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Abstract— In this paper a novel dynamic awareness coverage
model is proposed and applied to coverage control over a
large-scale task domain for a decentralized multi-vehicle sensor
network with intermittent communications and possibly faulty
sensors. For each vehicle, an individual state of awareness is
defined. The individual vehicle’s state of awareness continuously
evolves based on the vehicle’s motion and is updated at
discrete instants whenever the vehicle establishes a new range-
based communication link with other vehicles. This information
sharing update step aides in reducing the amount of redundant
coverage. In this paper we first consider the simplifying
assumption where no awareness loss occurs when no sensors are
monitoring portions of the domain. This scenario is applicable
to some search and rescue/retrieval problems (especially with
static victims or objects of interests), domain monitoring, and
low level surveillance. Under this assumption, a decentralized
control strategy is proposed that guarantees that every point
within the task domain will be covered with a satisfactory state
of awareness even under intermittent communications and/or
faulty sensors. We demonstrate the effectiveness of the novel
awareness model and decentralized control law via numerical
simulations.

I. INTRODUCTION

This paper focuses on awareness coverage control for

a mobile sensor network with intermittent communica-

tions and/or faulty sensors. Coverage control using mul-

tiple sensor-equipped vehicles has been of much interest

recently due to its versatility in many aerial, terrestrial,

and underwater applications such as surveillance, search and

rescue/retrieval, and sampling. For a complete up-to-date

overview of the literature on advances in the area of sensor

networks, see [1], [2] and references therein.

Previous research on coverage control either focuses on

optimizing the locations of immobile sensors, or redeploy-

ment of a fleet of mobile vehicles equipped with sensors

to guarantee an improved coverage. The former class of

problems is considered a problem in locational optimization

[3], [4]. In such problems, the solution is a Voronoi partition

[5]. For sensor redeployment problems, in [6], the authors

apply a dynamic Voronoi partition, which is the dynamic

version of the Lloyd algorithm [7]. In [8] and [9], the authors

develop control strategies from the robotic and probabilistic

network model, respectively.

An implicit assumption in the above-mentioned papers

is that the task domain is small-scale. A small-scale task

domain is one where the union of the sensory domains

(assuming the best case scenario where sensor sensory ranges
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are disjoint) can cover the entire domain, otherwise the

domain is said to be large-scale (i.e., a domain too large to

be covered by a static limited-sensor-range sensor network).

Large-scale domain problems arise when there are too few

sensor vehicles, or when sensor ranges are too small relative

to the domain size. For such problems, sensor mobility is

necessary to be able to account for all locations contained

in the domain of interest. Not being able to monitor parts of

the domain continually for all time results in the requirement

that the network be in a constant state of mobility with well-

managed revisiting of locations in the domain to guarantee

satisfactory awareness levels over all the domain.

Recent research on effective coverage control (see [10],

[11], [12], [13]) has developed control strategies using

vehicles with limited sensory capabilities over large-scale

domains. The general assumption has been that the in-

formation of interest over task domain is stationary in

nature during the entire process. This problem has been

studied in [10] and [11] for motion planning for multiple

spacecraft interferometric imaging systems. This problem is

also closely related to the coverage path planning problem,

see, for example [14], [15] and references therein. In [12],

[13] and [16], a deterministic approach is pursued and a

feedback control law is proposed to guarantee coverage of

an entire task domain D using a multi-agent sensor network

with flocking and guaranteed collision avoidance. In the

stochastic setting, the author in [17] uses the Kalman filter

for estimating a spatially-decoupled, time-independent field

and using the prediction step of the filter for optimally

guiding the vehicles to move in directions that improve the

field estimate, and guarantees avoidance of local minima.

A similar filtering-based problem is treated in [18] from an

information theoretic perspective. Other dynamic coverage

methods such as the literature on simultaneous localization

and mapping (SLAM) are Kalman-filter based methods for

dynamic surveillance of a domain D. See [18], [19] and

references therein.

Moreover, in most cases it is not economic or even

possible for the vehicle fleet to maintain open communication

channels during the entire mission. This is especially true

for large-scale task domains, where vehicles may need to

disperse (and, hence, loose connectivity with other vehicles)

in order to cover the domain ([16], [20], [21], [22]). In

[16], a flocking control strategy is developed for improved

communication channels among sensors when the vehicles

are carrying a coverage mission. Other flocking problems are

studied in [20], [21], [22] aiming at maintaining commu-

nications under decentralized networks while guaranteeing
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system stability. In [23], the authors investigate distributed

mobile robots in a wireless network under nearest neighbor

communications. In [24], local undirected communication is

used in fully distributed multi-agent systems. Both [23] and

[24] demonstrate improvements in global behavior made by

exchanging local sensing information.

In this paper a novel model for “dynamic awareness”,

which describes how “aware” the system vehicles are of

events occurring over the task domain, is developed for a

limited-sensory sensor network. Decentralized control laws

developed in this paper will guarantee a satisfactory state

of awareness over large-scale domains for the case where

awareness loss is not possible (to be made precise in the

sequel), and under an arbitrary dynamic communication

structure and/or faulty sensors.

The organization of this paper is as follows. In Section II,

we present a systems theoretic formulation for the awareness

coverage control problem. A sensor model with a limited

sensory range is introduced and a precise definition of the

state of awareness is developed. In Section III, we extend the

awareness model to a formulation applicable to decentralized

control formulations. Assuming no awareness loss, in Section

IV, we derive the awareness coverage control strategy, which

guarantees that the entire fleet has a satisfactory state of

awareness over the entire mission domain. Detailed numer-

ical simulations are presented in Section V to illustrate the

problem. This paper is concluded with a summary, and

current and future research in Section VI.

II. PROBLEM FORMULATION

A. Sensor Model

Before considering the sensor model used in this paper,

we first introduce some notation. Let N be the number of

vehicles in a mobile sensor network. Each vehicle is denoted

by Vi, i ∈ I = {1, 2, 3, · · · , N}. Define the configuration

space of each vehicle as Q, and the task domain as D
which the mobile sensor network is required to cover. Let

the position of vehicle Vi be qi ∈ Q and each point within

the task domain be q̃ ∈ D. We assume the following simple

first-order kinematic equation of motion for each vehicle

q̇i = ui, i ∈ I, (1)

where ui is the control velocity of vehicle Vi. In this paper,

we employ the sensor model proposed in [12], [13] and

[16], which is a fourth-order polynomial function of s =
‖q̃ − qi‖ within the sensory domain and zero otherwise.

Mathematically, the sensor model is given by

Ai(s) =

{
Mi

r4
i

(
s2 − r2

i

)2
if s ≤ ri,

0 if s > ri.
Note that each sensor has a peak sensory capability Mi

exactly at the vehicle’s position qi, a limited sensory do-

main Wi(t) with sensory range ri, and decreasing sensory

capability along with the sensory range. An example of the

instantaneous coverage function Ai(‖q̃ − qi‖) is illustrated

by Figure 1. The most important property of the sensor that

can be handled by the methods developed by the authors

in this and former papers [12], [13], [16], [25] is their
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Fig. 1. Instantaneous coverage function Ai with qi = 0, Mi = 1 and
ri = 2.

limited sensory range. This models the practical difficulty in

real implementation, especially for missions over large-scale

domains. “Large-scale” means that for every t > t0 := 0
there exists at least one point q̃ ∈ D such that q̃ /∈ Wi for

all i ∈ I under the best case scenario when all the sensory

domains Wi are disjoint.

B. State of Awareness

We now introduce the notion of the state of awareness.

An individual vehicle’s state of awareness is a distribution

xi(q̃, t). In practice, the domain is discretized into n cells,

where q̃ may represent, for example, the centroid of each

cell. Hence, xi(q̃, t) can be written as a vector of dimension

2n. The state of awareness xi(q̃, t) is defined to be a measure

of how “aware” the vehicle is of events occurring at a specific

location q̃ at time t. Fixing a point q̃ ∈ D, the state of

awareness of a particular vehicle Vi at time t is assumed to

satisfy the following differential equation

ẋi(q̃, t) = − (Ai(‖q̃ − qi‖) − α)xi(q̃, t),

xi(q̃, 0) = xi0 < 0, i ∈ I, (2)

where the constant parameter α represents the awareness loss

bath. If xi(q̃, t) < 0, then we have insufficient awareness; If

xi(q̃, t) > 0, then we have excessive awareness. The initial

state of awareness is negative, which reflects the fact that

at the outset of the surveillance mission the fleet has poor

awareness levels of events occurring over the domain D.

To reflect the difficulty of object detection one simply sets

a more negative value for xi(q̃, 0). The easier the detection

process is, the larger the negative value of xi(q̃, 0) can be set.

The distribution xi(q̃, 0) may also be nonuniform to reflect

regions where objects may be able to camouflage themselves

better than in other regions of D (e.g., dense forests versus

open fields). In this paper we will assume, without loss of

generality, that xi0 = −1.

The desired state of awareness is given by:

xi(q̃, t) = 0, t > 0, i ∈ I,∀q̃ ∈ D.
In this paper we develop control laws that will guarantee

convergence of xi(q̃, t) to a neighborhood of 0: ‖xi(q̃, t)‖ <
ǫ for some ǫ > 0. Note that under the awareness dynamics

(2), the maximum value attainable by xi is zero if the initial

awareness level is negative. Inspecting equation (2), the

system state of awareness is degrading except over regions

where Ai − α has a positive value (i.e., 0 ≤ α ≤ Ai).
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One can also define the overall state of awareness that

satisfies the dynamics:

ẋ(q̃, t) = −
N∑

i=1

(Ai(‖q̃ − qi‖) − α)x(q̃, t) (3)

with negative initial conditions as discussed above for

xi(q̃, t). Note that for the case where all the vehicles are

set to be fixed, if enough resources are available (i.e.,

enough vehicles and/or long enough sensor ranges), the

awareness levels are everywhere increasing and converging

to the desired value. To see why this is true, let us make the

following simple analysis. For each given point q̃, the term
∑N

i=1(Ai − α) in equation (3) is a positive constant since

each vehicle is assumed to be fixed. This means that, for each

q̃, the dynamics (3) is a linear differential equation in x(q̃, t),
which leads to asymptotic convergence of x(q̃, t) to zero. For

large-scale domains, a static sensor is guaranteed not meet

the desired zero state of awareness because, by definition,

there exists at least one q̃ which is not covered by some

sensor. The goal of this paper is to develop a decentralized

control strategy that stabilize the zero state of awareness

under intermittent communications and/or faulty sensors over

a large-scale domain.

III. STATE OF AWARENESS DYNAMIC MODEL

A. State of Awareness Updates

Now we assume that the vehicles are in a decentralized

network and have intermittent communications when they are

within a range of ρ > 0 of each other. Vehicles exchange

their awareness coverage information during communica-

tions. Let Gi(t) = {j ∈ I : ‖qj − qi‖ < ρ}, i ∈ I, be the

set of vehicles that neighbor vehicle Vi (including vehicle

Vi itself) at time t. Whenever new vehicles Vj are added

to the set Gi, vehicle Vi will instantaneously exchange all

the available awareness information with new neighbors in

a discrete awareness update step, where awareness informa-

tion is updated based on the awareness achieved by other

neighboring vehicles along with the vehicle’s own awareness

level. If no or more than one vehicle drop from Gi(t)
(possibly faulty sensors), the individual state of awareness

of vehicle Vi does not change. Let tc be the time instant at

which vehicles Vj , Vk, . . . become members of Gi. That is

Vj , Vk, . . . 6∈ Gi(t
−
c ) but Vj , Vk, . . . ∈ Gi(t

+
c ). Hence, we

have the following update equation that takes place whenever

a set of vehicles Ḡi(t) ⊂ I\({i} ∪ Gi(t)) gets added to Gi(t)
at time t:

xi(q̃, t+) = (−1)n̄i(t)xi(q̃, t) ·
∏

j∈Ḡi(t)

xj(q̃, t), (4)

where n̄i(t) is the number of vehicles in Ḡi(t). Hence,

the state of awareness evolves according to the continuous

dynamics given by equation (2) and undergoes a discrete

update step given by equation (4) whenever new vehicle

becomes Vi’s neighbor. Figure 2 illustrates the awareness

model for the continuous dynamics (2) and discrete aware-

ness state update (4). Note that when the switching condition

Gi(t) 6= ∅ is satisfied, the initial condition of the system is

reset according to the reset map (4).

ẋi(t) = −(Ai − α)xi(t)

xi(t
+) 7−→ (−1)n̄i(t)xi(t)

∏

j∈Ḡi(t)
xj(t)

Ḡi(t) 6= ∅

Fig. 2. Continuous and discrete awareness state update model.

If Ḡi(t) = ∅ (i.e., no new vehicles become neighbors

of Vi), then the awareness state of vehicle Vi obeys the

continuous differential equation (2). This includes the case

when vehicles drop from Gi(t) (e.g., faulty sensors) or when

existing neighbors retain the neighbor status. If the number

of new vehicles n̄i(t) in Ḡi(t) is nonzero at time t, then the

value of the state of awareness of vehicle Vi will be discretely

substituted with the product of the states of awareness of all

the vehicles in Ḡi(t). According to equation (4), the product

reflects the improvement in the state of awareness of vehicle

Vi. For example, let us assume that all the vehicles in the

mission fleet have an initial state of awareness of −1 and

their coverage goal is to achieve an awareness value close to

zero everywhere within the domain. If Vi has an awareness of

−0.5 at some q̃ at time t, and it updates its state of awareness

based on the state of awareness of another neighbor vehicle

of −0.5, then the new awareness at q̃ is now −0.25 according

to the update equation (4).

B. Awareness Metric

Let the awareness metric be given by

egi(t) =

∫

D

1

2
x

2
i (q̃, t)dq̃, i ∈ I, (5)

which is the global error over the entire mission domain

achieved by vehicle Vi. It is said to be global since the

integration is performed over the entire domain D. The

coverage goal of each vehicle is to guarantee that the above

metric (5) decreases with time and ultimately converge to a

small neighborhood of zero.

Consider the following local awareness error function

associated with vehicle Vi to be

ei(t) =

∫

Wi(t)

1

2
x

2
i (q̃, t)dq̃ ≥ 0, i ∈ I. (6)

with ei(t) = 0 if and only if xi(q̃, t) = 0 for every point q̃

inside the sensory domain Wi(t). This metric will be used

for the development of the control law. Note that the metric

is a function of the position of the vehicle Vi because of the

integral domain Wi(t).

IV. DECENTRALIZED CONTROL WITH INTERMITTENT

COMMUNICATIONS AND FAULTY SENSORS

1) Nominal Control Law: Between switching instances,

the vehicle kinematics equation (1) and state awareness equa-

tion (2) constitute two first order differential equations. In

this section, these two equations together with the individual

vehicle error function (6) are used to derive a control law that

seeks to reduce the value of ei for each vehicle. This control

law will be called the nominal control law. The nominal
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control law itself does not guarantees convergence of xi to

a neighborhood of zero over the entire domain D. Instead, it

only guarantees that xi → 0 within the sensory domain Wi

for each vehicle. A perturbation control law (to be discussed

in the next subsection) is need along with the nominal control

to guarantee that ‖xi(q̃, t)‖ < ǫ over the entire domain D.

We will make, without any loss of generality, the following

assumption for the initial state of awareness.

IC The initial state of awareness is given by:

xi(q̃, 0) = xi0 = −1, i ∈ I.

Assumption IV.1. Assume that there is no awareness loss.

That is we have α = 0.

With Assumption IV.1, the ensuing results are applicable

to problems in search and rescue/retrieval problems (espe-

cially with static victims or objects of interests), domain

monitoring, and “low level” surveillance. Future research

will focus on relaxing assumption IV.1.

Consider the following control law:

ūi(t) = k̄i

∫

Wi(t)

x
2
i (q̃, t)

(∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ

)

︸ ︷︷ ︸

memory term

dq̃, (7)

where k̄i > 0 is a feedback gain. We will prove that this

control law (7) guarantees the convergence of xi(q̃, t) to

zero at every point q̃ in the sensory domain Wi(t). But first,

we make the following remarks.

Remark. In the expression for ūi(t), the time integral term

under the spatial integration is an integration of historical

data that translates into the reliance on past search history for

decision making. Note that the memory term is multiplied by

x
2
i (q̃, t) before being integrated over the sensory domain at

the current time t. This indicates that historical data as well

as up-to-date awareness levels within the vehicle’s sensor

domain are compounded to decide on the motion. •

Remark on the computational efficiency of proposed

control law. The search approach proposed herein requires

computations at the order of O(n̄2 + 2) at each time step,

where n̄ is the number of cells in the discretized sensory

domain Wi. While alternative approaches, such as Voronoi-

partitioning and stochastic-based SLAM methods, are com-

putationally more burdensome. See [13] for more details.

We first consider the following Lemma (see [26] for a

detailed exposition), which will be used shortly.

Lemma IV.1. For any function F : R
2 × R → R we have

d

dt

∫

Wi(t)

F (q̃, t)dq̃

=

∫

Wi(t)

[

(grad
q̃
F (q̃, t)) · ui +

∂F (q̃, t)

∂t

]

dq̃,

where ui is the velocity of vehicle Vi and grad
q̃

is the

gradient operator with respect to q̃.

Proof. This is a direct consequence of equation (3.3) in [26],

where we note that ui is the velocity of any point within the

(rigid) domain Wi (including the boundary). �

Next, consider the following condition, whose utility will

also become obvious shortly.

Condition C. xi(q̃, t) = 0,∀q̃ ∈ Wi(t).

Lemma IV.2. For any t ≥ 0, if Condition C holds for vehicle

Vi, then ei(t) = 0, i ∈ I. Conversely, if ei(t) = 0 for some

time t ≥ 0, then Condition C holds for vehicle Vi.

Proof. The proof follows directly from the definitions of

ei(t) and xi(q̃, t). �

Theorem IV.1. Under Assumption IV.1, the control law

ūi(t) given by equation (7) drives ei(t) asymptotically

towards zero between state switches.

Proof. Consider the function V̄i = ei(t). From Lemma IV.2,

V̄i = 0 if and only if Condition C holds for vehicle Vi.

According to Lemma IV.1,

˙̄Vi = ėi(t) =

∫

Wi(t)

grad(
1

2
x

2
i (q̃, t)) · ūidq̃

+

∫

Wi(t)

∂( 1
2x

2
i (q̃, t))

∂t
dq̃. (8)

First consider the spatial gradient term in (8):∫

Wi(t)

grad(
1

2
x

2
i (q̃, t)) · ūidq̃

=

∫

Wi(t)

xi(q̃, t)
∂(xi(q̃, t))

∂q̃
· ūidq̃.

Next, we need to derive an expression for
∂(xi(q̃,t))

∂q̃
. From

equation (2) and assuming α = 0, we have

xi(q̃, t) = e−
∫

t

0
Ai(q̃,qi(σ))dσ

xi0.
Hence,

∂xi

∂q̃
= −xi(q̃, t)

∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ.

Therefore,∫

Wi(t)

grad(
1

2
x

2
i (q̃, t)) · ūidq̃

= −

∫

Wi(t)

x
2
i (q̃, t)

(∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ

)

· ūidq̃.

Substitute ūi(t) in equation (7) into the above equation, we

obtain∫

Wi(t)

grad(
1

2
x

2
i (q̃, t)) · ūidq̃

= −k̄i

[
∫

Wi(t)

x
2
i (q̃, t)

(∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ

)

dq̃

]2

≤ 0.
Next, let us consider the integral of the time derivation term

in equation (8). According to equation (2) and assuming no

information loss, that is, α = 0,
∫

Wi(t)

∂ 1
2 (x2

i (q̃, t))

∂t
dq̃

= −

∫

Wi(t)

x
2
i (q̃, t)Ai(‖q̃ − qi‖

2)dq̃ ≤ 0.

Therefore, ˙̄Vi ≤ 0. One can check that equality holds if and

only if Condition C holds. �

2) Perturbation Control Law: Using the nominal control

law in equation (7) does not necessarily mean that the

error egi(t) of each vehicle over the entire domain given

by equation (5) will converge to a neighborhood of zero.

If Condition C holds but with egi(t) 6= 0, we consider a
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perturbation control law that perturbs the system away from

the Condition C:
¯̄ui(t) = −¯̄ki(qi(t) − q̃

∗
i (ts)), (9)

where ts is the switching time, ¯̄ki > 0 is feedback controller

gain, and q̃
∗
i ∈ D is chosen such that ‖xi(q̃, t)‖ > ǫ.

The choice of q̃
∗
i by a vehicle can be made several ways.

We provide one such choice that is more efficient than other

possibilities. Let

Di
ǫ(t) := {q̃ ∈ D : ‖xi(q̃, t)‖ > ǫ} ,

which is an open set of all points q̃ for which ‖xi(q̃, t)‖ is

larger than ǫ. Let D
i

ǫ(t) be the closure of Di
ǫ(t), D

i

ǫ,i(t) be

the set of points in D
i

ǫ(t) that minimize the distance between

the position vector of vehicle Vi and the set D
i

ǫ(t):

D
i

ǫ,i(t)

=
{

q̃
∗ ∈ D

i

ǫ(t) : q̃∗ = argmin
q̃∈D

i

ǫ(t)
‖q̃ − qi(t)‖

}

.

Note that q̃
∗
i is chosen based on coverage information

available to vehicle Vi only, which is appropriate in the

setting of this paper since the control law is decentralized.

Note that this perturbation control law was used in [12],

[13] and [16], but for a different coverage control formula-

tion.

3) Control Strategy: Under the control law (7), all ve-

hicles move in the direction that improves the local (since

integration is performed over the sensor domain Wi(t))
awareness level and are in continuous motion as long as

the state described in Condition C is avoided. Whenever

the Condition C holds with nonzero error egi(t), i ∈ I, the

system has to be perturbed by switching to the perturbation

control law (9). Once away from the Condition C, the

controller is switched back to the nominal controller. Only

when both Condition C and ‖x(q̃, t)‖ < ǫ, for all q̃ ∈ D,

that the mission is said to be accomplished and no further

switching is performed. The above discussions give us the

following result.

Theorem IV.2. Under limited sensory range model and

initial condition IC, the control law

u
∗
i (t) =

{
ūi if Condition C does not hold
¯̄ui if Condition C holds

, (10)

drives the error egi(t), i ∈ I, to a neighborhood of the zero

value.

Remarks.

1) Note that the neighborhood to which egi converges is

given by the upper bound

ǭ =

∥
∥
∥
∥

∫

D

1

2
x

2
i (q̃, t)dt

∥
∥
∥
∥
≤

ǫ2AD

2
,

where AD is the area of D.

2) Note that the fact that the state of awareness xi under-

goes a discrete update step whenever any new vehicle

is added to the set of vehicles neighboring vehicle Vi

does not introduce any instabilities. This is especially

true since the update equation results in a discrete

change from a continuous distribution xi over D to

another continuous distribution. Moreover, we have

‖xi(q̃, t+)‖ ≤ ‖xi(q̃, t)‖ for each q̃ at each switching

instant. Hence, the resetting of xi can not introduce

instabilities that causes unbounded divergence.

3) Since the memory term in equation (7) is finite (since

the coverage function Ai is C∞), then when xi un-

dergoes a reset map, the control law ūi undergoes a

finite drop in magnitude (since x
2
i experiences a finite

drop in magnitude, see equation (7), and since the

memory term does not change across switches) and,

hence, no infinite control inputs are encountered across

awareness state switches. In between switches, the

control ūi is also finite (but, in this phase, continuous

in time) because the memory term is finite and since

the awareness state satisfies ‖xi‖ < 1 (assuming an

awareness initial condition of -1).

4) Note that infinite switching between ūi and ¯̄ui is

impossible because (1) during the application of ūi

the value of egi decreases by an amount of non-zero

measure, and (2) if Condition C occurs and the control

law ¯̄ui is applied, once the vehicle is within a range

less than r from q̃
∗
i , egi decreases by an amount of

non-zero measure. This guarantees that a finite number

of switches will be applied to guarantee that egi < ǭ
(which corresponds to ‖xi‖ < ǫ).

5) If the condition for the reset map and the Condition C

occur at the same instant, checking of the Condition

C is performed after the reset map is performed. •

V. SIMULATIONS

In this section we provide a numerical simulation that

illustrates the performance of the control strategy (10). We

define the domain D as a square region whose size is 32×32
units length. Assume there are 4 vehicles (N = 4) with

a randomly selected initial deployment as shown by the

green dots in Figure 3(a). Let the initial state of awareness

xi0, i = 1, 2, 3, 4, be −1 and the desired state of awareness

xi be 0. Here we use the nominal control law in equation

(7) with control gain k̄i = 3 and the perturbation control law

in equation (9) with control gain ¯̄ki = 0.05, i = 1, . . . , 4.

A vehicle is set to switch to the linear feedback control law

whenever Condition C applies to it. For the sensor model,

we have set Mi = 1, ri = 8 for all i = 1, . . . , 4. For the

intermittent communication range, we set it the same as the

sensory range ρ = ri = 8. We used a simple trapezoidal

method to compute integration over Wi(t) and a simple first

order Euler scheme to integrate with respect to time. The

global error

e(t) =

∫

D

1

2
x

2(q̃, t)dq̃, (11)

plotted in Figure 3(b) is the actual total performance achieved

by the entire vehicle fleet and can be seen to converge to

zero. Note that we have normalized the error so that the

initial error is 1.

Figure 4 shows the variation of the state of awareness

during the coverage mission. Note that the minimal state of

awareness is about −2.6× 10−3 over the entire domain and

that the global error metric converges to a neighborhood of

zero as predicted by Theorem (IV.2).
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Fig. 3. (a) Fleet motion in the plane (start at green dot and end at red
dot), (b) actual global error e(t).
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Fig. 4. State of awareness (minimum value is -2.6×10−3 at t = 195).

VI. CONCLUSION

In this paper, we proposed a novel state of awareness

model that reflects how well a fleet of autonomous vehicles

is aware of events taking place over a given task domain.

A control strategy for networked sensors with intermittent

communications and/or faulty sensors was developed to

achieve satisfactory awareness levels over a domain. A

detailed numerical simulation that shows the performance

of the control strategy was provided. Current work includes

extending the result to the case where awareness loss is

taken into account, that is, α 6= 0. Second-order non-

linear vehicle dynamics including model uncertainty and

nonholonomic motion constrains will also be investigated by

the authors. Moreover, an experimental test-bed composed

of 4 autonomous underwater vehicles is currently under

construction at Worcester Polytechnic Institute (WPI).
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