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Abstract— This paper compares two nonlinear observers
designed to estimate a road condition parameter. Both schemes
assume only wheel angular velocity is measured and are based
on a quarter vehicle model. A stability analysis is made of the
estimation scheme in the presence of noise associated with the
wheel angular velocity measurement in an effort to explain
the results from the simulations.

I. INTRODUCTION

Recently, the automobile industry has concentrated on

developing intelligent systems for dynamic performance and

safety improvements. Many new features on automotive ve-

hicles are available such as anti-lock brake systems (ABS),

traction control systems (TCS), adaptive cruise control

(ACC), active yaw control, active suspension systems, en-

gine management systems (EMS) and vehicle management

systems which all incorporate advanced data acquisition

systems. These systems rely on the physical parameters

of the vehicle and information about the environmental

conditions in which it is operating. It is important to

note that the adhesion between the tyre and road (the

friction force) is less for decreasing velocities than for

increasing velocities. Therefore, a good estimate of the

road/tyre friction coefficient is an important basis for many

of the control systems developed to improve safety in an

emergency braking situation. Various methods have been

developed to predict tyre/road friction – for example [1],

[3]-[7], [9], [12]. Most of these schemes make use of the

available data from wheel speed sensors to compute an

estimate of the tyre/road friction.

Alvarez et al. [1] proposed a friction estimation method

which uses measurements of wheel angular velocity and

longitudinal vehicle acceleration. From the measurement of

wheel angular velocity, they propose numerically computing

wheel angular acceleration. These three signals are then

used in the estimation of the friction coefficients and in

the brake input control law. Most of the other schemes in

the literature assume that only information about angular

velocity is known. Yi et al. [12] use a LuGre friction

model [2] and investigate nonlinear adaptive observers

based on measurements of wheel speed. More recently, a

sliding mode based scheme has been proposed [8] in which

analytical expression for the gains are given – parameterized

by a single scalar which reflects the rate at which sliding is

obtained. During sliding, the equivalent output estimation

error is used to estimate a road surface parameter which

characterizes the surface on which the vehicle is moving.

As in all the other comparable schemes [1], [3]-[12], it is
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assumed that the parameters of the vehicle including the

mass, effective wheel radius and moments of inertia are

fixed and known. None of the papers [1], [3]-[12] consider

the effect of noise on the estimation schemes. In this paper

a stability analysis is made of the estimation scheme in

the presence of noise associated with the wheel angular

velocity measurement. A comparison of the results between

the sliding mode observer in [8] and the adaptive observer

in [12] is shown. An analysis is made of both schemes to

explain the results from the simulations.

II. TYRE/ROAD FRICTION AND VEHICLE MODELLING

In many friction models, the environmental conditions

in which the vehicle operates are taken into account by

means of a ‘road surface condition’ parameter [1], [3]-

[12]. Consider the dynamic LuGre friction model from [3]

together with a simple model of the vehicle dynamics:

żf = −vr − θ
σ0|vr |

h(vr)
zf (1)

Jω̇ = −rFx − kbPb (2)

mv̇ = 4Fx − Fav (3)

where v is the longitudinal velocity of the vehicle, ω is

angular wheel speed, vr = v − rω is the relative velocity

and zf is an internal frictional state. From [3], the friction

force Fx produced by the tyre/road contact is given by

Fx = Fn(σ0zf + σ1żf − σ2vr) (4)

where σ0 is the stiffness coefficient, σ1 is the damping co-

efficient, and σ2 is the viscous relative damping coefficient.

The scalar function

h(vr) := µc + (µs − µc)e
−| vr

vs
|
1

2

(5)

where vs is Stribeck relative velocity, µs is the normalized

static friction coefficient and µc is the normalized Coulomb

friction coefficient. The parameter θ in (1) captures changes

in the road characteristics: typically, θ =1 represents dry,

θ = 2.5 represents wet and θ = 4 represents icy road

conditions. The scalar J is the moment of inertia of the

wheel, m is the total mass of the vehicle, Fav represents

the aerodynamic force, kb the brake system gain and Pb is

the actual applied braking pressure (the control variable).

Here it will be assumed that the vehicle is travelling

on a flat road and the load associated with the mass of

the vehicle is equally distributed about each wheel which

means Fn = mg/4 where g is the gravity constant. As

in [12], assume Fav = σvmgv where σv is a rolling

resistance coefficient. Two different observer schemes will

be considered: the sliding mode scheme proposed in [8] and

the adaptive observer from [12].
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III. A SLIDING MODE OBSERVER

Choosing as states x1 = zf , x2 = v and x3 = rω − v,

a sliding mode observer [5], [10], [11] will be described

based on the assumption that only the angular velocity ω is

available (which can be measured easily). For the purpose

of observer design it is convenient to split the state-space

equations associated with (1)- (3) into linear and nonlinear

components in a Lur’e type form:

ẋ(t) = Ax(t) +Bu(t) +Dθx1(t)f(x3) (6)

where the control signal u(t) = Pb(t) and

A =





0 0 1
gσ0 −gσv g(σ1 + σ2)
qσ0 gσv q(σ1 + σ2)



 B =





0
0

− rkb

J



 (7)

The distribution matrix through which the nonlinear term

operates is

D =





−1
−gσ1

−qσ1



 (8)

In these matrices the aggregate parameter

q := −
(
g + Fnr

2/J
)

(9)

has been used. Since it is assumed that only angular wheel

speed ω is measured, the output distribution matrix

C =
[

0 1
r

1
r

]
(10)

A. A Sliding Mode Observer

The following sliding mode observer was proposed in [8]

˙̂x(t) = Ax̂(t) +Bu(t) +Gley +Dν (11)

where Gl = col(g1, g2, g3) with g1, g2 and g3 scalars; and

ν = ksgn(ey) where k is a scalar gain. The sliding mode

observer guarantees ey = 0 in finite time where ey = ω−ω̂,

and e := x− x̂→ 0 as t→ ∞ despite the nonlinear friction

terms which have been ignored in (11). It is shown in [8]

that if

ḡ1 = r + (g + α
σ1

) J
Fnr

(12)

ḡ2 = g(α+ gσ̄ − σ0

σ1

) J
Fnr

+ gr(σ1 + σ2) (13)

ḡ3 = (σ1 + σ2)q −
σw

J
+ σ0

σ1

− α (14)

where σ̄ = σv + σ1 + σ2 and α is a negative scalar then

Gl =





ḡ1
ḡ2

rḡ3 − ḡ2



 (15)

is an appropriate choice of gain in (11). If the wheel speed

can be measured perfectly then the dynamics for the error

system can be obtained from (6) and (11) as

ė = (A−GlC)e+D (θf(x3)x1 − ν) (16)

Proposition 1 [8]: The state estimation error system (16)

is quadratically stable for large enough k. Furthermore in

a domain of the origin, a sliding motion takes place on

S = {e : Ce = 0} in finite time.

�

As argued in [8] when e → 0, the expression for the

equivalent output error injection signal νeq , necessary to

maintain a sliding motion in the state estimation error space,

becomes

νeq = θf(x3)x1 (17)

Equation (17) indicates that the expression

θ̂ =
νeq

f(x̂3)x̂1
(18)

can be used as an estimate for the parameter θ during the

sliding motion. Since x̂1 → x1 and x̂3 → x3 it follows

f(x̂3)x̂1 → f(x3)x1 and so θ̂ → θ. Notice (17) is only

valid when x̂1 6= 0 and x̂3 6= 0 since f(x̂3) > 0 if x3 6= 0
by definition.

B. Stability Analysis

Suppose the measurement is corrupted with noise so that

y = ω + n, where n ∈ R is assumed to be differentiable

and bounded. Define e1 = x1 − x̂1, e2 = x2 − x̂2 and

e3 = x3 − x̂3. In the presence of noise associated with

measurement of angular velocity ω, the output error

ey = Ce+ n (19)

and the errors e1, e2 and e3 satisfy

ė1 = e3 − θf(x3)x1 − k1ey + ν (20)

ė2 = g(σ0e1 + σ1(e3 − θf(x3)x1) + σ2e3)

−σvge2 − k2ey + gσ1ν (21)

ė3 = q(σ0e1 + σ1(e3 − θf(x3)x1) + σ2e3)

−
σω

J
(e2 + e3) + σvge2 − k3ey + qσ1ν (22)

During sliding ey = 0 and

ėy =
ė2 + ė3
r

+ ṅ = 0 (23)

Substituting for ė2 and ė3 from equation (21) and (22) and

taking into account that ey = 0 means the equivalent output

error injection necessary to maintain sliding is given by

νeq = −
1

σ1
(σ0e1 + σ1(e3 − θf(x3)x1) + σ2e3)

−
rσω

(g + q)Jσ1
n−

r

(g + q)σ1
ṅ (24)

Substituting the value of νeq from (24) into equation (20)

gives the expression

ė1 =
σ0

σ1
e1 −

σ2

σ1
e3 −

rσω

(g + q)Jσ1
n−

r

(g + q)σ1
ṅ (25)

Define a new variable

ẽ1 := e1 +
r

(g + q)σ1
n (26)
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then using the expression for ė1 from (25) in the above

equation gives

˙̃e1 = −
σ0

σ1
e1 −

σ2

σ1
e3 −

rσω

(g + q)Jσ1
n (27)

Substituting for νeq from (24) into (22) and noting that

during sliding ey = 0, which means e2 = −e3 − rn, it

follows that

ė3 = −σvge3+

(
σω

J
r −

rσωq

J(g + q)
− σvgr

)

n

−
r

(g + q)
qṅ (28)

Define

ẽ3 = e3 +
r

(g + q)
qn (29)

which implies from (28) that

˙̃e3 = −σvge3+

(
σωgr

J(g + q)
− σvgr

)

n (30)

Using the expressions in equations (26) and (29), equation

(27) can be re-written as

˙̃e1 = −
σ0

σ1
ẽ1−

σ2

σ1
ẽ3+

r

σ1(g + q)

(
σ0

σ1
+σ2q−

σω

J

)

n (31)

and after some algebra, equation (30) can be re-written as

˙̃e3 = −σvgẽ3 +
4

mr
(Jgσv − σω)n (32)

In order to obtain an expression for the equivalent injection

νeq in practice, the signal ν is passed through a low-pass

filter. From equation (24) if a first order low pass filter is

employed to obtain νf , then

ν̇f + τνf = −
τ

σ1
(σ0e1 + (σ1(e3 − θf(x3)x1) + σ2e3)

−
τrσω

(g + q)Jσ1
n−

τr

(g + q)σ1
ṅ(33)

where τ is the time constant of the filter. Define

ν̃f := νf +
rτ

σ1(g + q)
n (34)

then from (34) and (33), and using the expressions in

equations (26) and (29), equation (33) becomes

˙̃νf = −τ ν̃f −
σ0

σ1
τ ẽ1 − τ(1 +

σ2

σ1
)ẽ3 + τθf(x3)x1

+
rτ

σ1(g + q)
ζn (35)

where ζ :=

(

σ0

σ1

+ qσ1 + σ2q + τ − σω

J

)

.

In the case when n ≡ 0, i.e. the measurements are

noise free, from (27) and (30) the (ẽ1, ẽ3) subsystem is

asymptotically stable and ẽ1 → 0 and ẽ3 → 0. When

e1, e3 = 0, equation (35) becomes

˙̃νf = −τ ν̃f + τθf(x3)x1 (36)

and ν̃f → θf(x3)x1 ⇒ νf → θf(x3)x1

Now suppose that n 6= 0 but is predominantly composed

of high frequency components and satisfies

ṅ+ κn = ξ̇ (37)

for some differentiable signal ξ ∈ R and some scalar κ
which is related to the frequency range of the noise. Define

ñ = n− ξ ⇒ ˙̃n− κ(ñ+ ξ) (38)

then from equations (26), (29) and (34):





e1
e3
νf



 =






1 0 0 − r
σ1(g+q)

0 1 0 − rq
g+q

0 0 1 − r
σ1(g+q) τ






︸ ︷︷ ︸

Cτ







ẽ1
ẽ3
ν̃f

ñ







−






r
σ1(g+q)

rq

g+q
r

σ1(g+q) τ






︸ ︷︷ ︸

Dτ

ξ (39)

Similarly equations (31), (32), (35) and (38) can be repre-

sented as






˙̃e1
˙̃e3
˙̃νf

˙̃n







=







−σ0

σ1

−σ2

σ1

0 ϑ

0 −σvg 0 4
mr

(Jgσv−σω)
−σ0

σ1

τ −(1+σ2

σ1

)τ −τ rτ
σ1(g+q) ζ

0 0 0 −κ







︸ ︷︷ ︸

Aτ







ẽ1
ẽ3
ν̃f

ñ







+







0
0
τ
0






θf(x3)x1+







ϑ
4

mr
(Jgσv − σω)

rτ
σ1(g+q) ζ

−κ







︸ ︷︷ ︸

Bτ

ξ (40)

where ϑ = r
σ1(g+q)

(
σ0

σ1

+ σ2q −
σω

J

)
. The linear system

(Aτ , Bτ , Cτ , Dτ ) defined in (39)-(40) governs the effect

of the noise on the reduced order state observation errors

e1 and e3 and the filtered equivalent output error injection

signal. For a given noise frequency value (associated with

the scalar κ) and a selected value of the cutoff frequency τ
in the filter used to extract the equivalent injection νf , the

system (Aτ , Bτ , Cτ , Dτ ) is totally determined by the model

parameters. The properties of the system (Aτ , Bτ , Cτ , Dτ )
will be explored with respect to changes in the choice

of τ i.e. the choice of filter to extract the equivalent

output error injection. In this paper the L2 gain between

ξ and (e1, e3, νf ) will be used as the measure. Since

(Aτ , Bτ , Cτ , Dτ ) represents the mapping between ξ and

(e1, e3, νf ), the H∞ norm of (Aτ , Bτ , Cτ , Dτ ) is the L2

gain in this situation.

IV. ADAPTIVE OBSERVER

In [12] an adaptive observer was proposed based on a

different choice of state variable, although the underlying

system model is the one given in subsystem (1) - (5).
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Specifically, let z = col(σ0zf , v, v − rω), and write the

vehicle model as

ż = Aaz +Bau+Daθf(z3)z1 (41)

y = Caz + n (42)

where f(z3) := z3

h(z3)
where h(·) is defined in (5). Again

n represents measurement noise. In [12] the following

adaptive observer was proposed

˙̂z = Aaẑ +Bau+Daθ̂f(ẑ3)ẑ1 + Ley +DaΥ(ey) (43)

where ey = y − Caz. The matrix L ∈ R
3 is a design gain

and the nonlinear output error injection term

Υ(ey) =
ρ4

4

(
ρ3r

ρ2

)2

ẑ2
1ey (44)

where ρ2, ρ3 and ρ4 are appropriately chosen parameters

[12]. The estimate of θ, denoted by θ̂, is obtained using the

following adaptive scheme

˙̂
θ = 2γf(ẑ3)ẑ1ey (45)

where γ is a positive design scalar.

Define z̃ = z − ẑ. The error dynamics for the system is

given by

˙̃z = (Aa−LCa)z̃+Da

(

θψ(z) − θ̂ψ(ẑ)
)

−DaΥ(ey) (46)

where ψ(z) := f(z3)z1 and ψ(ẑ) = f(ẑ3)ẑ1. Consider a

Lyapunov function candidate

V = z̃TPaz̃ +
1

2γ
θ̃2 (47)

where Pa is a symmetric positive definite matrix and

the estimation error θ̃ = θ − θ̂. In [12], the following

assumptions are made: there exists an L and a symmetric

positive definite matrix Pa such that

(Aa − LCa)TPa + Pa(Aa − LCa) + (ρ2
1 + ρ4)I < 0 (48)

where ρ1 is a positive scalar, and

PaDa = CT
a (49)

In the presence of noise, ey = ỹ + n it can be shown

using arguments similar to those in [12] that

V̇ ≤ −ρ2
1||z̃||

2
−
ρ4

2

(

z̃3 −
ρ3r

ρ2
ẑ1ỹ

)2

+
ρ4

2

(
ρ3r

ρ2

)2

ẑ2
1 ỹn+ 2θ̃ψ(ẑ)n (50)

In the absence of noise, n ≡ 0 and so

V̇ ≤ −ρ2
1||z̃||

2
−
ρ4

2

(

z̃3 −
ρ3r

ρ2
ẑ1ỹ

)2

≤ 0 (51)

and so asymptotic convergence of z̃ → 0 can be shown.

Furthermore using a persistence of excitation type argu-

ment, if θ is fixed, θ̃ → 0 and so θ̂ → θ. However,

equation (50) shows that in the presence of measurement

noise associated with the angular velocity ω, Lyapunov

stability is not guaranteed.

V. RESULTS

In this section the results from both observers will be

compared. The friction and vehicle parameters used to

produce the results are: vs = 10m/s, σ0 = 100m−1,

σ1 = 0.7s/m, σ2 = 0.011s/m, µc = 0.35, µs = 0.5 and

r = 0.323m, J = 2.603kg/m2, m = 1701kg, σv = 0.005
and kb = 0.9. The estimated value of θ obtained from (18) is

filtered using a 1st order low pass filter. This is in keeping

with the estimation of νeq from ν as the low frequency

components of the switched injection signal. To generate a

fair comparison, the value of θ obtained from (45) is filtered

using the same filter.

10
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10
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1.5

500

100

50

10

5

Fig. 1. Bode plot with high pass filter.

Figure 1 shows a plot of the maximum singular val-

ues of the frequency responses of the systems given by

(Aτ , Bτ , Cτ , Dτ ) for a range of values of τ between 5 and

500. In the plot, the cut-off frequency κ associated with

the noise equation in (37) is κ = 5. It can be seen that

τ = 100 is a good choice of cut-off frequency for the filter

to extract the equivalent control in (33). For τ > 100 the

singular values become high at high frequency indicating

significant transmission of noise onto the estimates.

In the following simulations the gain associated with the

nonlinear injection term for the sliding mode observer is

k = 50 whilst g1 = 0.3433, g2 = −0.3118 and g3 =
16.5009. These values have been calculated according to

the formulae in (12)-(14) and guarantee a sliding motion

will take place in finite time. For the adaptive observer the

gain L = [ −400 −60 −500 ] has been used as given

in [12]. The value for κ(ey) in the adaptive observer was

obtained from (44) taking λmax = 0.4, θmax = 4 and

vmax = 30. The adaptation gain was selected as γ = 200
as given in [12]. The brake input signal was assumed to

be available and for both observers the same brake input

was used during the simulations which results in a sharp

decrease in longitudinal velocity from an initial longitudinal

speed of 30m/s.

Figures 2 - 4 show the performance of the observers when

there is noise on the measurement of angular velocity ω.

Figure 2 shows the plant states and estimated states using

the sliding mode observer and Figure 3 shows the plant

states and the estimated states using the adaptive observer.

There is visible degradation in the estimate of vr in Figure 3.
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Fig. 2. States and estimated states using the sliding mode observer.
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Fig. 3. States and estimated states using the adaptive observer.
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Fig. 4. Comparison of estimated θ.

Figure 4 shows the plant θ and the estimate θ̂ using the

sliding mode observer and the adaptive observer. The figure

shows the sliding mode observer gives better performance.

Figures 5 - 7 show the performance of the observers in

the presence of varying road conditions 1 ≤ θ ≤ 4 with

noise on the measurement of angular velocity ω. Figure

5 shows the plant states and the estimated states using

the sliding mode observer. Figure 6 shows the plant states

and the estimated states using the adaptive observer. It can

be seen in Figure 6 that the adaptive observer estimates

‘collapse’ at around 5 seconds. Figure 7 shows the plant

θ and the estimate θ̂ using the sliding mode observer and

Figure 8 shows the plant θ and the estimate θ̂ using the

adaptive observer. As expected from the poor levels of state

estimation, the observer struggles to estimate θ correctly.
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Fig. 5. States and estimated states using the sliding mode observer.
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Fig. 6. States and estimated states using the adaptive observer.
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Fig. 7. Comparison of estimated θ.
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Fig. 8. Comparison of estimated θ.

The breakdown in the performance of the adaptive observer

has motivated a redesign of the observer gain L from the

original paper [12]. In the remaining simulations

L = [ −400 60 −500 ]
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has been chosen. Figure 9 shows the plot of the estimate

of θ̂ when plant θ = 1 using the sliding mode observer

and the adaptive observer. From the figure both observers

now show a similar performance level after an initial

transient. Figure 10 shows the plot of the estimate of θ̂
when 1 ≤ θ ≤ 4 using the sliding mode observer and

the adaptive observer. From Figure 10 it is clear that the

adaptive observer underestimates θ. Figure 11 shows the

plot of the estimate θ̂ using the sliding mode observer and

the adaptive observer, when θ = 1 and there is noise on the

measurement of angular velocity ω. From the figure both

observers show similar performance levels. Figure 12 shows

a plot of the estimate of θ̂ when 1 ≤ θ ≤ 4 when there is

noise on the measurement of angular velocity ω. From the

figure, the adaptive observer again underestimates θ (and

the estimate is worse than in the noise free case).

VI. CONCLUSION

This paper has considered a comparative study of a

sliding mode observer and an adaptive observer during

deceleration in a braking manoeuvre. The effect of noise

on the angular velocity measurement has been explored.

Previously, in the literature neither of the schemes has been

formally analyzed in this situation. The analysis, supported

by simulation results, suggests that the sliding mode scheme

is more robust than its adaptive counterpart. In certain con-

ditions, the tracking performance of the adaptive observer

in terms of both state estimation and estimation of the road

condition parameter has been completely lost. Whilst noise

degrades the performance of the sliding mode observer, in

all the simulations, stability has been retained and a more

robust reconstruction of θ has been obtained.
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