semistability thus implies Lyapunov sta-
bility, and is implied by asymptotic stability. From a prac-
tical viewpoint, it is not sufficient to only guarantee that
a network converges to a state of consensus since steady
state convergence is not sufficient to guarantee that small
perturbations from the limiting state will lead to only small
transient excursions from a state of consensus. It is also
necessary to guarantee that the equilibrium states repre-
senting consensus are Lyapunov stable, and consequently,
semistable. References [2], [3] build on the results of [4],
[5] and give semistable stabilization results for nonlinear
network dynamical systems.

Even though many consensus protocol algorithms have
been developed over the last several years in the literature
(see [1–3], [6] and the numerous references therein), and
some robustness issues have been considered [1], [7], [8],
robustness properties of these algorithms involving nonlinear
dynamics have been largely ignored. Robustness here refers
to sensitivity of the control algorithm achieving semistability
and consensus in the face of model uncertainty. In this paper,
we build on the results of [2] to develop robust control
algorithms for network consensus protocols with information
model uncertainty of a specified structure. In particular, we
construct homogeneous control protocol functions that scale
in a consistent fashion with respect to a scaling operation
on an underlying space with the additional property that the
protocol functions can be written as a sum of functions, each
homogeneous with respect to a fixed scaling operation, that
retain system semistability and consensus.

II. MATHEMATICAL PRELIMINARIES

The notation used in this paper is fairly standard. Specifi-
cally, R denotes the set of real numbers, R+ denotes the set
of nonnegative real numbers, R

n denotes the set of n × 1
real column vectors, (·)T denotes transpose, (·)# denotes the
group generalized inverse, and “◦” denotes the composition
operator. For A ∈ R

m×n we write rankA to denote the
rank of A. Furthermore, ∂S and S denote the boundary and
the closure of the subset S ⊂ R

n, respectively. Finally, we
write ‖ · ‖ for the Euclidean vector norm and dist(p,M) for
the smallest distance from a point p to the set M, that is,
dist(p,M) , infx∈M ‖p− x‖.

In this paper, we consider nonlinear dynamical systems of
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the form

ẋ(t) = f(x(t)), x(0) = x0, t ∈ Ix0
, (1)

where x(t) ∈ D ⊆ R
n, t ∈ Ix0

, is the system state
vector, D is an open set, f : D → R

n is continuous on
D, f−1(0) , {x ∈ D : f(x) = 0} is nonempty, and
Ix0

= [0, τx0
), 0 ≤ τx0

≤ ∞, is the maximal interval
of existence for the solution x(·) of (1). A continuously
differentiable function x : Ix0

→ D is said to be a solution of
(1) on the interval Ix0

⊂ R if x satisfies (1) for all t ∈ Ix0
.

The continuity of f implies that, for every x0 ∈ D, there
exist τ0 < 0 < τ1 and a solution x(·) of (1) defined on
(τ0, τ1) such that x(0) = x0. A solution x is said to be
right maximally defined if x cannot be extended on the right
(either uniquely or nonuniquely) to a solution of (1). Here,
we assume that for every initial condition x0 ∈ D, (1) has
a unique right maximally defined solution, and this unique
solution is defined on [0,∞). Furthermore, we assume that
f(·) is locally Lipschitz continuous on D\f−1(0). Note that
the local Lipschitzness of f(·) on D\f−1(0) implies local
uniqueness in forward and backward time for nonequilibrium
initial states.

Under these assumptions on f , the solutions of (1) define
a continuous global semiflow on D, that is, s : [0,∞)×D →
D is a jointly continuous function satisfying the consis-
tency property s(0, x) = x and the semi-group property
s(t, s(τ, x)) = s(t+τ, x) for every x ∈ D and t, τ ∈ [0,∞).
Given t ∈ [0,∞) we denote the flow s(t, ·) : D → D of
(1) by st(x0) or st. Likewise, given x ∈ D we denote the

solution curve or trajectory s(·, x) : R+ → D of (1) by sx(t)
or sx.

A set M ⊂ R
n is positively invariant if st(M) ⊆ M for

all t ≥ 0. The set M is negatively invariant if, for every
z ∈ M and every t ≥ 0, there exists x ∈ M such that
s(t, x) = z and s(τ, x) ∈ M for all τ ∈ [0, t]. Finally, the
set M is invariant if st(M) = M for all t ≥ 0. Note that a
set is invariant if and only if it is positively and negatively
invariant.

Definition 2.1 ([4]): An equilibrium point x ∈ D of (1) is
Lyapunov stable under f if for every open subset Nε of D
containing x, there exists an open subset Nδ of D containing
x such that st(Nδ) ⊂ Nε for all t ≥ 0. An equilibrium point
x ∈ D of (1) is semistable under f if it is Lyapunov stable
under f and there exists an open subset U of D containing
x such that for all initial conditions in U , the trajectory
of (1) converges to a Lyapunov stable equilibrium point,
that is, limt→∞ s(t, x) = y, where y ∈ D is a Lyapunov
stable equilibrium point of (1) and x ∈ U . If, in addition,
U = D = R

n, then an equilibrium point x ∈ D of (1)
is a globally semistable equilibrium. The system (1) is said
to be semistable under f if every equilibrium point of (1)
is semistable. Finally, (1) is said to be globally semistable
under f if (1) is semistable under f and U = D = R

n.

Definition 2.2: The domain of semistability is the set of
points x0 ∈ D such that if x(t) is a solution to (1) with
x(0) = x0, t ≥ 0, then x(t) converges to a Lyapunov stable
equilibrium point in D.

Note that if (1) is semistable, then its domain of semista-
bility contains the set of equilibria in its interior. Next, we
present alternative equivalent characterizations of semistabil-
ity of (1).

Lemma 2.1 ([9]): Consider the nonlinear dynamical sys-
tem (1). Then the following statements are equivalent:

i) The system (1) is semistable.
ii) For each xe ∈ f−1(0), there exist class K and L

functions α(·) and β(·), respectively, and δ = δ(xe) >
0, such that if ‖x0 − xe‖ < δ, then ‖x(t) − xe‖ ≤

α(‖x0 − xe‖), t ≥ 0, and dist(x(t), f−1(0)) ≤ β(t),
t ≥ 0.

iii) For each xe ∈ f−1(0), there exist class K func-
tions α1(·) and α2(·), a class L function β(·), and
δ = δ(xe) > 0, such that if ‖x0 − xe‖ < δ, then
dist(x(t), f−1(0)) ≤ α1(‖x(t)− xe‖)β(t) ≤ α2(‖x0 −
xe‖)β(t), t ≥ 0.

Given a continuous function V : D → R, the upper right
Dini derivative of V along the solution of (1) is defined by

V̇ (s(t, x)) , lim sup
h→0+

1

h
[V (s(t+ h, x)) − V (s(t, x))]. (2)

It is easy to see that V̇ (xe) = 0 for every xe ∈ f−1(0).
In addition, note that V̇ (x) = V̇ (s(0, x)). Finally, if V (·) is

continuously differentiable, then V̇ (x) = V ′(x)f(x).

In the sequel, we will need to consider a complete vector
field ν on R

n such that the solutions of the differential
equation ẏ(t) = ν(y(t)) define a continuous global flow
ψ : R × R

n → R
n on R

n, where ν−1(0) = f−1(0). For
each τ ∈ R, the map ψτ (·) = ψ(τ, ·) is a homeomorphism
and ψ−1

τ = ψ−τ . We define a function V : R
n → R to be

homogeneous of degree l ∈ R with respect to ν if and only
if

(V ◦ ψτ )(x) = elτV (x), τ ∈ R, x ∈ R
n. (3)

Note that it follows from (3) that V (x) = 0 if x ∈ ν−1(0).
Our assumptions imply that every connected component of
R

n\f−1(0) is invariant under ν.

The following proposition provides a useful comparison
between positive definite homogeneous functions with re-
spect to an equilibrium set.

Proposition 2.1: Assume V1(·) and V2(·) are continuous
real-valued functions on R

n, homogeneous with respect to
ν of degrees l1 > 0 and l2 > 0, respectively, and V1(·)
satisfies V1(x) = 0 for x ∈ ν−1(0) and V1(x) > 0 for
x ∈ R

n\ν−1(0). Then for each xe ∈ ν−1(0) and each
bounded open neighborhood D0 containing xe, there exist
c1 = c1(D0) ∈ R and c2 = c2(D0) ∈ R, where c2 ≥ c1,
such that

c1(V1(x))
l2
l1 ≤ V2(x) ≤ c2(V1(x))

l2
l1 , x ∈ D0. (4)

If, in addition, V2(x) = 0 for x ∈ ν−1(0) and V2(x) < 0 for
x ∈ R

n\ν−1(0), then c2 ≥ c1 > 0.

The Lie derivative of a continuous function V :
R

n → R with respect to ν is given by LνV (x) ,

limt→0+
1
t
[V (ψ(t, x)) − V (x)], whenever the limit on the

right-hand side exists. If V is a continuous homogeneous
function of degree l > 0, then LνV is defined everywhere
and satisfies LνV = lV . We assume that the vector field ν
is a semi-Euler vector field, that is, the dynamical system

ẏ(t) = −ν(y(t)), y(0) = y0, t ≥ 0, (5)

is globally semistable. Thus, for each x ∈ R
n,

limτ→∞ ψ(−τ, x) = x∗ ∈ ν−1(0), and for each
xe ∈ ν−1(0), there exists z ∈ R

n such that xe =
limτ→∞ ψ(−τ, z). If ν−1(0) = {0}, then the semi-Euler
vector field becomes the Euler vector field given in [10].
Finally, we say that the vector field f is homogeneous of
degree k ∈ R with respect to ν if and only if ν−1(0) =
f−1(0) and, for every t ∈ R+ and τ ∈ R,

st ◦ ψτ = ψτ ◦ sekτ t. (6)

Note that if V : R
n → R is a homogeneous function

of degree l such that LfV (x) is defined everywhere, then
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LfV (x) is a homogeneous function of degree l+ k. Finally,
note that if ν and f are continuously differentiable in a
neighborhood of x ∈ R

n, then (6) holds at x for sufficiently
small t and τ if and only if [ν, f ](x) = kf(x) in a
neighborhood of x ∈ R

n, where the Lie bracket [ν, f ] of

ν and f can be computed using [ν, f ] = ∂f
∂x
ν − ∂ν

∂x
f .

III. SEMISTABILITY AND HOMOGENEOUS DYNAMICAL

SYSTEMS

Homogeneity of dynamical systems is a property whereby
system vector fields scale in relation to a scaling operation
or dilation on the state space. In this section, we present a
robustness result of a vector field that can be written as a
sum of several vector fields, each of which is homogeneous
with respect to a certain fixed dilation. First, however, we
present a result that shows that a semistable homogeneous
system admits a homogeneous Lyapunov function. This is
a weaker version of Theorem 6.2 of [10] which considers
asymptotically stable homogeneous systems.

Theorem 3.1 ([2]): Suppose f : R
n → R

n is homo-
geneous of degree k ∈ R with respect to ν and (1) is
semistable under f . Then for every l > max{−k, 0}, there

exists a continuous nonnegative function V : R
n → R+

that is homogeneous of degree l with respect to ν, continu-
ously differentiable on R

n\f−1(0), V −1(0) = f−1(0), and
V ′(x)f(x) < 0 for x ∈ R

n\f−1(0).

Next, we state the main theorem of this section involving
a robustness result of a vector field that can be written as a
sum of several vector fields.

Theorem 3.2: Let f = g1 + · · · + gp, where, for each
i = 1, . . . , p, the vector field gi is continuous, homogeneous
of degree mi with respect to ν, and m1 < m2 < · · · < mp.

If every equilibrium point in g−1
1 (0) is semistable under g1

and is Lyapunov stable under f , then every equilibrium point
in g−1

1 (0) is semistable under f .

Proof. Let every point in g−1
1 (0) be a semistable equi-

librium under g1. Choose l > max{−m1, 0}. Then it
follows from Theorem 3.1 that there exists a continuous
homogeneous function V : R

n → R of degree l such that
V (x) = 0 for x ∈ g−1

1 (0), V (x) > 0 for x ∈ R
n\g−1

1 (0),
and Lg1

V satisfies Lg1
V (x) = 0 for x ∈ g−1

1 (0) and

Lg1
V (x) < 0 for x ∈ R

n\g−1
1 (0). For each i ∈ {1, . . . , p},

Lgi
V is continuous and homogeneous of degree l+mi > 0

with respect to ν. Let xe ∈ g−1
1 (0) and U be a bounded

neighborhood of xe. Then it follows from Proposition 2.1
and Theorem 3.1 that there exist c1 > 0, c2, . . . , cp ∈ R

such that

Lgi
V (x) ≤ −ci(V (x))

l+mi

l , x ∈ U , i = 1, . . . , p. (7)

Hence, for every x ∈ U ,

LfV (x) ≤ −

p
∑

i=1

ci(V (x))
l+mi

l

= (V (x))
l+m1

l (−c1 + U(x)), (8)

where U(x) , −
∑p

i=2 ci(V (x))
mi−m1

l .

Since mi − m1 > 0 for every i ≥ 2, it follows that the
function U(·), which takes the value 0 at the set g−1

1 (0)∩U ,

is continuous. Hence, for xe ∈ g−1
1 (0), there exists an

open neighborhood V ⊆ U of xe such that U(x) < c1/2.

Now, it follows from (8) that LfV (x) ≤ − c1

2 (V (x))
l+m1

l ,
x ∈ V . Since xe is Lyapunov stable, it follows that one can

find a bounded neighborhood W of xe such that solutions
in W remain in V . Take an initial condition in W . Since
the solution is bounded (remains in U), it follows from
the Krasovskii-LaSalle invariance theorem that this solution
converges to its compact positive limit set in f−1(0). Since
all points in f−1(0) are Lyapunov stable, it follows from
Proposition 5.4 of [4] that the positive limit set is a singleton
involving a Lyapunov stable equilibrium in f−1(0). Since xe

was chosen arbitrarily, it follows that all equilibria in g−1
1 (0)

are semistable.

IV. ROBUST CONTROL ALGORITHMS FOR NETWORK

CONSENSUS PROTOCOLS

In this section, we apply the results of Section III to de-
velop robust control algorithms for the consensus problem in
dynamical networks [1]. The information consensus problem
appears frequently in coordination of multiagent systems and
involves finding a dynamic algorithm that enables a group
of agents in a network to agree upon certain quantities of
interest with directed information flow. In this paper, we
use undirected and directed graphs to represent a nonlinear
dynamical network and present solutions to the consensus
problem for nonlinear networks with both graph topologies
(or information flows) [1]. Specifically, let G = (V , E ,A) be
a directed graph (or digraph) denoting the dynamical net-
work (or dynamic graph) with the set of nodes (or vertices)
V = {1, . . . , q} involving a finite nonempty set denoting
the agents, the set of edges E ⊆ V × V involving a set
of ordered pairs denoting the direction of information flow,
and an adjacency matrix A ∈ R

q×q such that A(i,j) = 1,
i, j = 1, . . . , q, if (j, i) ∈ E , and 0 otherwise. The edge
(j, i) ∈ E denotes that agent Gj can obtain information
from agent Gi, but not necessarily vice versa. Moreover, we
assume that A(i,i) = 0 for all i ∈ V . A graph or undirected

graph G associated with the adjacency matrix A ∈ R
q×q is

a directed graph for which the arc set is symmetric, that
is, A = AT. A graph G is balanced if

∑q
j=1 A(i,j) =

∑q
j=1 A(j,i) for all i = 1, . . . , q. Finally, we denote the

value of the node i ∈ {1, . . . , q} at time t by xi(t) ∈ R.
The consensus problem involves the design of a dynamic
algorithm that guarantees information state equipartition, that
is, limt→∞ xi(t) = α ∈ R for i = 1, . . . , q.

The consensus problem is a dynamic graph involving the
trajectories of the dynamical network characterized by the
multiagent dynamical system G given by

ẋi(t) =

q
∑

j=1, j 6=i

φij(xi(t), xj(t)), (9)

where xi(0) = xi0, t ≥ 0, i = 1, . . . , q, or, in vector form,

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (10)

where x(t) , [x1(t), . . . , xq(t)]
T, t ≥ 0, and f =

[f1, . . . , fq]
T : D → R

q is such that fi(x) =
∑q

j=1, j 6=i φij(xi, xj), where D ⊆ R
q is open. Here, xi(t),

t ≥ 0, represents an information state and fi(t) = ui(t)
is a distributed consensus algorithm involving neighbor-to-
neighbor interaction between agents. This nonlinear model
is proposed in [11] and is called a power balance equation.
Here, however, we address a more general model in that
φij(·, ·) has no special structure and x need not be con-
strained to the nonnegative orthant of the state space. For
the statement of the main results of this section the following
definition is needed.
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Definition 4.1 ([12]): A directed graph G is strongly con-
nected if for any ordered pair of vertices (i, j), i 6= j, there
exists a path (i.e., sequence of arcs) leading from i to j.

Recall that A ∈ R
q×q is irreducible, that is, there does

not exist a permutation matrix such that A is cogredient to
a lower-block triangular matrix, if and only if G is strongly
connected (see Theorem 2.7 of [12]).

Assumption 1: For the connectivity matrix C ∈ R
q×q

associated with the multiagent dynamical system G defined
by

C(i,j) =

{

0, if φij(x) ≡ 0,
1, otherwise,

(11)

for i 6= j, i, j = 1, . . . , q, and C(i,i) = −
∑q

k=1, k 6=i C(i,k),
i = 1, . . . , q, rank C = q − 1, and for C(i,j) = 1, i 6= j,
φij(xi, xj) = 0 if and only if xi = xj .

Assumption 2: For i, j = 1, . . . , q, (xi−xj)φij(xi, xj) ≤
0, xi, xj ∈ R.

For further details on Assumptions 1 and 2, see [11]. For
the statement of the next result, let e ∈ R

q denote the ones
vector of order q, that is, e , [1, . . . , 1]T.

Theorem 4.1 ([2]): Consider the multiagent dynamical
system (10) and assume that Assumptions 1 and 2 hold. Then
the following statements hold:

i) Assume that φij(xi, xj) = −φji(xj , xi) for all i, j =
1, . . . , q, i 6= j. Then for every α ∈ R, αe is
a semistable equilibrium state of (10). Furthermore,
x(t) → 1

q
eeTx0 as t→ ∞ and 1

q
eeTx0 is a semistable

equilibrium state.
ii) Let φij(xi, xj) = C(i,j)[σ(xj) − σ(xi)] for all i, j =

1, . . . , q, i 6= j, where σ(0) = 0 and σ(·) is strictly
increasing, and assume that CTe = 0. Then for every
α ∈ R, αe is a semistable equilibrium state of (10).
Furthermore, x(t) → 1

q
eeTx0 as t→ ∞ and 1

q
eeTx0 is

a semistable equilibrium state.

Theorem 4.1 implies that the steady-state value of the
information state in each agent Gi of the multiagent dynam-
ical system G is equal, that is, the steady-state value of the
multiagent dynamical system G given by x∞ = 1

q
eeTx0 =

[

1
q

∑q

i=1 xi0

]

e is uniformly distributed over all multiagents

of G. This phenomenon is known as equipartition of energy
[11] in system thermodynamics and information consensus
or protocol agreement [1] in cooperative network dynamical
systems.

Next, consider q continuous-time integrator agents with
dynamics

ẋi(t) = ui(t), xi(0) = xi0, t ≥ 0, (12)

where for each i ∈ {1, . . . , q}, xi(t) ∈ R denotes the
information state and ui(t) ∈ R denotes the information
control input for all t ≥ 0. The consensus protocol is given
by

ui(t) = fi(x(t)) =

q
∑

j=1,j 6=i

φij(xi(t), xj(t)), (13)

where φij(·, ·) satisfies the conditions in Theorem 4.1. Note
that (12) and (13) describes an interconnected network where
information states are updated using a distributed controller
involving neighbor-to-neighbor interaction between agents.
We assume that the vector field f = [f1, . . . , fq] is homoge-
neous of degree k ∈ R with respect to ν. Finally, consider the

generalized (or perturbed) consensus protocol architecture

żi(t) =

q
∑

j=1,j 6=i

φij(zi(t), zj(t)) + ∆i(z),

zi(0) = zi0, i = 1, . . . , q, t ≥ 0, (14)

where ∆ = [∆1, . . . ,∆q]
T : R

q → R is a continuous
function such that ∆ is homogeneous of degree l ∈ R with
respect to ν and (14) possesses unique solutions in forward
time for initial conditions in R

q\{αe : α ∈ R}.

Theorem 4.2: Consider the nominal consensus protocol
(12) and (13), and the generalized consensus protocol (14).
If {αe : α ∈ R} = ∆−1(0), every equilibrium point in
{αe : α ∈ R} is a Lyapunov stable equilibrium of (14), and
k < l, then every equilibrium point in {αe : α ∈ R} is a
semistable equilibrium of (12) and (13), and (14).

Proof. It follows from Proposition 5.1 of [2] that for every
α ∈ R, αe is an equilibrium point of (12) and (13). Next, it
follows from Theorem 4.1 that αe is a semistable equilibrium
state of (12) and (13). Now, the result is a direct consequence
of Theorem 3.2.

As a special case of Theorem 4.2, consider the nominal
linear consensus protocol given by

ẋi(t) =

q
∑

j=1,j 6=i

C(i,j)[xj(t) − xi(t)],

xi(0) = xi0, i = 1, . . . , q, t ≥ 0, (15)

where for each i ∈ {1, . . . , q}, xi ∈ R, C satisfies Assump-
tion 1, and CT = C. Next, consider the generalized consensus
protocol given by

żi(t) =

q
∑

j=1,j 6=i

C(i,j)[zj(t) − zi(t)]

+

q
∑

j=1,j 6=i

δij(zj(t) − zi(t)), (16)

where zi(0) = zi0, i = 1, . . . , q, t ≥ 0, and assume
∆ = [∆1, . . . ,∆q]

T, ∆i =
∑q

j=1,j 6=i δij(zj(t) − zi(t)),
is homogeneous of degree l > 0 with respect to ν(x) =

−
∑q

i=1

[

∑q

j=1,j 6=i(xj − xi)
]

∂
∂xi

, i, j = 1, . . . , q, i 6= j.

Furthermore, assume δij : R → R satisfies δij ≡ 0 if
C(i,j) = 0, δij(λz) = λ1+rδij(z) for all λ > 0 and for some
r > 0, and δij(z) = −δji(−z) for z ∈ R and i, j = 1, . . . , q,
i 6= j.

Lemma 4.1: The vector field of (15) is homogeneous of
degree k = 0 with respect to the semi-Euler vector field

ν(x) = −
∑q

i=1

[

∑q

j=1,j 6=i(xj − xi)
]

∂
∂xi

.

Corollary 4.1: Consider the linear nominal consensus
protocol (15) and the generalized nonlinear consensus pro-
tocol (16). Then every equilibrium point in {αe : α ∈ R}
is a semistable equilibrium of (15) and (16). Furthermore,
z(t) → 1

q
eeTz0 as t → ∞ and 1

q
eeTz0 is a semistable

equilibrium state.

Proof. It follows from i) of Theorem 4.1 that αe, α ∈ R,
is a semistable equilibrium of (15). Next, it follows from
Lemma 4.1 that the right-hand side of (15) is homogeneous
of degree k = 0 with respect to the semi-Euler vector field

ν(x) = −
∑q

i=1

[

∑q

j=1,j 6=i(xj − xi)
]

∂
∂xi

. To show that
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every point in {αe : α ∈ R} is a Lyapunov stable equilibrium
of (16), consider the Lyapunov function candidate given by
V (z − αe) = 1

2‖z − αe‖2. Then it follows that

V̇ (z − αe) = (z − αe)Tż

=

q
∑

i=1

(zi − α)

q
∑

j=1,j 6=i

C(i,j)[zj − zi]

+

q
∑

i=1

(zi − α)

q
∑

j=1,j 6=i

δij(zj − zi)

= −

q
∑

i=1

q−1
∑

j=i+1

C(i,j)[zi − zj]
2

+

q
∑

i=1

q−1
∑

j=i+1

C(i,j)[zi − zj]δij(zj − zi),

z ∈ R
q. (17)

Next, since, by homogeneity of δij , δij(·) is such that
limz→0 δij(z)/z = 0, it follows that for every γ > 0, there
exists εij > 0 such that |δij(z)| ≤ γ|z| for all |z| < εij .
Hence,

q
∑

i=1

q−1
∑

j=i+1

C(i,j)[zi − zj ]δij(zj − zi)

≤

q
∑

i=1

q−1
∑

j=i+1

γC(i,j)[zi − zj ]
2, |zi − zj| < εij . (18)

Now, choosing γ ≤ 1, it follows from (17) and (18) that

V̇ (z − αe) ≤ −

q
∑

i=1

q−1
∑

j=i+1

(1 − γ)C(i,j)[zi − zj]
2

≤ 0, |zi − zj| < εij , (19)

which establishes Lyapunov stability of the equilibrium state
αe. Now, the result follows from Theorem 4.2.

It is important to note that Corollary 4.1 still holds for
the case where the generalized consensus protocol has a
hierarchical structure of the form

ż(t) = Cz(t) +

p
∑

i=1

gi(z(t)), z(0) = z0, t ≥ 0, (20)

where for each i ∈ {1, . . . , q}, gi(z) is homogeneous of de-
gree li > 0 with respect to ν(x) = −

∑q
i=1[

∑q
j=1,j 6=i(xj −

xi)]
∂

∂xi
and l1 < · · · < lp. As an application of Corol-

lary 4.1, consider the Kuramoto model [13] given by

ẋ1(t) = sin(x2(t) − x1(t)), x1(0) = x10, t ≥ 0, (21)

ẋ2(t) = sin(x1(t) − x2(t)), x2(0) = x20. (22)

Note that for sufficiently small x, sinx can be approximated
by x − x3/3! + · · · + (−1)p−1x2p−1/(2p − 1)!, where p is
a positive integer. The truncated system associated with (21)

and (22) is given by

ẋ1 = x2 − x1 −
1

3!
(x2 − x1)

3 + · · ·

+
(−1)p−1

(2p− 1)!
(x2 − x1)

2p−1, (23)

ẋ2 = x1 − x2 −
1

3!
(x1 − x2)

3 + · · ·

+
(−1)p−1

(2p− 1)!
(x1 − x2)

2p−1, (24)

or, equivalently,

[

ẋ1

ẋ2

]

=

[

−1 1
1 −1

] [

x1

x2

]

+

p−1
∑

i=1

gi(x1, x2), (25)

where for i = 1, . . . , p− 1,

gi(x1, x2) ,
(−1)i

(2i+ 1)!

[

(x2 − x1)
2i+1

(x1 − x2)
2i+1

]

. (26)

It can be easily shown that all the conditions of Corollary 4.1
hold for (25). Hence, it follows from Corollary 4.1 that
every equilibrium point in {α[1, 1]T : α ∈ R} is a local
semistable equilibrium of (23) and (24), which implies that
the equilibrium set {α[1, 1]T : α ∈ R} of (23) and (24) has
the same stability properties as the linear nominal system

[

ẋ1

ẋ2

]

=

[

−1 1
1 −1

] [

x1

x2

]

. (27)

Note that Corollary 4.1 deals with the undirected graph
G = (V , E ,A), where A is a symmetric adjacency matrix.
Next, we consider the case where G is a directed graph. The
following lemma is needed for the next result.

Lemma 4.2: Let A ∈ R
q×q and Adi ∈ R

q×q , i =
1, . . . , nd, be given by

A(i,j) =

{

C(i,i), i = j,
0, i 6= j,

Ad(i,j) =

{

0, i = j,
C(i,j), i 6= j,

i, j = 1, . . . , q, (28)

where Ad ,
∑nd

i=1 Adi. Assume that CTe = 0. Then
there exist nonnegative definite matrices Qi ∈ R

q×q , i =
1, . . . , nd, such that

2A+

nd
∑

i=1

(Qi + AT
diQ

#
i Adi) ≤ 0. (29)

Theorem 4.3: Consider the linear nominal consensus pro-
tocol (15), where C satisfies Assumption 1 and CTe = 0, and
the generalized nonlinear consensus protocol given by

żi(t) =

q
∑

j=1,j 6=i

C(i,j)[zj(t) − zi(t)]

+

q
∑

j=1,j 6=i

H(i,j)[σ(zj(t)) − σ(zi(t))],

zi(0) = zi0, i = 1, . . . , q, t ≥ 0, (30)

where σ(·) satisfies σ(0) = 0 and σ(·) is strictly increasing.
Furthermore, assume the matrix H = [H(i,j)] satisfies

Assumption 1, HTe = 0, H(i,j) = 0 whenever C(i,j) = 0,

i, j = 1, . . . , q, i 6= j, and H = C − L, where LT =
L ∈ R

q×q . Then every equilibrium point in {αe : α ∈ R}
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is a semistable equilibrium of (15) and (30). Furthermore,
z(t) → 1

q
eeTz0 as t → ∞ and 1

q
eeTz0 is a semistable

equilibrium state.

Proof. It follows from ii) of Theorem 4.1 that αe, α ∈ R,
is a semistable equilibrium of (15). Next, note that (30) can
be rewritten as

żi(t) =

q
∑

j=1,j 6=i

H(i,j)[(zj(t) + σ(zj(t))) − (zi(t)

+σ(zi(t)))] +

q
∑

j=1,j 6=i

L(i,j)[σ(zj(t))

−σ(zi(t))], zi(0) = zi0, i = 1, . . . , q, t ≥ 0.

Define σ̂ : R
q → R

q by σ̂(z) , [σ(z1), . . . , σ(zq)]
T. Now, it

follows from Lemma 4.2 that there exist nonnegative definite
matrices Qi ∈ R

q×q , i = 1, . . . , q, such that

2C +

q
∑

i=1

(Qi + CT
diQ

#
i Cdi) ≤ 0, (31)

where C ∈ R
q×q and Cdi ∈ R

q×q , i = 1, . . . , q, are given
by

C(i,j) =

{

H(i,i), i = j,
0, i 6= j,

Cd(i,j) =

{

0, i = j,
H(i,j), i 6= j,

i, j = 1, . . . , q, (32)

where Cd ,
∑q

i=1 Cdi.

To show that every point in {αe : α ∈ R} is Lyapunov
stable, consider the Lyapunov function candidate given by

V (z − αe) = ‖z − αe‖2 + 2

q
∑

i=1

∫ zi

α

[σ(θ) − σ(α)]dθ. (33)

Now, the derivative of V (z − αe) along the trajectories of
(30) is given by

V̇ (z − αe)

= 2[z − α+ σ̂(z) − σ̂(αe)]TC[z − α+ σ̂(z) − σ̂(αe)]

+2

q
∑

i=1

[z − α+ σ̂(z) − σ̂(αe)]TCdi

·[z − α+ σ̂(z) − σ̂(αe)]

+2

q
∑

i=1

[zi − α+ σ(zi) − σ(α)]

·

q
∑

j=1,j 6=i

L(i,j)[σ(zj) − σ(zi)]

≤ −

q
∑

i=1

(−Qi[z − α+ σ̂(z) − σ̂(αe)]

+Cdi[z − α+ σ̂(z) − σ̂(αe)])TQ#
i

·(−Qi[z − α+ σ̂(z) − σ̂(αe)]

+Cdi[z − α+ σ̂(z) − σ̂(αe)])

−

q
∑

i=1

[z − α+ σ̂(z) − σ̂(αe)]TCT
diQ

#
i Cdi

·[z − α+ σ̂(z) − σ̂(αe)]

−2

q
∑

i=1

q−1
∑

j=i+1

L(i,j)(zi − zj)[σ(zi) − σ(zj)]

−2

q
∑

i=1

q−1
∑

j=i+1

L(i,j)[σ(zi) − σ(zj)]
2

≤ 0, z ∈ R
q, (34)

which establishes Lyapunov stability of αe.

Next, let R , {x ∈ R
q : −Qi[x+σ̂(x)]+Cdi[x+σ̂(x)] =

0, i = 1, . . . , q}. Then it follows from the Krasovskii-
LaSalle invariant set theorem that x(t) → M as t → ∞,
where M denotes the largest invariant set contained in
R. Now, since C +

∑q

i=1Qi = 0, it follows that R ⊆
R̂ , {x ∈ R

q : Cσ̂(x) +
∑q

i=1 Cdiσ̂(x) = 0}. Hence, since
C +

∑q

i=1 Cdi = H, rankH = q − 1, and He = 0, it

follows that the largest invariant set M̂ contained in R̂ is

given by M̂ = {x ∈ R
q : x = αe, α ∈ R}. Furthermore,

since M̂ ⊆ R ⊆ R̂, it follows that M = M̂. Next, note
that limt→∞ dist(x(t),M) = 0. Let xe ∈ M. Choosing x0
sufficiently close to xe, it follows from Lyapunov stability
of xe that trajectories of (30) starting sufficiently close to
xe are bounded, and hence, the positive limit set of (30) is
nonempty. Since every point in M is Lyapunov stable, it
follows from Proposition 5.4 of [4] that limt→∞ x(t) = x∗,
where x∗ ∈ M is Lyapunov stable. Hence, it follows that
every equilibrium point in {αe : α ∈ R} is a semistable
equilibrium of (15) and (30).
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