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Abstract— Cooperative control under quantized information
for multi-agent systems with continuous models of motion is
considered. Time-varying communication topology is taken into
account and we distinguish between uniform and logarithmic
quantization. Convergence guarantees are provided when the
graph is a tree sufficiently often for the logarithmic quantizer,
using tools from algebraic graph theory and Lyapunov stability.
The results are illustrated by computer simulations.

I. INTRODUCTION

Multi-agent cooperative control is a field that has gained

increasing attention recently, due to the numerous applica-

tions that arise from the use of multiple robots/vehicles that

cooperate to achieve objectives in a distributed manner. Al-

gorithms for state agreement [4],[15],[5], formation control

[1],[17] and flocking motion [18],[20] are some of the results

that appeared in recent literature.

Despite most of the results examine the communication

topology of the underlying network, an important aspect is

that of the quality of the data each agent attains with respect

to its neighboring agents’ states in order to implement its

distributed control law. Therefore, the stability of distributed

multi-agent networks under quantized communication is an

issue that should be investigated both from an analysis

as well as a design perspective. Several results appeared

recently that tackle this issue in a distributed manner; these

include [10],[6],[3], [12]. A common factor in the afore-

mentioned papers is the use of discrete-time models for

the agents’ motion. In this paper we use a continuous-time

model instead. The only information each agent has is a

quantized estimate of the relative position of a subset of

the rest of the agents at each time instant. Thus, the need

of global coordinates’ knowledge is avoided, a requirement

imposed by omnidirectional camera sensors that are useful

in distributed multi-robot systems [11].

We first treat the static communication topology case

with uniform and logarithmic quantizers and show that

convergence is achieved in the case of a tree topology.

The results are then extended to switching topologies. The

stability analysis is held using a Lyapunov approach [14],[2]

and the results are supported through computer simulations.

The rest of the paper is organized as follows: Section

II presents the problem treated in this paper and provides

the background on cooperative control problems with perfect
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information. In Section III, we treat the case of static commu-

nication topology and then tackle the time-varying topology

case. The paper concludes with computer simulations in

Section IV and a summary of the results in Section V.

II. SYSTEM MODEL AND BACKGROUND

We consider N single integrator agents,

żi = ui, i ∈ {1, . . . , N} (1)

where zi = [xi, yi]
T ∈ R

2 is the position and ui ∈ R
2 the

control input of agent i.
The design objective is to construct feedback controllers

that lead the multi-agent system to agreement, i.e., all agents

converge to a common point in R
2. Each agent is assigned

a subset Ni ⊂ {1, . . . , N} of the rest of the team, called

agent i’s communication set, that includes the agents with

which it can communicate. Inter-agent communication can be

encoded in terms of an undirected communication graph G =
{V, E}, which consists of a set of vertices V = {1, ..., N}
indexed by the team members, and a set of edges, E =
{(i, j) ∈ V × V |i ∈ Nj} containing pairs of vertices that

represent inter-agent communication specifications.

Each agent only knows the state of agents that belong to its

communication set at each time instant. The communication

graph is assumed undirected, i ∈ Nj ⇔ j ∈ Ni,∀i, j ∈
{i, . . . , N}, i 6= j. When the communication topology is

static, the sets Ni are static and G is time-invariant. When the

communication topology is time-varying, the sets Ni change

over time and G is time-varying, i.e., G = G(t).
We will use terminology from algebraic graph theory [8].

For G = {V, E}, the N ×N adjacency matrix A = A(G) =
(aij) is given by aij = 1, if (i, j) ∈ E and aij = 0,

otherwise. If (i, j) ∈ E, then i, j are called adjacent. A path

of length r from i to j is a sequence of r+1 distinct vertices

starting with i and ending with j such that consecutive

vertices are adjacent. If there is a path between any two

vertices, then G is called connected. A connected graph

is called a tree if it contains no cycles. The degree di of

vertex i is di = {#j : (i, j) ∈ E}. Let ∆ be the N × N
diagonal matrix of di’s. The Laplacian of G is the symmetric

positive semidefinite matrix L = ∆ − A. For a connected

graph, L has a simple zero eigenvalue and the corresponding

eigenvector is the vector of ones. An orientation on G is the

assignment of a direction to each edge. The graph G is called

oriented if it is equipped with a particular orientation. The

incidence matrix B = B(G) = (Bij) of an oriented graph

is the {0,±1}-matrix with rows and columns indexed by the

vertices and edges of G, respectively, such that Bij = 1 if

the vertex i is the head of the edge j, Bij = −1 if the vertex
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i is the tail of the edge j, and 0 otherwise. The Laplacian

matrix is also given by L = BBT = ∆ − A [8].

In the sequel, the case of a static communication graph

with m edges is treated first and the results are extended

to the time-varying case. We denote by L the Laplacian of

G, by B its incidence matrix corresponding to an arbitrary

orientation and by x = [x1, . . . , xN ] the stack vector for

the coordinates of the agents in the x-direction. The exact

same analysis can be held for the coordinates in the y-axis.

Moreover, we denote by x̄ the m-dimensional stack vector

of relative differences in the x-axis of pairs of agents that

form an edge in G, where m is the number of edges. The

following relations are easily verified: Lx = Bx̄, x̄ = BT x.

The fact that x̄ = 0 corresponds to agreement is due to that

x̄ = 0 ⇒ Bx̄ = 0 ⇒ Lx = 0. If G is connected, the last

equation guarantees that x has all its elements equal [7],[8].

The agreement control laws in [7], [19] were given by

ui = −
∑

j∈Ni

(xi − xj)

and the closed-loop equations of the nominal system (without

quantization) were ẋi = − ∑

j∈Ni

(xi − xj , ), i ∈ {1, . . . , N},

so that ẋ = −Lx. Then, ˙̄x = BT ẋ = −BT Lx = −BT Bx̄.

Hence the nominal system is also given by

˙̄x = −BT Bx̄ (2)

In this paper we impose the additional constraint of quan-

tized relative measurements. Almost all on-board sensors

in robotic systems have no access to global coordinates

but only measurements of relative states of nearby agents.

Moreover, the actuators of each robot can in practice only

implement and/or perceive a quantized value of these relative

measurements. For these reasons, this paper studies a simpli-

fied model of quantized information exchange. In particular,

each agent i is assumed to have quantized measurements

q(xi − xj), q(yi − yj) of the relative position of all of its

neighbors j ∈ Ni where q(.) : R → R is the quantization

function. The situation is depicted in Figure 1. Each agent i

y

x

j

i

i
x

j
x-

i
y - jy

Fig. 1. Each agent i has quantized sensing measurements xi−xj , yi−yj

of its relative displacement in the x and y coordinates from all agents j that
belong to its communication set Ni. Agent i is only aware of a quantized
measurement q(xi − xj), q(yi − yj) of each of these measurements.

can get estimates of the relative position coordinates xi−xj ,

yi − yj from each of its neighbors j ∈ Ni using a sensor

that can only provide measurements in a quantized way.

Since the values of the quantizer are decomposed into the

relative measurements q(xi − xj), q(yi − yj) in the x and y
coordinates respectively, we can treat only the behavior of the

system in the x coordinates. The analysis that follows holds

mutatis mutandis in the y coordinates, and also in the rest of

the coordinates when the agent model is three-dimensional

or higher. We hence examine the stability properties of the

closed-loop system in the x-coordinates under quantization,

namely of the system ẋi = − ∑

j∈Ni

q (xi − xj), with i ∈
{1, . . . , N}

In this paper, we consider two types of quantized sensors:

uniform and logarithmic quantizer. They are given as:

• The uniform quantizer, qu : R → R,

|qu (a) − a| ≤ δu,∀a ∈ R (3)

• The logarithmic quantizer ql : R → R,

|ql (a) − a| ≤ δl |a| ,∀a ∈ R (4)

In the previous equations, δu, δl are positive scalar gains. We

shall use the notation q(.) for the quantizer when it is not

specified if it is a uniform or a logarithmic quantizer.

For a vector v = [v1, . . . , vd] ⊂ R
d of size d, the following

bounds are easily shown to hold:

• In the uniform quantizer case,

|qu (v) − v| ≤ δu

√
d (5)

• In the logarithmic quantizer case,

|ql (v) − v| ≤ δl |v| (6)

III. QUANTIZED AGREEMENT UNDER TIME-VARYING

TOPOLOGY

In this section, we provide the main results of the paper.

We first assume that the communication topology is static,

i.e. that the communication sets Ni do not vary over time. A

sufficient condition for agreement under quantized informa-

tion is provided. This simple result is then used to treat the

more general case of time-varying communication topology,

which is the main contribution of this paper.

A. Static Communication Topology

In the case of quantized information we have

ẋi = −
∑

j∈Ni

q (xi − xj)

where q (.) : R → R is the quantizing function. If this

function satisfies q (−a) = −q (a) for all a ∈ W ⊂ R,

which is the case for both types of quantizers used in this

paper, then it is easily shown that

˙̄x = −BT Bq (x̄) (7)

where q(x̄) is the stack vector of all pairs q (xi − xj) with

(i, j) ∈ E. While L is always positive semidefinite, the

matrix BT B can be either positive semidefinite or positive

definite. The next Lemma states that in the case of a tree

graph, the matrix BT B is always positive definite:
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Lemma 1: Assume that G is a tree. Then the correspond-

ing matrix BT B is positive definite.

Proof: For arbitrary y ∈ R
m we have yT BT By = |By|2

and hence yT BT By > 0 if and only if By 6= 0, i.e., B has

empty null space. For a connected graph, the cycle space of

the graph coincides with the null space of B (Lemma 3.2

in [9]). This corresponds to the fact that for G, which has

no cycles, zero is not an eigenvalue of B. This implies that

λmin(BT B) > 0, i.e., that BT B is positive definite. ♦
In essence, when the communication graph is a tree, we

have λmin

(

BT B
)

> 0. We use the quadratic edge function

V =
1

2
x̄T x̄ (8)

as a candidate Lyapunov function. Assuming that the com-

munication graph is a tree, the derivative of V = 1
2 x̄T x̄ along

the trajectories of the closed loop system (7) is given by

V̇ = −x̄T BT Bq (x̄) = −x̄T BT Bx̄ − x̄T BT B (q (x̄) − x̄)

so that

V̇ ≤ −λmin

(

BT B
)

|x̄|2 − x̄T BT B (q (x̄) − x̄) (9)

In the case of a uniform quantizer we have q = qu and

|qu (x̄) − x̄| ≤ δu

√
m, where m is the number of edges in

the communication graph. Then (9) yields

V̇ ≤ −λmin

(

BT B
)

|x̄|2 + |x̄|
∥

∥BT B
∥

∥ δu

√
m

≤ −λmin

(

BT B
)

|x̄|
(

|x̄| − ‖BT B‖δu

√
m

λmin(BT B)

)

Thus, all solutions of the closed-loop system enter the ball
{

x : |x̄| ≤
∥

∥BT B
∥

∥ δu

√
m

λmin (BT B)

}

centered at x̄ = 0 of radius
‖BT B‖δu

√
m

λmin(BT B)
in finite time.

In the case of a logarithmic quantizer we have q = ql and

|ql (x̄) − x̄| ≤ δl |x̄| and (9) yields

V̇ ≤ −λmin

(

BT B
)

|x̄|2 +
∥

∥BT B
∥

∥ δl |x̄|2 ,

so that

V̇ ≤ − |x̄|2
(

λmin

(

BT B
)

−
∥

∥BT B
∥

∥ δl

)

(10)

Convergence to an agreement point x̄ = 0 is guaranteed for

δl <
λmin

(

BT B
)

‖BT B‖ (11)

i.e. the gain δl of the logarithmic quantizer must be suffi-

ciently small. The fact that x̄ = 0 guarantees that the vector

x has all its elements equal, in the case of a connected graph.

By applying the Comparison Lemma [13] in equation (10)

we get the following estimates of the convergence rate for

the case of a logarithmic quantizer and a tree structure:

V (x̄ (t)) ≤ e−2(λmin(BT B)−‖BT B‖δl)tV (x̄ (0)) (12)

so that

x̄ (t) ≤ e−(λmin(BT B)−‖BT B‖δl)tx̄ (0) (13)

for all times t ≥ 0.

The previous derivations yield the following Theorem for

the time invariant communication topology case :

Theorem 2: Assume that the time-invariant communica-

tion graph G is a tree. Then the closed loop system (7) has

the following convergence properties:

• In the case of a uniform quantizer, the system converges

to a ball of radius

∥

∥BT B
∥

∥ δu

√
m

λmin (BT B)
which is centered in

the desired equilibrium point x̄ = 0 in finite time.

• In the case of a logarithmic quantizer, the system is

exponentially stabilized to an agreement point x̄ = 0,

provided that the gain of the quantizer δl satisfies (11).

Using now (10) we get the following useful relations for

the trajectories of the closed loop system in the general case

when the communication graph is not necessarily a tree:

V (x̄ (t)) ≤ e2‖BT B‖δltV (x̄ (0)) (14)

so that

x̄ (t) ≤ e‖BT B‖δltx̄ (0) (15)

The previous equations will be used in the time-varying

communication topology network analyzed in the sequel.

B. Main Result: Time-varying Communication Topology

In this section we treat the case when the communication

topology is time-varying, allowing each agent to lose/create

new communication links with other agents as the closed-

loop system evolves. The problem in this case is that it’s

not possible to use V = 1
2 x̄T x̄ as a common Lyapunov

function for the switched system, since the vector x̄ changes

discontinuously whenever edges are added or deleted when

the communication topology changes. A different energy

function is used and in particular, the function

W = max {x1, . . . , xN} − min {x1, . . . , xN} (16)

which can act as a common Lyapunov function for the

switched system.

Let xmax
∆
= max {x1, . . . , xN} , xmin

∆
=

min {x1, . . . , xN} denote the maximum and minimum

element of x, respectively. In the degenerate case that more

than one elements is equal to the maximum element or

minimum element, we define xmax
∆
= xm1

and xmin
∆
= xm2

where m1
∆
= max

i
{i : xi = max {x1, . . . , xN}} and

m2
∆
= min

i
{i : xi = min {x1, . . . , xN}}.

The notation T = {t1, . . . , tj , . . .} is used for the set of

switching instants, i.e., times when a new communication

link is created or an existing one is lost, or the maximum

or minimum element change, i.e., a new agent attains the

maximum or minimum value, xmax or xmin, respectively.

We will use the extension of LaSalle’s Invariance Principle

for hybrid systems [16] to check the stability of the overall

system. The main result is stated as follows:

Theorem 3: Assume that the time-varying communication

graph G = G(t) remains a tree for all continuous evolution

intervals [ti, ti+1] and the quantizer is logarithmic. Then the
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system converges to an agreement point, provided that the

gain of the logarithmic quantizer δl satisfies

δl < min
B∈T (B)

λmin

(

BT B
)

‖BT B‖ (17)

where the minimization is held over all possible incidence

matrices that belong to the set T (B) of incidence matrices

corresponding to all possible trees with N vertices.

Proof: We have to show that W is strictly decreasing in

between arbitrary switching instances. For the logarithmic

quantizer we have sign(ql(x)) = sign(x). Since xmax ≥ xi

and xmin ≤ xi for all i ∈ [1, . . . , N ], the following equations

hold for all t ∈ [ti, ti+1], for a time interval [ti, ti+1], where

ti, ti+1 ∈ T : ẋmax = − ∑

j∈Nmax

ql (xmax − xj) ≤ 0, and

ẋmin = − ∑

j∈Nmax

ql (xmin − xj) ≥ 0.

The previous calculations prove that W is non-increasing

throughout the closed loop system evolution. We now show

that W is strictly decreasing within each subinterval [τ, τ +
∆τ ] of [ti, ti+1] with non-zero measure as long as the com-

munication graph is a tree and the system has not reached

an agreement point x̄ = 0. This is proved by contradiction.

Assume first that xmax is constant at each time instant the

time interval in consideration, i.e. ẋmax = 0, for all t ∈
[τ, τ +∆τ ]. This is equivalent to

∑

j∈Nmax

ql (xmax − xj) = 0,

and since xmax ≥ xi for all i ∈ {1, . . . , N} the latter implies

that xj = xmax for all j ∈ Nmax.

Pick a random k ∈ Nmax, where k does not coincide

with the maximum vertex. Then xk ≥ xj , for all j ∈ Nk

and hence ẋk = − ∑

j∈Nk

ql (xk − xj) ≤ 0. If ẋk < 0, then

necessarily ẋmax < 0 since xk = xmax for all t ∈ [τ, τ+∆τ ].
Hence we also have ẋk = 0 and hence xj = xk = xmax for

all j ∈ Nk. We can now repeat the same procedure for a

random l ∈ Nk. Since the graph is a tree and has finite

vertices, we conclude that there exists a finite number of

iterations of the above procedure that propagates to every

vertex in the graph. We hence conclude that all vertices in

the graph should have a zero time derivative. By virtue of

the above procedure all vertices then will have a common

value equal to the constant maximum value of xmax. This

is of course a contradiction to the fact that function V is

strictly decreasing, by virtue of (10),(11),(17), as long as the

system has not reached an agreement point. We therefore

conclude that using the above procedure, there should be at

least one vertex p chosen in the above iterative procedure

which necessarily has a strictly negative time derivative at

some t ∈ [τ, τ+∆τ ]. Since the above procedure suggests that

xp = xmax, and therefore ẋp = ẋmax, for all t ∈ [τ, τ +∆τ ],
we conclude that xmax is strictly decreasing in [τ, τ + ∆τ ].

The above analysis can be used to show -albeit not

necessary for our proof- that xmin is strictly increasing in

[τ, τ + ∆τ ]. We conclude that W strictly decreases within

each time interval [ti, ti+1], i.e. W (ti) < W (ti+1). We

conclude that W converges to its minimum value of zero

as t → ∞. The latter of course corresponds to a desired

agreement point by definition. This completes the proof. ♦

C. The Case when Connectedness is lost in some Intervals

The above result is useful whenever the communication

topology retains the tree structure at all switching instances.

A more practical situation however occurs if we allow for the

tree assumption to be lost for some times. In particular, we

assume that in between moments where the team switches to

a different tree structures, there are time intervals where the

connected tree assumption is not guaranteed to hold. Hence

we consider a switching sequence of the form T = {0 =
t01, t1, t12, t2, t23, t3, . . .}, where intervals of the form ∆ti =
ti − ti−1,i correspond to a tree communication graph while

the reset intervals ∆ti,i+1 = ti,i+1 − ti correspond to the

a switch between two trees. The connectivity assumption is

not guaranteed to hold in the reset intervals ∆ti,i+1. Figure

2 shows a possible evolution of the communication topology.

time

Connected

Tree 1

Connected

Tree 2
Reset Interval

12
t

…

01
t t1

Fig. 2. A switching scenario. Between the two tree structures there is a
reset interval ∆t12 = t12 − t1 where connectivity is lost.

We assume that each time interval ∆ti where the com-

munication topology is a tree has a minimum dwell time

∆tmin, i.e. ∆ti > ∆tmin. The following result states that

convergence to a rendezvous point can still be achieved

provided that the reset intervals are chosen small enough:

Theorem 4: Assume that the time-varying communication

graph G = G(t) is a tree for all time intervals ∆ti = ti −
ti−1,i and the quantizer is logarithmic. Further assume that

there is a path connecting the maximum and the minimum

vertex, for all reset time intervals of the form ∆ti,i+1 =
ti,i+1 − ti. Assume that there exists an ε, where 0 < ε <

min
B∈T (B)

λmin(BT B)
‖BT B‖ , such that the quantizer gain satisfies

δl < min
B∈T (B)

λmin

(

BT B
)

‖BT B‖ − ε (18)

Furthermore, assume that the tree time intervals ∆ti satisfy

∆tmin >
2 ln (N(N − 1)/2)

ε · max
B∈T (B)

‖BT B‖ (19)

Then the closed-loop system converges to agreement, pro-

vided that the reset time intervals ∆ti,i+1 are sufficiently

smaller than an upper bound which is provided in the proof.

Proof: We consider Wc = W√
N(N−1)

as a common Lya-

punov function for the overall switched system. Since for all

intervals there is a path max, p1, p2, . . . , pf , min connecting

the maximum and minimum vertices, we have W = xmax −
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xmin = xmax−xp1
+xp1

−xp2
+ . . .+xpf

−xmin, and using

the inequality n
n
∑

i=1

r2
i ≥

(

n
∑

i=1

ri

)2

,∀ri ∈ R, we have

W 2 ≤ N(N−1)
2

·
[

(xmax − xp1
)
2

+ (xp1
− xp2

)
2
. . .

(

xpf
− xmin

)2
]

≤ N(N−1)
2 2V

and hence Wc ≤
√

V where V is the quadratic function (8)

corresponding to the edges G(t) at each time instant and

N(N − 1)/2 is the maximum number of edges at each time

instant. Hence the candidate common Lyapunov function is

bounded from above by V at each time instant, where V
corresponds to the vector x̄ of edges at the same time instant.

All pairs i, j ∈ {1, . . . , N} satisfy |xmax − xmin| ≥
|xi − xj | and thus, m

2 (xmax − xmin)
2 ≥

1
2

∑

(i,j)∈E

(xi − xj)
2

= V . Since the maximum number

of edges m is N(N − 1)/2 the last equation implies

W ≥ 2√
N(N−1)

√
V ⇒ Wc ≥ 2

N(N−1)

√
V . We hence have

2

N(N − 1)

√
V ≤ Wc ≤

√
V (20)

for all possible quadratic edge function V corresponding

either to a connected tree interval or a reset interval.

With a slight abuse of notation, we denote by Vi the

quadratic edge function V corresponding to a random tree

that represents the communication topology in the time

interval ∆ti and by Vi,i+1 the quadratic edge function V
corresponding to the reset time interval ∆ti,i+1. We now

use the bounds derived in (12),(13), (14),(15) to show that

for sufficiently small reset time intervals the result still holds.

For two consecutive random intervals

[ti, ti,i+1], [ti,i+1, ti+1], using equations (12),(14) and

the bounds (20) we have

Wc (ti+1) ≤
√

Vi+1 (ti+1)

≤ e−(λmin(BT
i+1Bi+1)−‖BT

i+1Bi+1‖δl)∆ti+1

√

Vi+1 (ti,i+1)

≤ e−(λmin(BT
i+1Bi+1)−‖BT

i+1Bi+1‖δl)∆ti+1
N(N−1)

2
·Wc (ti,i+1)

≤ e−(λmin(BT
i+1Bi+1)−‖BT

i+1Bi+1‖δl)∆ti+1

·N(N−1)
2

√

Vi,i+1 (ti,i+1)

≤ e−(λmin(BT
i+1Bi+1)−‖BT

i+1Bi+1‖δl)∆ti+1
N(N−1)

2

·e‖BT
i,i+1Bi,i+1‖δl∆ti,i+1

√

Vi,i+1 (ti)

≤
(

N(N−1)
2

)2

e−(λmin(BT
i+1Bi+1)−‖BT

i+1Bi+1‖δl)∆ti+1

·e‖BT
i,i+1Bi,i+1‖δl∆ti,i+1 Wc (ti)

where, in accordance with the defined notation, Bi+1 ∈
T (B) is an incidence matrix belonging to the set T (B) of

incident matrices corresponding to trees with N vertices,

while Bi,i+1 is an arbitrary incidence matrix corresponding

to a graph with N vertices. It suffices to show that Wc strictly

decreases in the time interval ti, ti+1.

This is equivalent to

e

{

−(λmin(BT
i+1Bi+1)−‖BT

i+1Bi+1‖δl)∆ti+1

+‖BT
i,i+1Bi,i+1‖δl∆ti,i+1

}

<
(

N(N−1)
2

)−2

⇔
⇔ −

(

λmin

(

BT
i+1Bi+1

)

−
∥

∥BT
i+1Bi+1

∥

∥ δl

)

∆ti+1

+
∥

∥BT
i,i+1Bi,i+1

∥

∥ δl∆ti,i+1
< −2 ln

(

N(N−1)
2

)

(21)

Using ∆ti+1 > ∆tmin, an upper bound on the reset interval

time for which the above inequality holds is given by

∆ti,i+1
<

vi+1∆tmin − 2 ln (N(N − 1)/2)
∥

∥BT
i,i+1Bi,i+1

∥

∥ δl

where the parameter vi+1 = λmin

(

BT
i+1Bi+1

)

−
∥

∥BT
i+1Bi+1

∥

∥ δl is always positive, due to δl satisfying (18).

Due to the fact that ∆tmin satisfies (19), there is a strictly

positive upper bound on the reset intervals ∆trmax for which

(21) holds, i.e. we have ∆ti,i+1 < ∆trmax for all i, and

∆trmax < min
i

vi+1∆tmin − 2 ln (N(N − 1)/2)
∥

∥BT
i,i+1Bi,i+1

∥

∥ δl

Hence for sufficiently small reset intervals, Wc is strictly

decreasing, i.e., Wc(ti+1) < Wc(ti) for all i. The result

follows by allowing i tend to infinity. ♦
The above result shows that convergence can be achieved

in the presence of the reset intervals, provided that the tree

intervals, and the quantizer gain are appropriately tuned. If

the latter is sufficiently small, the reset intervals are allowed

to be large enough provided that the tree intervals have a

sufficiently large lower bound ∆tmin. We should also point

out here that the requirement that there is a path connecting

the maximum and minimum vertex is rather conservative.

The means to relax this condition are under investigation.

Simulation results verify the fact that this condition is far

from necessary. On the other hand, Theorem 4 shows that

the closed loop system is robust in terms of temporary lack

of connectivity and quantization effects.

IV. SIMULATIONS

We provide simulations to support the presented theory.

The first simulation involves four agents navigating under

quantized communication and under a static tree structure.

In fact, the communication sets of the four agents are chosen

as N1 = {2},N2 = {1, 3},N3 = {2, 4},N4 = {3},

so that the corresponding graph is a line graph. We can

compute
λmin(BT B)

‖BT B‖ = 0.1716 in this case. We choose

δl = 0.15 and δs = 0.1 in the simulation of Figure

3. The trajectories corresponding to the uniform quantizer

control law are depicted by the grey lines and shown on

the left screenshot, while the corresponding ones of the

logarithmic quantizer by the black lines and shown on the

right screenshot. The initial conditions of the four agents are

denoted by a cross. As expected, the uniform quantizer only

achieves set convergence while the logarithmic one drives

the agents to agreement, since condition (11) is fulfilled.

The second simulation involves a switching topology case

for the logarithmic quantizer. We allowed the tree structure
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Fig. 3. Uniform vs. Logarithmic quantizer. In the first case only set
convergence is guaranteed while in the second case agreement is achieved,
since δl satisfies (11).

to be lost during some time intervals, and thus the simula-

tion involves the development where connectedness is lost

during some time intervals in Section III-C. The agents

start from the same initial conditions as in the previous

simulations. The reset time intervals are sufficiently small

and the logarithmic quantizer gain satisfies (18). Agreement

is eventually achieved in Figure 4 since Theorem 4 holds.

The nonsmoothness of the trajectories with respect to the

previous simulation is due to the topology change.

0 0.05 0.1 0.15 0.2

-0.05

0

0.05

0.1

0.15

Switching Topology Case
1

2

3

4

Fig. 4. Agreement with logarithmic quantizer and switching communica-
tion topology. Connectedness is lost during the reset intervals. Agreement
is reached by virtue of Theorem 4.

V. CONCLUSIONS

Distributed cooperative control laws for multi-agent sys-

tems under imperfect, quantized, relative information be-

tween neighboring agents were considered. We distinguished

between uniform and logarithmic quantizers as well as be-

tween static and time-varying communication topologies and

showed that a tree structure provides convergence guarantees

in both cases. The results were also shown to hold in the case

where connectedness is lost during bounded time intervals.

Computer simulations supported the derived theory.
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