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ABSTRACT 
 
The Extended Kalman Filter (EKF) can be used for 
parameter as well as for state estimation. However, when 
used for parameter estimation, EKF is sensitive to 
modeling uncertainties and prone to instability. In this 
paper, the Variable Structure filtering concept is 
introduced and used for modifying the EKF into a robust 
form. The proposed method is model-based and has a 
guaranteed stability given a stable internal model. The 
application of the new filter for parameter estimation in a 
system that is described by a smooth nonlinear function is 
presented. The performance of the new filter is discussed 
by its comparison to an equivalent Extended Kalman 
Filter. 

1. INTRODUCTION 
Unscheduled preventative maintenance is a concept that is 
of significant economic value to companies concerned 
with safety or involved in mass production and distribution 
(e.g. the aerospace and the process industries). In this 
concept, the inception of a fault is detected in real-time, 
diagnosed, and used to trigger preventative maintenance. 
There are various forms of fault detection strategies that 
commonly involve vibrations analysis, neural networks, or 
model-based prediction. Model-based strategies are 
increasingly used in some niche applications such as in the 
fluid power as they are more conducive to fault diagnosis.  
 
In model-based fault detection, an internal physical model 
is used to predict and estimate the operation of the system 
and its outputs. If there is an error between the predicted 
and the actual outputs of the system, then this error is used 
to correct the estimation model. This correction is achieved 
through changes in some pre-selected parameters that have 
physical significance and can be specifically linked to fault 
conditions. Changes in these parameters are monitored in 
real-time and compared to predetermined thresholds that 
would signal gradual or abrupt deteriorations in the plant 
operation as a result of fault conditions. As such, 
parameter estimation not only detects faults but also 
provides considerable information for the fault diagnosis. 
The Extended Kalman Filter (EKF) is a model-based 
strategy that is commonly used for parameter estimation 
and fault detection. However, the EKF formulation for this 
application is overly sensitive to modeling uncertainties 
that occur after the tuning of the filter as a result of a fault 
condition. In this paper, a new parameter estimation 
concept that is robust to modeling uncertainties and 
referred to as the Variable Structure Filter (VSF) is 

considered, [1]. The VSF and EKF concepts are then 
combined into a new form that takes advantage of the 
robustness of the VSF and of the performance of the EKF. 
The Nomenclature used in this paper is provided in Section 
2. The use of the Extended Kalman Filter (EKF) for 
parameter estimation is briefly reviewed in sections 3 and 
4. A description of the VSF is provided in section 5. A new 
EKF/VSF  estimation strategy is presented in Section 6 and 
compared to an equivalent EKF design. The concluding 
remarks are contained in Section 7. 

2. NOMENCLATURE 
Matrices and vectors are denoted by using bold letters. 
Their elements are denoted by italic lower case letters with 
subscripts i and/or j. k denotes calculation step. Subscripts 
k|k and k|k-1 are used to identify a posteriori and a priori 
estimates. The symbols ^ and ~ are used to identify an 
estimated value and the error in the estimated value. The 
subscript max is used to identify an upper bound. The 
symbols E, ' and + denote expectation, transpose, and 
pseudo inverse. The symbol   ABS    is used to denote a 
matrix or vector made up of absolute values such that 

ABS
e

1| −kkz  has elements that have the absolute value of the 

corresponding elements of  . The nomenclature is 

provided in the following table. Note that the elements of 
vectors and matrices are not listed and can be readily 
identified by the above-mentioned notation. 

1| −kkze

Symbol Comments  
B Input multiplier. 1 x  1 

1||
,

−kkkk zz ee

 

Output estimation error 
calculated (a posteriori and a 
priori) 

m x 1 

G Input matrix. n x p 
HF,   Nonlinear functions.  

H Output matrix.  m x n 
I Identity matrix.  
i,j Subscripts used to identify 

elements of matrices and 
vectors. 

1 x 1 

K Calculation step index. 1 x 1 
kK  VSF gain. n x 1 
KalmanK  Kalman gain. n x 1 

M Number of measurements. 1 x 1 
n  Number of states.  1 x 1 
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k k k kz zsign e

− −
=e

p  Number of inputs. 1 x 1 
P Error covariance matrix. m x m 
Q System noise covariance. n x n 
R Measurement noise cov. m x m 
Sat Saturation function.  

gns  ( )| 1 1 | 1gns [ ( '   

u  Input.  m x 1 
Vec Any vector  

max,, Vv V  Meas. noise and its bound. m x 1 
max, Ww w,

 
System noise and its bound. n x 1 

oxx,  States and initial conditions. n x 1 

1|| ˆ,ˆ −kkkk xx
 

A posteriori, a priori est. m x 1 

z  Measured output. m x 1 
1|| ˆ,ˆ −kkkk zz

 

A posteriori/priori output est. m x 1 

α  Diag. matrix of rate of decay. n x n  
β  Constant. m x 1 
ν  Lyapunov function.  
Φ  System matrix. n x n 
γ  Diag.matrix with 1≥iiγ . n x n 
τ Sampling time. 1 x 1 
Ψ Boundary layer n x 1 
ω Natural frequency. 1 x 1 
ς Damping ratio. 1 x 1 

3. REVIEW OF THE EXTENDED KALMAN FILTER 
Many practical applications of estimation pertain to 
systems that are modeled by smooth nonlinear functions as 

       (1.) ),,(1 kkkk wuxx F=+

       (2.) ),( kkk vxz H=
As such, both the states and measurements are assumed to 
be subject to white noise. 
The Extended Kalman Filter (EKF) is one of  the most 
widely used tools for state and parameter estimation, [2-5]. 
The EKF is a predictor-corrector method that uses a 
nonlinear model (equations (1) and (2)) to generate an 
initial or a priori set of estimates denoted by . 
These a priori estimates are then corrected into an a 
posteriori or refined form, . Further to initial 
assumption of white noise, the EKF correction is optimal 
in magnitude and has a direction that is orthogonal to the 
true trajectory of the states or the parameters that are being 
estimated, [2]. The magnitude of this correction is obtained 
by using a linearized model of the problem along a 
nominal trajectory. This linearized model is a truncated 
Taylor series expansion where the higher order terms are 

neglected. It is valid if the nominal and actual state 
trajectories are sufficiently close; otherwise, the neglected 
higher order terms of the Taylor series expansion become 
significant thus potentially causing instability. An effective 
strategy for dealing with this problem is to use the last best 
estimate of the trajectory for deriving the linearized model. 
Hence the nominal operating point for linearization may be 
defined as:  for the state equation (1) and  for 
the output equation (2). The linearization in effect implies 
that the state trajectory is divided into successive piece-
wise linear regions, and as the trajectory moves from one 
region to the next, the linearized model is updated 
accordingly.  Within a piece-wise linear region, the model 
of equations (1) and (2)  can be expressed as: 
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The EKF caters for the presence of noise in the system and 
its measurement. The characterization of process and 
measurement noise is made through covariance matrices 

 and . Further to the model of equations (3) and (4), 
the EKF process may be summarized as follows: 

kR kQ

1. An a priori error covariance matrix is obtained 
and used in the calculation of an optimal EKF gain 
vector  such that: 

1| −kkP

kKalmanK

111|111| −−−−−− += k
T
kkkkkk QPP ΦΦ    (5.) 

1
1|1| )( −
−− += k

T
kkkk

T
kkkk

RHPHHPK Kalman   (6.) 

2. The a priori state estimate is refined into a posteriori 
state estimate 

kkx  such that: 

)ˆ( 1|1|| −− −+= kkkkkkk k
xHzKxx Kalman  (7.) 

3. The next a priori state estimate and the a posteriori 
error covariance matrix are predicted such that: 

),ˆ(ˆˆ ||1 kkkkk uxx F=+     (8.)   
1|| )( −−= kkkkk k

PHKIP Kalman    (9.)   
4. Steps 1 to 3 are repeated for each time step. 
In calculating the optimal correction 
vector, , the EKF does not 
explicitly account for modeling uncertainties. The 

)ˆ( 1| −− kkkk
xHzK Kalman
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definition of the noise covariance matrices  and  are 
used to implicitly capture modeling uncertainties and have 
a strong influence on the stability and performance of the 
filter. The initial conditions for the Kalman gain pertaining 
to  and  also strongly influence the performance. 
Generally, an excellent estimation performance is achieved 
by tuning the covariance matrices and the initial conditions 
by trial and error. 

kR kQ

0|0P 0|0x̂

4. PARAMETER ESTIMATION USING THE EXTENDED 
KALMAN FILTER  

In parameter estimation, the internal model of the filter is 
formulated such that the parameter that is being estimated 
is treated as a state. For example, consider the problem of 
estimating the damping ratio of a second order system, 
(taken from [2]), where: 

   

( )22x x x bu wζω ω+ + = + t    (10.) 
)()()( tvtxtz +=      (11.) 

The system of equations (10) and (11) has two states 
 and . If the damping ratio xx =1 xx =2 ζ  is to be 

estimated, then it is defined as a third state ζ=3x , thus 
transforming the problem into a nonlinear form. Using a 
simplified discrete representation, the system equations 
become: 
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In applying the EKF strategy to this estimation problem, 
the internal model of the filter may be defined from 
equations (12) and (13), as: 
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The corresponding estimated system and output matrices 
of the linearized model become: 
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In this example, let the model be exactly known such 
that: srad /5ˆ ==ωω  and . The simulation time 
is 30 secs and, during simulation, the value of 

12ˆ == bb
ζ is 

changed from 0.2 to 0.5 to 0.9. The sampling interval τ  is 
0.01secs and, the initial value of the actual and estimated 

states are specified as  and . The 

input to the system is a random signal in the range of -1 to 
1, and the single measurement from the system is subjected 
to white noise of maximum amplitude of 
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corresponding to 10% of range. All system states are 

subjected to white noise of amplitude, .  

Details for the design of an EKF to this estimation problem 
is provided in [2]. The EKF here is tuned by trial error 
such that the initial error covariance matrix and, its 

noise covariant matrices are set to: , 
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In a real practical application, the system states are not 
available and therefore the exact value of the estimation 
error is unknown. In this example however, the study is 
conducted by using computer simulation and, therefore the 
states and the exact estimation errors are available and can 
be used for evaluating the effectiveness of the filter. 
Figures 1a to 1c illustrate the tracking performance of the 
EKF filter. Note that the change in the damping 
ratio is detected very well by the EKF; however its 
accuracy is poor due to the low sensitivity of the model to 
this parameter. Notwithstanding the accuracy of the 
estimation process, the objective of this paper is to improve 
the stability problem of the EKF due to modeling 
uncertainties. The performance of the EKF is severely 
degraded when modeling uncertainties are introduced. The 
estimation process becomes unstable when the estimated 
natural frequency ω̂  is changed from its exact value of 

srad /5ˆ ==ωω  to any value beyond srad /10ˆ =ω . The 
stability of the EKF when used for parameter estimation is 
much dependent on modeling uncertainties; more so than 
when applied to state estimation. In the parameter 
estimation problem formulation, the associated state for the 
parameter under consideration (e.g.  for the damping 
factor in this example) is artificial and loosely related to 
the other state variables. As such, referring to equation 
(25),

3x

kkkk
xx

||1 33 ˆˆ =
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 and its change is solely dependent on 

the EKF corrective action: 
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Inaccuracies due to the linearization process or modeling 
uncertainties in the derivation of  therefore have a 
strong influence on the estimated parameter and hence the 
overall estimation model. Furthermore, a requirement for 
stability is that the estimation model that is used in the a 

KalmanK
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priori stage of the process be stable. In state estimation, 
this internal model is unaffected by the estimation process 
and remains as predefined. In parameter estimation, the 
internal model is updated continuously and as such 
inaccuracies in the EKF corrective term could cause 
deviations that would result in an unstable internal model. 
In the following section, the EKF strategy is modified in 
order to improve its stability by using the Variable 
Structure Filtering Concept, initially introduced in a 
different form in [1]. 
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Figure 1a: Estimated and Actual States Associated with 

State 1 (Position) 
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Figure 1b: Estimated and Actual States Associated with 

State 2 (Velocity) 
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Figure 1c: Estimated and Actual States Associated with 
State 3 (Damping ratio) 

Figure 1: Estimated and Actual States 

5. THE VARIABLE STRUCTURE FILTER CONCEPT 
The state estimation concept presented in this paper is 
referred to as the Variable Structure Filter (VSF), [1]. The 
VSF is model-based and can be used to track a state 
trajectory in time. It is a predictor corrector method that 
uses an internal uncertain model of the system to produce 
an initial estimate of the states and the system outputs. The 
measured and estimated outputs are compared, and a 
corrective term proportional to this error is then applied to 
the states in order to improve their accuracy. The VSF can 
be applied to systems that are modeled by a smooth 
function as specified in equation (1). It is assumed however 
that the relationship between the measurement signals and 
the states is linear or at the very least piece-wise linear. 
This assumption is valid for most systems as the sensors 
that are used for measurement are in general, specifically 
designed to be linear over their operating range and are 
well calibrated and characterized. As such, let: 

kkk vHxz +=     (16.) 
Furthermore in the majority of applications, the output 
matrix H  is positive and pseudo-diagonal. 
 
Further to the model of equations (1) and (16), the VSF 
estimation process can be summarized as follows. 
1 An a priori state estimate is predicted by using the 

estimated model of the system such that: 

      (17.) ),ˆ(ˆˆ ||1 kkkkk uxx F=+

  This estimate is obtained by using the previous a 
posteriori state estimate kkx or, at the inception of the 

process, by using the initial conditions, . The 
estimated states are then used for predicting the a 
priori estimates of measurements such that: 

ox

      (18.) kkkk |1|1 ˆˆˆ ++ = xHz
2 A corrective gain is calculated as a 

function of the error in the a priori predicted output. 

1
1

×
+ ∈ n

k RK

3 The a priori state estimate is refined into an a 
posteriori form such that: 

          1|11|1 ++++ += kkkkk Kxx    (19.) 
4 Steps 1 to 3 are repeated for each time step. 
The corrective VSF term is discontinuous and 
switches between two extreme values in order to force the 
estimated states towards the actual system states. The 
strategy is formulated such that with every iteration, the 
magnitude of the estimation error is reduced as shown in 
Figure 1.  This effect may be s ated as: 

kK

t
 [ ] [ ]

ABSABS
xxxx kkkkkk EE |1|11 −≤− +++  (20.) 

If condition (20) is satisfied, the system is evidently stable 
and convergent such that: 

( ) β≤−
∞→ ABS

xx kkkk |lim  where β is constant. 
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Figure 2: VSF State Estimation Concept 
The VSF strategy achieves stability and is derived by using 
concepts closely related to the Variable Structure Systems 
theory, [6-16]. In the VSF, the corrective action switches 
direction every time that the estimated state trajectory 
crosses the true state trajectory as shown in Figure 2. As 
such the true state trajectory can be considered as a 
discontinuity surface or hyperplane. The true state 
trajectory is not available and cannot in practice be used as 
a switching hyperplane. However, if the relationship 
between the system states and measurements is linear and 
if the system is observable, then the trajectory of the output 
can be used as the switching hyperplane. This implies that 
the more accurate the estimated value of the measured 
output, the more accurate the estimated states. As such, the 
error between the estimated and actual value of the 
measured signals is used as an indicator of the error in the 
estimated value of the state variables.  Two variables that 
are critical to the VSF process are the a priori and the a 
posteriori output error estimates: 

kkkkk |ˆ
|

zze z −=      (21.) 

1|ˆ
1| −−=
− kkkkk

zzez      (22.) 

These are used as indicators of the error in the a priori and 
the a posteriori state estimates. As such, convergence is 
obtained if the magnitude of the a posteriori error is 
reduced in time. Condition (20) can now be restated as: 

ABSABS
ee

1|1| −−
<
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Condition (23) leads to a stable VSF estimation process. 
This can be verified by defining a discrete Lyapunov 
function such that 

kkkk zzk ||
ee=ν . The process is 

stable if ( ) 0
1|11|1||
<−=

−−−− kkkkkkkk zzzzk eeeeνΔ , 

which is a condition satisfied by equation (23). The VSF 
corrective term can be derived by using condition (23) as 
stated in the following theorem. 
Theorem 1: Further to the VSF estimation process, the 
stability condition of equation (23) is satisfied if the 
corrective action  in turn satisfies the following 
conditions: 

kK

ABSABSABSABS
eeKHe

1|11|1|
ˆ

−−−−
+<<

kkkkkk zzkz   (24.) 

)()ˆ(
1| −

=
kkzk esKHs gngn     (25.) 

Initial Value of the 
Estimated States 

Estimated 
State 
Trajectory

Actual State 
Trajectory 

VSF Corrective 
Action 

Proof:  From condition (23), the estimation process is 
stable if:
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and the stability condition of condition (23) is satisfied. 
Further to condition (23), for a constant output matrix and 
white measurement noise, condition (20) is satisfied for 
completely observable system.     
A stable VSF corrective gain that satisfies Theorem 1 may 
be stated in a simple form as: 
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where is a diagonal matrix with elements such 
that 

mm×∈Rγ
10 << iiγ . The rate of convergence may be obtained 

from the error equation of the filter. The error equation 
may be derived from (28), or .
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from (29) into (28) and rearranging: 
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For  pseudo-diagonal and positive, equation (30) 
simplifies to the following: 
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For the elements of the diagonal matrix defined such that γ

1<iiγ , equation (31) leads to a series with a decreasing 
magnitude. From (31): 
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kkkk zz     
(32.) 

γ  is related to the rate of decay  in (32), such that: α

( )γα ln1
τ

=
     

(33.) 

where τ  is the sampling time. It should be noted that the 
stability of the VSF is confirmed by equation (33): for 

1<iiγ ,  is negative and signifies decay. α

kK results in a high frequency of switching that would 
limit the applications of the VSF and introduce chattering 
in the estimated states. The chattering may be filtered out 

Tim
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by using a smoothing function with a boundary layer Ψ  
around the switching surface as shown in Figure 3. Outside 
of this smoothing boundary layer, the sign function is 
maintained to ensure stability while inside this layer, 

is interpolated to obtain a smooth function. This is 
achieved by replacing the function  for any vector 
vec, by the function  with elements defined as 
follows: 

kK
)(vecsgn

),( Ψvecsat

   

( ) ( )
( )( )⎩

⎨
⎧

>
≤

=Ψ
1/for      /

1/for      /
,

iiii

iiii
i vecvecsign

vecvec
sat

ψψ
ψψ

vec  (34.) 

6. A COMBINED ESTIMATION STRATEGY USING THE 
EKF AND  SVSF CONCEPT 

The VSF provides an estimation process that is sub-
optimal albeit stable. It is hence beneficial to be able to 
combine the optimal performance of the EKF with the 
stability of the VSF. As such, the VSF strategy can be used 
to force the estimated states to within a boundary – in this 
case the smoothing boundary – and then on, the corrective 
action being principally transferred to the EKF.  For 
ensuring continuity during this transfer, a combined 
strategy that requires a modification to the VSF is needed. 
This modified VSF takes advantage and requires the 
orthogonality of the Kalman correction with respect to the 
actual system states, [2]. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Convergence of the Estimated State Trajectory 
due to VSF Action 

The VSF gain of equation (29) is augmented with a 
constant positive vector   and forced in a direction 
determined by the vector such that: 

Π
xd

)(ˆ
1|11| kkkkk xzz dSeγeHK gn

ABSABSABS
k ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ +=

−−−

+ Π  (35.) 

If  is a vector that originates from the a priori state 
estimates and is orthogonal to the trajectory traced by the 
actual system states, then  points towards  and thus 
the switching surface. The direction of  therefore 
coincides with the direction of the a priori output error 
vector such that  for   positive, 

kxd

xd kx

xd

Π
( ))(ˆ)(

1| xkz kk
dSHSeS gngngn Π+=

−
 and 

)(ˆ)(ˆ
1|1|1| kkkkkkk xzzz dSeHeSeH gn

ABS
gn

ABS
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

−−−

++ . 

Substituting 
 
from  (35) into (28) provides the error 

equation: 
kKĤ

 
( )(ˆ)(

1|1| xkxzz kkkk
dSHdSeγe gngn

ABS
Π−−=

−−
)
  

(36.) 

From (36), the maximum and minimum amplitudes of 

MAXABS
e ⎟

⎠
⎞⎜

⎝
⎛

kkz |
are obtained as: 

ΠHeγe
ABSMAXABS

ˆ
1|1|

+=⎟
⎠
⎞⎜

⎝
⎛

−− kkkk zz    
(37.) 

ΠHeγe
ABSMAXABS

ˆ
1|1|

−=⎟
⎠
⎞⎜

⎝
⎛

−− kkkk zz    
(38.) 

Equations (36), (37) and (38) lead to a set of closed loop 
discrete transfer functions of the form: 

)(
1

1

jij

m

j
ii

jij

m

j

Hz

H

πγ

π

∑

∑

=

=

±+

−

     (39.) 

Where in the context of equation (39),  z is the z-transform 

variable, and iiγ , , and iH iπ  denote elements of γ , 

andĤ Π . From (39), the process remains stable if the root 

of  and  are within 

the unit circle or: 

)(
1

jij

m

j
ii Hz πγ ∑

=

++ )(
1

jij

m

j
ii Hz πγ ∑

=

−+

1)(
1

<−∑
=

jij

m

j
ii H πγ     (40.) 

Initial Value of the Estimated 
States

System  
State Trajectory 

Estimated State 
Trajectory 

Smoothing Boundary 
Layer 

1)(
1

<+∑
=

jij

m

j
ii H πγ     (41.) 

Subject to the conditions of equations (40) and (41), the 
stability of the estimation process is preserved. The VSF 
and the EKF strategies may now be combined by setting:  
• that is orthogonal (by the virtue of 

EKF derivation) to the actual system states ;   
1| −

=
kkkk zx eKd Kalman

kx
• the additive term Π  to be relatively large with respect to 

 in order to emphasize EKF action within the boundary 

layer, e.g. , yet conditions (40) and (41);  

γ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1

1
8.0Π

• the gain γ  set such that conditions (40) and (41) are 
satisfied e.g. ; and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1.0
1.0

1.0
γ

• the boundary layer Ψ  is initially set to  in 

order to as nearly as possible preserve the EKF action. 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1

1
Ψ

The gain of the combined EKF/VSF strategy may be stated 
in a matrix form as: 

)1,(ˆ
1|1|11| −−−− ⎟⎟
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⎛
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⎞
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(42.) 
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Assuming a pseudo-diagonal output matrix , the 
elements of the corrective term of equation (42) may be 
stated as: 

Ĥ

 
( )( )( )

( )( )⎪⎩

⎪
⎨
⎧

>++

≤++
=
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k
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eKeKeeH
K

πγ

πγ

       (43.) 
From equation (43), it can be observed that outside of the 
smoothing boundary layer, the VSF gain is applied to 
ensure convergence and stability. Inside the boundary 
layer, the corrective gain is in a combined form involving 
both EKF and VSF. The larger the relative magnitude of 
the term  with respect to , the more dominant the EKF 
component of the estimation strategy. Further to the 
example provided in Section 3, the EKF is augmented into 
the combined EKF/SVSF form with the gain of equation 

(41), ,  and . For a known model 

where 

Π γ

0.1= 3γ I
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡
=

1
1
1

Ψ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

8.0
8.0
8.0

Π

srad /5ˆ ==ωω , the estimation results from the 
combined EKF/VSF strategy are nearly identical to the 
EKF as shown in Figures 1a to 1c. However, the new 
strategy is considerably more stable. Although, the 
performance of the new filter is degraded without any 
adjustments to the filter settings, the process is stable with 
introduced errors that move the internal model close to 
marginal stability. The filter remains stable for large errors 
such as srad /500ˆ =ω  or nearly 10000% error in the 
estimated value of the natural frequency! The estimation 
results for a 1000% error in this value, i.e. 

srad /55ˆ =ω are shown in Figures 4a to 4c. The results 
confirm the theoretical expectations form the combined 
strategy in that the performance of EKF is retained while 
the stability characteristics are considerably improved. 
Some degradation of performance can be observed in the 
estimation results in the form of chattering in Figures 4b 
and 4c. Intuitively, if the estimation model of equations 
(17) and (18) are exact, and if there is no noise in the 
system, then the a priori estimates and the real states 
coincide. The inaccuracy in estimation is the result of 
uncertainties in the initial conditions, the model, and the 
system and the measurement noise. The magnitude of the 
corrective action is proportional to the level of 
uncertainties and noise. The level of chattering is in turn 
proportional to the magnitude of the corrective term. 
Hence, the larger the uncertainty and noise, the larger the 
chattering effect and the larger the width of the smoothing 
boundary layer that is needed to alleviate chattering. A 
time varying boundary layer may be used as suggested for 
sliding mode control by [12]. In this example, some 
improvement in performance is obtained by increasing the 

width of the boundary layer to  for the case 

involving modeling error i.e. 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
1
1

Ψ

srad /55ˆ =ω . The 

simulation results with the increased boundary layer are 
provided in Figures 5a to 5c. 

7. CONCLUSIONS 
In this paper, the use of the Extended Kalman Filter for 
parameter estimation is briefly reviewed. In parameter 
estimation, the EKF strategy is very sensitive to modeling 
uncertainties and is suceptable to instability. The concept 
of Variable Structure Filtering is reviewed and combined 
with the EKF. This combined strategy retains the near 
optimal performance of the EKF when applied to an 
uncertain system. It has the added benefit of presenting a 
considerable improvement in the robustness of the 
estimation process. A simple example is provided to 
demonstrate the implementation and advantages of the 
combined method. 
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Figure 4a: Estimated and Actual States Associated with 

Modeling Error (Position) 
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Figure 4b: Estimated and Actual States Associated with 

Modeling Error (Velocity) 
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Figure 4c: Estimated and Actual States Associated with 

Modeling Error (Damping ratio) 
Figure 4: Estimated and Actual States with 1000% Error in 

Natural Frequency 
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Figure 5a: Estimated and Actual States Associated with 

Modeling Error and increased boundary layer (x1 - 
Position) 
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Figure 5b: Estimated and Actual States Associated with 

Modeling Error and increased boundary layer (x2- 
Velocity) 
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Figure 5b: Estimated and Actual States Associated with 

Modeling Error and increased boundary layer  
( x3 - Damping ratio) 

Figure 5: Estimated and Actual States Associated with 
Modeling Error and increased boundary layer 
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