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Abstract— This paper extends the finite-time stability prob-
lem to state dependent impulsive dynamical systems. For this
class of hybrid systems, the state jumps when the trajectory
reaches a resetting set, which is a subset of the state space. A
sufficient condition for finite-time stability of state dependent
impulsive dynamical systems is provided. Moreover, S − pro-
cedure arguments are exploited to obtain a formulation of this
sufficient condition which is numerically tractable by means
of Differential Linear Matrix Inequalities (DLMIs). Such a
formulation may be in general more conservative, for this
reason a procedure which allows to automate its verification,
without introduce conservatism, is given both for second order
systems, and when the resetting set is ellispoidal.

I. INTRODUCTION

The concept of finite-time stability (FTS) dates back to
the Sixties, when it was introduced in the control litera-
ture [1], [2]. A system is said to be finite-time stable if,
given a bound on the initial condition, its state does not
exceed a certain threshold during a specified time interval.
It is important to recall that FTS and Lyapunov Asymptotic
Stability (LAS) are independent concepts; indeed a system
can be FTS but not LAS, and vice versa. While LAS
deals with the behavior of a system within a sufficiently
long (in principle infinite) time interval, FTS is a more
practical concept, useful to study the behavior of the system
within a finite (possibly short) interval, and therefore it finds
application whenever it is desired that the state variables
do not exceed a given threshold (for example to avoid
saturations or the excitation of nonlinear dynamics) during
the transients.

In [3], [4], [5] sufficient conditions for FTS and finite-
time stabilization of continuous-time linear systems have
been provided; such conditions are based on the solution of
a feasibility problem involving either Linear Matrix Inequal-
ities (LMIs [6]) or Differential Linear Matrix Inequalities
(DLMIs [7]). The former approach is less demanding from
the computational point of view, while the latter is less
conservative.

The increasing interest that the researchers have devoted
in the last decade to the theory and application of hybrid
systems represents a natural stimulus to the extension of
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the FTS concept to such context, which is the objective of
the present work. Indeed, in this paper, we will focus on a
class of hybrid systems, namely state dependent impulsive
dynamical systems [8], where the state jumps occur when
the trajectory reaches an assigned subset of the state space,
the so-called resetting set. Classical examples which fall
in this category of systems are the bouncing ball, whose
velocity jumps from positive to negative values when the
ball hits the ground and the automatic gear-box in cruise
control (for more details and further examples see [9]).

Many results concerning the classical Lyapunov asymp-
totic stability for hybrid systems have been proposed in the
literature (see for instance the monographs [9], [10], [8]
and references therein). In this paper, as in [11] and [12],
we exploit S-procedure arguments, in order to end up
with numerically tractable analysis conditions formulated as
DLMIs. The main result of the paper is a sufficient condition
which guarantees the FTS of a given state dependent impul-
sive system. Moreover it is shown that, either in presence of
second order systems or when the resetting set is ellipsoidal,
the S-procedure does not introduce conservatism in the FTS
analysis.

The paper is structured as follows. The next section
presents the notation, the class of hybrid systems we deal
with, and some preliminary results exploited throughout the
paper. The main results are given in Section III. In Sec-
tion IV the conservatism introduced by the S-procedure is
discussed, and two procedures are presented to reduce such
conservatism. The applicability of the proposed results is
illustrated through a numerical example. Some conclusions
and plans for future works are given in Section V.

II. PRELIMINARIES

The notation used throughout the paper is presented in
this section, together with the FTS problem statement for
the class of state dependent impulsive systems. Preliminary
results on quadratic forms, which will be exploited in the
sequel of the paper, are also provided at the end of the
section.

A. Problem Statement

Let us consider the state dependent impulsive dynamical
linear system described by

ẋ(t) = A(t)x(t) , x(0) = x0 , x(t) ∈ Rn \
N⋃

k=1

Sk

(1a)
x(t+) = Ad,kx(t), x(t) ∈ Sk , k = 1, . . . , N (1b)
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where A(·) : R+
0 7→ Rn×n, Ad,k ∈ Rn×n, k = 1, . . . , N .

The sets Sk ⊆ Rn, k = 1, . . . , N , are connected and closed
pairwise disjoint sets (i.e. Si ∩ Sj = ∅ ,∀ i 6= j), such
that 0 /∈ Sk. We refer to the differential equation (1a) as the
continuous-time dynamics, to the difference equations (1b)
as the resetting laws, and to the sets Sk as the resetting
sets [8].

Let us denote by x(·) the solution of the impulsive
dynamical system (1a)–(1b). We assume that the resetting
laws keep x(·) away from Sk, therefore no trajectory can
intersect the interior of Sk, k = 1, . . . , N .

Definition 1 (FTS of impulsive systems): Given a posi-
tive scalar T , a positive definite matrix R, a positive
definite matrix-valued function Γ(·) defined over [0, T ],
with Γ(0) < R, system (1) is said to be finite-time stable
with respect to

(
T,R, Γ(·)) if

xT
0 Rx0 ≤ 1 ⇒ x(t)T Γ(t)x(t) < 1 ∀ t ∈ [0, T ] . (2)

♦

Fig. 1. Example of evolution of a state dependent impulsive dynamical
system.

Fig. 1 shows an example of finite-time stable trajectory
of a state dependent impulsive system. The trajectory starts
inside the sphere D1 defined by a positive definite matrix
R, and remains inside the sphere D2 defined by a positive
definite matrix Γ, ∀ t ∈ [0, T ]. When the trajectory reaches
one of the two resetting sets S1 or S2, the system state
jumps.

B. Some Useful Definitions

The following definitions will be useful throughout the
paper.

Definition 2 (Conical Hull [13], p. 28): Given a set
S ⊆ Rn, the set

cone(S) := {λ1x1 + · · ·+ λkxk : {x1, . . . , xk} ⊆ S, λi ≥ 0}

is said to be the conical hull of S [13]. The notation
cone(−S) denotes the set

cone(−S) := {λ1x1 + · · ·+ λkxk : {x1, . . . , xk} ⊆ S, λi ≤ 0} .

♦
Definition 3 (Projection with respect to the origin):

Consider a hyper-surface H ⊂ Rn and a set S ⊆ Rn. The
projection of S on H with respect to the origin is defined
as

SH := {y ∈ H : y = λx, λ ∈ R, x ∈ S} .

♦
The projection with respect to the origin is a perspective
projection [14], where the point of perspective is the origin
of the state space, and the projection’s surface is the hyper-
surface H .

Definition 4 (Convex hull [13], p. 4): Given a set of
points K = {x(1), . . . , x(k)} ⊂ Rn, the convex hull of
K is defined as

conv(K) :=

:=

{
λ1x

(1) + · · ·+ λkx(k) : λi ≥ 0,

k∑

i=1

λi = 1

}
,

i.e. as the smallest convex set containing K. ♦
Definition 5 (Chebyshev center [15]): The Chebyshev

center of a set S ⊆ Rn is

0S := arg min
x∈Rn

(
max
θ∈S

‖x− θ)‖∞
)

.

♦

C. Preliminary results on quadratic forms

As it will be shown later, the main result of the paper
requires to check whether, given a connected and closed
set S ⊆ Rn and a symmetric matrix Q0 ∈ Rn×n, the
inequality

xT Q0x < 0 , x ∈ S \ {0} , (3)

is satisfied.
In the following, our goal is to find some numerically

tractable conditions which guarantee the satisfaction of (3).
Exploiting S − procedure arguments ([6], p. 24), it is
readily seen that Q0 satisfies (3) if the following feasibility
problem admits a solution.

Problem 1: Given a connected and closed set S ⊂ Rn,
a symmetric matrix Q0 ∈ Rn×n and symmetric matrices
Qi ∈ Rn×n satisfying

xT Qix ≤ 0 , x ∈ S , i = 1, . . . , p , (4a)

find nonnegative scalars ci , i = 1, . . . , p , such that

Q0 −
p∑

i=1

ciQi < 0 . (4b)

♦
Remark 1: The usefulness of Problem 1 relies in the

fact that it can be recast in the LMIs framework, where
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the coefficients ci are the optimization variables of the
LMI (4b). Clearly, one needs a method to choose the
matrices Qi; in the next section we provide a procedure to
build a suitable set of matrices Qi, which can be exploited
when the set S satisfies some assumptions. ♦

As mentioned above, if Problem 1 admits a feasible
solution, then (3) is satisfied. In general, the converse is
not true. Therefore it makes sense to investigate under
which conditions solving Problem 1 is equivalent to check
condition (3); the answer is given by the following lemma.

Lemma 1: Given a connected and closed set S ⊂ Rn

and a symmetric matrix Q0 ∈ Rn×n, assume there exists
a symmetric matrix Q̄ ∈ Rn×n such that

xT Q̄x ≤ 0 ∀ x ∈ (
cone(S) ∪ cone(−S)

) \ {0} (5a)

xT Q̄x > 0 ∀ x ∈ Rn \ (
cone(S) ∪ cone(−S)

)
(5b)

∃ x̃ ∈ S \ {0} : x̃T Q̄x̃ < 0 ; (5c)

then condition (3) the feasibility Problem 1 with p = 1 and
Q1 = Q̄.

Proof: The proof is trivial once recognized that:
1) xT Q0x < 0 for all x ∈ S iff xT Q0x < 0 for all

x ∈ cone(S) ∪ cone(−S) (see Lemma 2 in the
Appendix).

2) solving Problem 2 with p = 1 and Q1 = Q̄, is
equivalent to applying lossless S-procedure, since Q̄
satisfies (15) of Lemma 3 reported in the Appendix.

In Section IV we shall see that when the set S satis-
fies certain assumptions, the hypotheses of Lemma 1 are
fulfilled and the approach via Problem 1 does not add
conservatism in the FTS analysis.

III. MAIN RESULTS

The following theorem gives a sufficient condition for
FTS of system (1).

Theorem 1: System (1) is FTS with respect to(
T,R, Γ(·)) if the following coupled differential/difference

Lyapunov inequalities with terminal and initial conditions,

Ṗ (t) + A(t)T P (t) + P (t)A(t) < 0 , (6a)

xT
(
AT

d,kP (t)Ad,k − P (t)
)
x < 0 , (6b)

∀ x ∈ Sk , k = 1, . . . , N

P (t) ≥ Γ(t) , (6c)
P (0) < R , (6d)

admit a continuously differentiable symmetric solution P (·)
over the interval [0, T ].

Proof: Let V (t, x) = xT P (t)x. If x /∈ ⋃N
k=1 Sk, then

the derivative of V along the trajectories of system (1a)
yields

V̇ (t, x) = xT
(
Ṗ (t) + A(t)T P (t) + P (t)A(t)

)
x ,

which is negative definite by virtue of (6a).

At the discontinuity points (x ∈ Sk) we have

V (t+, x)− V (t, x) = xT
(
Ad,kP (t+)Ad,k − P (t)

)
x ,

which is negative definite in view of (6b).
We can conclude that V (t, x) is strictly decreasing along

the trajectories of system (1a)–(1b); hence, given x0 such
that xT

0 Rx0 ≤ 1, we have, for all t ∈ [0, T ],

x(t)T Γ(t)x(t) ≤ x(t)T P (t)x(t) by (6c)

< x(0)T P (0)x(0)

< x(0)T Rx(0) ≤ 1 by (6d) .

Note that, for a given k and t, condition (6b) is equal to
(3) if we let Q0 = AT

d,kP (t)Ad,k − P (t) and S = Sk.
Therefore, by exploiting the machinery introduced in Sec-
tion II-C, we can relax inequality (6b) and replace it with
(see Problem 1)

AT
d,kP (t)Ad,k − P (t)−

p∑

i=1

ci,k(t)Qi,k < 0

where Qi,k are given symmetric matrices satisfying

xT Qi,kx ≤ 0 , x ∈ Sk , i = 1, . . . , pk ,

and ci,k(t) ≥ 0, t ∈ [0, T ], for i = 1, . . . , p.
On the basis of this consideration, we can immediately

derive the following corollary of Theorem 1.
Theorem 2: Given a set of symmetric matrices Qi,k,

i = 1, . . . , pk, k = 1, . . . , N , satisfying

xT Qi,kx ≤ 0 , x ∈ Sk , i = 1, . . . , pk , k = 1, . . . , N ,
(7)

assume there exist a continuously differentiable symmet-
ric matrix function P (·) and nonnegative scalar functions
ci,k(·), i = 1, . . . , pk, k = 1, . . . , N , such that, for all
t ∈ [0, T ],

Ṗ (t) + A(t)T P (t) + P (t)A(t) < 0 , (8a)

AT
d,kP (t)Ad,k − P (t)−

pk∑

i=1

ci,k(t)Qi,k < 0 (8b)

k = 1, . . . , N

P (t) ≥ Γ(t) (8c)
P (0) < R , (8d)

then system (1a)–(1b) is FTS with respect to
(
T, R, Γ(·)).

Remark 2: In view of the results given in Theorem 2, it
is now possible to clarify the usefulness of the formulation
introduced in Problem 1. Such formulation, indeed, allows
to replace condition (6b) with condition (8b). Note that
the former requires to solve a number of time-varying
inequalities, depending on the matrices Ad,k, over the sets
Sk; the latter, instead, is just a set of LMIs, therefore it can
be easily solved.

For the sake of simplicity, in the following we will
assume that there is only one resetting set S , i.e. N = 1.
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IV. ANALYSIS OF SOME CASES OF INTEREST

Theorem 2 may introduce conservatism with respect to
Theorem 1 since, in general, the S-procedure is lossy.
However, if there exists a symmetric matrix-valued function
Q(t) which satisfies the conditions (5) for each t ∈ [0, T ],
then the S-procedure is lossless and Theorem 2 is equivalent
to Theorem 1.

In the sequel we will discuss two cases where Theorem 2
does not introduce conservatism: resetting sets in R2, and
ellipsoidal resetting sets; we prove that the conservatism can
be eliminated in both cases, except for the following trivial
cases:

1) S ⊆ Rn lies on a hyperplane which intersect the origin;
2) S ⊆ Rn has dimension less than n− 1.

The definition of ellipsoidal resetting set is based on the
following constructive geometrical procedure.

Procedure 1 (Construction of EH ): Given a connected
and closed set S ⊂ Rn, construct the set EH as follows:

1) denote with Ss the projection, with respect to the
origin, of S on the unit sphere xT x = 1;

2) denote with 0s the Chebyshev center of Ss;
3) denote with H the hyper-plane of dimension n − 1

orthogonal to the line that joins the origin to 0s, and
such that 0s ∈ H;

4) EH is the projection, with respect to the origin, of S
on the hyper-plane H .

An example of construction of the set EH is shown in Fig. 2.
♦

Fig. 2. Construction of the set EH .

Definition 6 (Ellipsoidal resetting set): Consider a non-
trivial resetting set S ⊂ Rn and construct the set EH using
Procedure 1. If EH is an hyper-ellipsoid of dimension n−1,
then S is called ellipsoidal resetting set. ♦

Remark 3: Since EH is constructed using two projections
with respect to the origin it follows that

cone(S) = cone(EH) .

♦

A. Resetting set S in R2

The following theorem provides a necessary and suffi-
cient condition which enables to find a symmetric matrix
Q ∈ R2×2 that verifies conditions (5).

Theorem 3: Every non-trivial resetting set S in R2 ad-
mits a symmetric matrix Q ∈ R2×2 that verifies condi-
tions (5).

Proof: To prove our statement, we provide a procedure
to calculate a matrix Q satisfying conditions (5).

Let s1, s2 ∈ S such that, said S̄ = conv({s1 , s2}), we
have

cone(S̄) = cone(S) .

Then, taking into account Lemma 1, condition (5) can be
equivalently evaluated on the set S̄ . In particular, consider-
ing the properties of the quadratic forms, it is easy to verify
that such condition can be replaced by the following

xT Qx < 0 ∀ x ∈ int(S̄) (9a)

xT Qx = 0 for x = s1, s2 (9b)

xT Qx > 0 ∀ x ∈ H \ S̄. (9c)

where H is the hyperplane on which S̄ lies, and int(S̄)
denotes the interior of the set S̄ . Letting sm = s1+s2

2 , a
symmetric matrix Q ∈ R2×2 such that

sT
1 Qs1 = 0 , sT

2 Qs2 = 0 , sT
mQsm < 0 .

verifies conditions (9).

B. Ellipsoidal resetting sets S
The following theorem provides a sufficient condition to

find a matrix Q ∈ Rn×n that verifies conditions (5).
Theorem 4: If S is an ellipsoidal resetting set, then there

exists a matrix Q ∈ Rn×n that verifies conditions (5).
Proof: If S is an ellipsoidal resetting set then (see

Remark 3)
cone(S) = cone(EH) .

Taking into account Lemma 1, it follows that conditions (5)
can be equivalently evaluated on the set EH . In particular,
considering the properties of the quadratic forms, it is
easy to verify that such conditions can be replaced by the
following

xT Qx < 0 ∀ x ∈ int(EH) (10a)

xT Qx = 0 ∀ x ∈ ∂EH (10b)

xT Qx > 0 ∀ x ∈ H \ EH . (10c)

To conclude the proof we need to show that the assumption
of ellipsoidal set EH is sufficient to find a matrix Q which
verifies conditions (10).

2900



In the sequel of the proof we will make the following
assumptions:

• 0s is on the n-th coordinated axis , i.e.

0s =
(
0 . . . 0 r

)T
, r ∈ R.

• The hyper-plane H is orthogonal to the n-th coordi-
nated axis.

As a matter of fact, it is always possible, by means of
opportune rotations, to satisfy these assumptions.

In view of the assumptions made above, it is possible to
describe the set ∂EH by the system of equations

x2
1

a2
1

+ · · ·+ x2
n−1

a2
n−1

= 1 ,

xn = r ,

where ai ≥ 0, i = 1, . . . , n−1. Hence, it is straightforward
to check that the matrix

Q = diag
(

1
a2
1

. . . 1
a2

n−1
− 1

r2

)
,

satisfies conditions (10).

The following example illustrates the effectiveness of the
proposed procedure.

Example 1 (Impulsive system in R2): Let consider the
following second order impulsive system

A =
(

0 1
−1 −0.25

)
,

Ad,1 =
(

1.6 −1.4
−1.4 3.2

)
, Ad,2 =

(
1 0.1

0.1 1

)
,

where the two resetting sets S1 and S2 are given by

S1 = conv
((

0.5
0.2

)
,
(

0.4
0.4

))
,

S2 = conv
((

−0.7
0.5

)
,
(
−0.2
0.5

))
.

Note that the two discrete dynamics Ad,1 and Ad,2 are
not Schur stable.

We want to analyze the FTS for such impulsive system,
for

T = 1 s , Γ =
(

1 0
0 0.5

)
, R =

(
5 0
0 2.5

)
.

Theorem 3 assures that for each of the considered re-
setting sets in R2 there exist a matrix Q which verifies
the conditions (5). Applying the procedure proposed in
the proof of Theorem 3, the following matrices have been
found:

Q1 =
(
−0.2222 0.3889
0.3889 −0.5556

)
, Q2 =

(
−0.16 −0.144
−0.144 −0.0896

)
.

Using matrices Q1 and Q2, Theorem 2 admits a solution,
therefore the considered system is FTS with respect to(
T,R, Γ

)
. ♦

V. CONCLUSIONS

An extension of the finite-time stability concept to a
class of hybrid systems has been presented in this paper. In
particular a sufficient condition for FTS of state dependent
impulsive dynamical systems has been provided. A DLMIs
formulation of this condition for FTS has been provided
as well, in order to check it in a numerically tractable
way. Such a formulation has been obtained exploiting S-
procedure arguments, and it may be in general more con-
servative than the original sufficient condition. In general,
it also requires the definition of a set of specific symmetric
matrices for each resetting set, which is not a straightfor-
ward task. To deal with these problems, a procedure which
allows to automate the building of the symmetric matrices,
without introduce conservatism, is provided both when the
resetting sets are ellispoidal, and when dealing with second
order systems.

APPENDIX

The two results presented in this appendix are needed to
prove Lemma 1 in Section II.

Lemma 2: Consider a nonempty, connected and closed
set S ⊆ Rn and a symmetric matrix Q0 ∈ Rn×n;
then (3) is satisfied if and only if

xT Q0x < 0 , ∀ x ∈ (
cone(S)∪ cone(−S)

)\{0} . (11)
Proof: (11) =⇒ (3). Trivial, since S ⊆ cone(S) ∪

cone(−S).
(3)=⇒(11). Any point x̄ ∈ cone(S) \ {0} can be written

as
x̄ = λ1x1 + · · ·+ λkxk ,

where {x1, . . . , xk} ⊆ S, and λi ≥ 0. Since S is a
connected set, it follows that there exists a scalar λ̃ ≥ 0
and a vector x̃ ∈ S such that x̄ = λ̃x̃. Therefore

x̄T Q0x̄ = λ̃2x̃T Q0x̃ < 0 .

A similar statement can be made for every point x̄ ∈
cone(−S) \ {0}. The implication easily follows.

From Lemma 2 it follows that, when

cone(S) ∪ cone(−S) = Rn , (12)

the satisfaction of (3) is equivalent to require the negative
definiteness of Q0. Note that condition (12) is verified
whenever the set S surrounds the origin.

Lemma 3 (S-Procedure [16]): Let
Q0, Q1, . . . , Qp ∈ Rn×n be p + 1 symmetric matrices.
Consider the following condition on Q0, Q1, . . . , Qp

xT Q0x < 0 ∀x : x 6= 0 ∧ xT Qix ≤ 0 , (13)
i = 1, . . . , p .

It is obvious that if

∃ c1 ≥ 0, . . . , cp ≥ 0 : Q0 −
p∑

i=1

ciQi < 0 , (14)
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then condition (13) holds. It is not a trivial fact that when
p = 1, the converse holds, provided that

∃ x̃ such that x̃T Qx̃ < 0 . (15)

Proof: Let p = 1, we will prove that if (13) and (15)
hold, then it is always possible to find a constant c1 ≥ 0
such that (14) is verified.

Define the mapping ϕ(x) : Rn 7→ R2 as follows:

ϕ(x) =
(
xT Q1x, xT Q0x

)
, x ∈ Rn .

It can be easily shown that the set ϕ(Rn) is convex.
If

F =
{
(z1, z2) ∈ R2 | z1 ≤ 0 , z2 > 0

}
,

then condition (13) implies that the set ϕ(Rn) does not
intersect the second quadrant, that is ϕ(Rn) ∩ cl(F ) = ∅1.

Since ϕ(Rn) is convex, then the sets ϕ(Rn) and cl(F )
do not have common interior points. It follows that ϕ(Rn)
and cl(F ) are separated, i.e. exist λ1, λ2 ∈ R not all zero
such that

λ1z1 + λ2z2 ≤ 0 ∀ (z1, z2) ∈ cl
(
ϕ(Rn)

)
, (16a)

λ1z1 + λ2z2 ≥ 0 ∀ (z1, z2) ∈ cl(F ) . (16b)

Since (0, 1) ∈ cl(F ) then λ2 ≥ 0. Similarly λ1 ≤ 0.
Moreover λ2 6= 0, otherwise λ1x̃

T Q1x̃ ≤ 0 with λ1 < 0,
which contradicts (15).

Thus λ2 > 0 and λ1 ≤ 0, and (13) follows from (16a)
setting c1 = −λ1/λ2.

If condition (15) holds the S-procedure is said to be
lossless, otherwise it is said to be lossy [16]. Hence con-
dition (15) must be satisfied, in order to do not introduce
conservatism when applying the S-procedure to check (3).
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