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Abstract— In this paper, state estimation is considered for 
discrete-time nonlinear systems with uncertain observations 
and sensor failure. We focus on the multi-sensor case where 
sensors may fail independently of each other at different 
rates. The local unbiased minimum variance estimator is 
developed for this case. An illustrative example is included 
to show the performance of the proposed approach.    
 

I. MODEL 
 
The problem of random sensor failure has received a lot of 
attention over the years. Several solutions have been 
proposed, e.g. [1-5] to name a few. It was only recently that 
the results have been extended to the case of the multiple 
sensors that may fail independently [6]. Due to the 
importance of nonlinear system models, in this work, we are 
presenting an extension of [6] to the case of nonlinear 
systems. Reference [6] also treats stochastic robustness and 
resilience (for linear models) which are not discussed here. 
Consider the dynamical system and the measurement model 
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where f  is a differentiable nonlinear function, n
kx R∈ , 

with 0x  having the mean 0{ }E x x= 0  and covariance 0X , 
is zero mean white noise vector uncorrelated with kv 0x  with 

covariance ,  are scalar sensor outputs with 
zero mean white scalar sensor noise  that are uncorrelated 
with  and 
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(1 )i iπ π− whose possible outcomes { }1,0 are defined as 
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where is a zero mean white noise vector of covariance 

. This is a formulation that involves only hard failures, 
i.e. either the sensor works or it does not. There is no other 
alternative considered in this work. 
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The following nonlinear state estimator will be used: 
( )1

1ˆ ˆk k k kx G x G Y+ = +  (4) 

where ( )1
kG ⋅  is a nonlinear time-varying function of ˆkx  and 

 is a time–varying coefficient used to weigh the previous 
measurements  in the update of the state estimate. 
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II. THE NONLINEAR ESTIMATOR 
 
In this section, we derive the locally unbiased and minimum 
variance state estimator for the model introduced before. The 
estimation error dynamics is given by: 
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Since ( )f ⋅  is differentiable, by expanding ( )f ⋅  in Taylor 
series around kx , and by assuming that the effect of the 
higher order derivatives is negligible, we have:  
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Since , , are of zero mean, if we impose the 
unbiasedness requirement  for all  which is 
desirable for estimators, this can be satisfied by taking 
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0ˆ 0x x= , so that  and 0 0 0ˆ{ } { } 0E e E x x= − =

( ) ( )1 2ˆ ˆk k k k k kG x f x G C x= − Π ˆ . 

where ( )1, ,k diag pπ πΠ = Γ = . The error equation 
becomes 
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We now find the minimum variance estimator. To do that we 
look at the local error covariance  kP
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which after simplification, evolves as 
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Using Lemma 1 in [6], we get 
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where  denotes the Hadamard product [7], and 
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Let us focus on the computation of 
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Applying Lemma 1 [6] , we get: 
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So we are left with: 
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Now we can come back to the minimization of the error 
covariance 
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For Equation (16) to be equal to equation (19), we must 
have: 

( )2 2 To o
k k k k kG G GΩ = Λ  which yields the optimal gain 
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The resulting matrix difference equation for the minimum 
error covariance when we let is: 2 o
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III. SIMULATION EXAMPLE 

 
In this example, the sensor fails with a nonzero probability. 

( )1 sink k

k k k k

kx x v
y x wγ
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where  and  have variance , kv kw 0.001v w= = 0 0.7x = , 

0 0.01X = , kγ is Bernoulli distributed with mean 0.7π = . 
The performance of our newly designed estimator is 
compared to that of the regular Extended Kalman Filter 
(without failure model) in a Monte Carlo simulation and the 
resulting mean square errors (MSEs) are given in Figure 1. 
This result shows that the proposed approach is more 
appropriate for this system with sensor failure as it has a 
smaller MSE compared to the EKF. 
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Figure 1: MSEs of the state estimation - The proposed approach vs. EKF 
 

IV. CONCLUSION 
 
In this paper, the state estimation problem for systems with 
sensor failure is extended to a class of nonlinear systems 
with uncertain measurements. We derived analytic 
expressions for the approximate (local) minimum variance 
unbiased estimator for nonlinear multi-sensor systems 
featuring failure. A simulation example is also provided for 
illustration purposes. 
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