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Abstract— This work considers the problem of control of
nonlinear process systems subject to input constraints and
actuator faults. Faults are considered that preclude the pos-
sibility of continued operating at the nominal equilibrium
point and a framework (which we call the safe-parking
framework) is developed to enable efficient resumption of
nominal operation upon fault-recovery. First Lyapunov-based
model predictive controllers, that allow for an explicit char-
acterization of the stability region subject to constraints on
the manipulated input, are designed. The stability region
characterization is utilized in selecting ‘safe-park’ points from
the safe-park candidates (equilibrium points subject to failed
actuators). Specifically, a candidate parking point is termed a
safe-park point if 1) the process state at the time of failure
resides in the stability region of the safe-park candidate
(subject to depleted control action), and 2) the safe-park
candidate resides within the stability region of the nominal
control configuration. Performance considerations, such as
ease of transition from and to the safe-park point and cost of
running the process at the safe-park point, are quantified and
utilized in choosing the optimal safe-park point. The proposed
framework is illustrated using a chemical reactor example.

Key words: Fault Tolerant Control, Safe-parking, Con-
straints, Nonlinear Process Systems

I. INTRODUCTION

Chemical process operation and control involves account-
ing for process complexity (manifested as nonlinearities),
operational issues (such as constraints and disturbances),
as well as eventualities, such as faults. Smooth operation
of chemical processes, therefore, relies on adequate design
and maintenance, appropriate monitoring systems to detect
and diagnose eventualities, and the presence of correcting
mechanisms that, having been ‘informed’ of an eventuality,
prevent or minimize loss of performance, shutdowns, or
hazardous situations. The ubiquitous nature of faults, and
the extensive economic damage that results from faults (it
is estimated that the U.S. petrochemical industry loses and
estimated $20 billion per year due to faults; see, e.g., [1]
and the reference therein) has motivated extensive research
on development of strategies for handling faults.

The existing methods for handling faults assume avail-
ability of sufficient residual control effort or redundant
control configurations to preserve operation at the nominal
equilibrium point, and can be categorized within the ro-
bust/reliable, and reconfiguration-based fault-tolerant con-
trol approaches. Robust/reliable control approaches (e.g.,
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see [2]) essentially rely on the robustness of the active con-
trol configuration to handle faults as disturbances. Several
faults, however, cause significant erosion of the control ef-
fort in the active control configuration, and closed-loop sta-
bility cannot be preserved by simply re-tuning the controller
in the active control configuration. If redundant control
configurations are available, control–loop reconfiguration
(activating an appropriately chosen fall-back configuration)
can be implemented to preserve closed–loop stability at the
nominal equilibrium point.

In determining the suitability of a backup control con-
figuration, the presence of constraints, nonlinearity and
uncertainty, as well as the switched nature of the closed–
loop system (due to the switching between the control con-
figurations) must be accounted for. The extensive research
on control of nonlinear and switched systems (see, e.g.,
[3], [4], [5], [6], [7], [8], [9], [10]) has made available
a number of tools that can be utilized to this end. These
include Lyapunov-based nonlinear control designs (see, e.g.,
[3], [11] for a review, see [10]) that provide an explicit
characterization of the stability region in the presence of
constraints as well as model predictive control designs (see,
for example the survey paper, [6]) that allow incorporation
of performance considerations in the control design and
provide stability guarantees based on the assumption of
initial feasibility of the optimization problem. Recently,
model predictive controllers have been designed [8], [9] that
allow explicit characterization of the stability region in the
presence of constraints, without assuming initial feasibility
of the optimization problem. Several research efforts have
also focussed on the problem of control of switched systems
verifying [12] and enabling [8] closed–loop stability for a
prescribed switching schedule.

The control tools described above have been utilized
within reconfiguration-based fault-tolerant control structures
focusing on closed–loop stability and performance, while
accounting for process nonlinearity and constraints (see,
e.g., [13], [14], [15]). Specifically, closed–loop stability is
preserved (having first detected and isolated the occurrence
of a fault) via implementing a backup control configuration
chosen such that 1) the state at the time of the failure resides
in the stability region of the candidate backup control
configuration and 2) the backup configuration does not use
the failed control actuator. However, all the reconfiguration-
based fault-tolerant control designs of [14], [13], [15]
assume the existence of a backup, redundant control con-
figuration. The scenario where a fault results in temporary
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loss of stability that cannot be handled by redundant control
loops has not been explicitly addressed. In the absence of
a framework for handling such faults, ad-hoc approaches
could result in temporarily shutting down the process which
can have substantially negative economic ramifications.

Motivated by the above considerations, this work consid-
ers the problem of control of nonlinear process systems sub-
ject to input constraints and destabilizing faults in the con-
trol actuators. Specifically, faults are considered that cannot
be handled via robust control approaches or activation
of redundant control configurations, and necessitate fault-
rectification. A safe-parking framework is developed to
determine how to run the process during fault-rectification
to enable smooth resumption of nominal operation. The rest
of the manuscript is organized as follows: we first present, in
Section II-A, the class of processes considered, and review a
Lyapunov-based predictive controller in Section II-B. The
safe-parking problem is formulated in Section III-A, and
Sections III-B and III-C, respectively. A chemical reactor
example is used to illustrate the details of the safe-parking
framework in Section III-D.

II. PRELIMINARIES

In this section, we describe the class of processes consid-
ered and a Lyapunov-based model predictive control design.
A. Process description

We consider nonlinear process systems subject to input
constraints and failures described by:

ẋ(t) = f(x(t)) +G(x(t))uσ(t), uσ(·) ∈ U (1)

where x ∈ IRn denotes the vector of state variables,
uσ(t) ∈ IRm denotes the vector of constrained manipulated
inputs, taking values in a nonempty convex subset U of
IRm, where U = {u ∈ IRm : umin ≤ u ≤ umax},
where umin, umax ∈ IRm denote the constraints on the
manipulated inputs, f(0) = 0 and σ ∈ {1, 2} is a discrete
variable that indexes the fault-free and faulty operation
(σ = 1 denotes fault-free operation and σ = 2 denotes
faulty operation). The vector function f(x) and the matrix
G(x) = [g1(x) · · · gm(x)] where gi(x) ∈ IRn, i = 1 · · ·m
are assumed to be sufficiently smooth on their domains
of definition. The notation ‖ · ‖Q refers to the weighted
norm, defined by ‖x‖2Q = x′Qx for all x ∈ IRn, where Q
is a positive definite symmetric matrix and x′ denotes the
transpose of x. The notation Lfh denotes the standard Lie
derivative of a scalar function h(·) with respect to the vector
function f(·). Throughout the manuscript, we assume that
for any u ∈ U the solution of the system of Eq.1 exists and
is continuous for all t, and we focus on the state feedback
problem where x(t) is assumed to be available for all t.
B. Lyapunov-based model predictive control

In this section, we briefly review a recent result on
the design of a Lyapunov-based predictive controller that
possesses an explicitly characterized set of initial conditions
from where it is guaranteed to be feasible, and hence
stabilizing in the presence of input constraints. Consider the

system of Eq.1, for σ(t) = 1, under the predictive controller
[8] of the form:

u1(·) = argmin{J(x, t, u(·))|u(·) ∈ S} (2)

s.t. ẋ = f(x) +G(x)u(t) (3)

V̇ (x(τ)) ≤ −ε∗ ∀ τ ∈ [t, t+ ∆) if V (x(t)) > δ
′

(4)
V (x(τ)) ≤ δ

′
∀ τ ∈ [t, t+ ∆) if V (x(t)) ≤ δ

′
(5)

where S = S(t, T ) is the family of piecewise continuous
functions (functions continuous from the right), with period
∆, mapping [t, t+T ] into U and T is the horizon. Eq.3 is the
nonlinear model describing the time evolution of the state x,
V is a control Lyapunov function and δ

′
, ε∗ are parameters

to be determined. A control u(·) in S is characterized by the
sequence {u[j]} where u[j] := u(j∆) and satisfies u(t +
τ) = u[j] for all τ ∈ [t+j∆, t+(j+1)∆). The performance
index is given by

J(x, t, u(·)) =
∫ t+T

t

[
‖xu(s;x, t)‖2Qw

+ ‖u(s)‖2Rw

]
ds

(6)
where Qw is a positive semi-definite symmetric matrix
and Rw is a strictly positive definite symmetric matrix.
xu(s;x, t) denotes the solution of Eq.1, due to control
u, with initial state x at time t. The minimizing control
u[1] ∈ S is then applied to the plant over the interval
[t, t+ ∆) and the procedure is repeated indefinitely.

The stability properties of the predictive controller are
characterized using a bounded controller [3], [11], for which
one can show, using a standard Lyapunov argument, that
whenever the closed–loop state, x, evolves within the region
described by the set:

Π = {x ∈ IRn : LfV (x) ≤ unorm‖(LGV )′(x)‖} (7)

where unorm > 0 is such that ‖u‖ ≤ unorm implies u ∈ U,
where ‖(·)‖ denotes the Euclidean norm of a vector, then
the control law satisfies the input constraints, and the time-
derivative of the Lyapunov function is negative-definite. An
estimate of the stability region can be constructed using a
level set of V , i.e.,

Ω = {x ∈ IRn : V (x) ≤ cmax} (8)

where cmax > 0 is the largest number for which Ω ⊆
Π. Closed–loop stability and feasibility properties of the
closed–loop system under the Lyapunov–based predictive
controller are inherited from the bounded controller under
discrete implementation and are formalized in Theorem 1
below (for a proof, see [8]).
Theorem 1 [8]: Consider the constrained system of Eq.1
under the MPC law of Eqs.2–6. Then, given any d ≥ 0,
x0 ∈ Ω, where Ω was defined in Eq.8, there exist positive
real numbers δ

′
, ε∗, ∆∗, such that if ∆ ∈ (0,∆∗], then

the optimization problem of Eq.2-6 is feasible for all times,
x(t) ∈ Ω for all t ≥ 0 and lim sup

t→∞
‖x(t)‖ ≤ d.

Remark 1: The predictive controller formulation of Eqs.2–
6 requires that the value of the Lyapunov function decrease
during the first step only. Practical stability of the closed–
loop system is achieved since only the first move of the set
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of calculated moves is implemented and the problem is re-
solved at the next time step. If the optimization problem is
initially feasible and continues to be feasible, then every
control move that is implemented enforces a decay in
the value of the Lyapunov function, leading to stability.
Furthermore, the constraint of Eq.4 is guaranteed to be
satisfied since the control action computed by the bounded
controller design provides a feasible initial guess to the
optimization problem. Finally, since the state is initialized in
Ω, which is a level set of V , the closed–loop system evolves
so as to stay within Ω, thereby guaranteeing feasibility at
future times. The key idea in the predictive control design
is to identify stability constraints that can a) be shown to be
feasible and b) upon being feasible can guarantee stability.
Note that the model predictive controller of Eqs.2–6 is
only used to illustrate the safe-parking framework, and any
other controller that provides an explicit characterization
of the closed–loop stability region can be used within the
proposed framework. With respect to the design of the
Lyapunov-based predictive controller of Eqs.2–6, we also
note that while the use of a control Lyapunov function
provides a better estimate of the stability region, even a
quadratic Lyapunov function (chosen such that it is locally
a control Lyapunov function) can be used to generate
(possibly conservative) estimates of the stability region. For
further discussion on this issue, see [16].
III. SAFE-PARKING OF NONLINEAR PROCESS SYSTEMS

We first formalize the problem in Section III-A, and
present a safe-parking algorithm focusing on closed–loop
stability in Section III-B. We incorporate performance con-
siderations in the safe-parking framework in Section III-C.
A. Problem definition

We consider faults where one of the control actuators
fails and reverts to the fail-safe value. Examples of fail-
safe positions include fully open for a valve controlling
a coolant flow rate, fully closed for a valve controlling
a steam flow etc. Specifically, we characterize the fault
occurring w.l.o.g., in the first control actuator at a time
T fault, subsequently rectified at a time T recovery (i.e., for
t ≤ T fault and t > T recovery, σ(t) = 1 and σ(t) = 2 for
T fault < t ≤ T recovery), as u1

2(t) = u1
failed, with u1

min ≤
u1
failed ≤ u1

max, where ui denotes the ith component of a
vector u, for all T fault < t ≤ T recovery , leaving only ui2,
i = 2 . . .m available for feedback control. With u1

2(t) =
u1
failed, there exists a (possibly connected) manifold of

equilibrium points where the process can be stabilized,
which we denote as the candidate safe-park set Xc :=
{xc ∈ IRn : f(xc) + g1(xc)u1

failed +
∑m
i=2 g

i(xc)ui2 =
0, uimin ≤ ui2 ≤ uimax, i = 2, . . . ,m}. The safe-park
candidates represent equilibrium points that the system can
be stabilized at, subject to the failed actuator, and with the
other manipulated inputs within the allowable ranges. Note
that if u1

failed 6= 0, then it may happen that 0 /∈ Xc, i.e.,
if the failed actuator is frozen at a non-nominal value, then
it is possible that the process simply cannot be stabilized

at the nominal equilibrium point using the functioning
control actuators. Maintaining the functioning actuators at
the nominal values may drive the process state to a point
from where it may not be possible to resume nominal
operation upon fault-recovery, or even if possible, may not
be ‘optimal’. We define the safe-parking problem as the one
of identifying safe-park points xs ∈ Xc that allow efficient
resumption of nominal operation upon fault-recovery.

B. Safe-parking to resume nominal operation

In this section, we present a safe-parking framework and
a controller that executes safe-parking as well as resumption
of nominal operation. To account for the presence of con-
straints on the manipulated inputs, the key requirements for
a safe-park point include that the process state at the time
of the failure resides in the stability region for the safe-park
point (so the process can be driven to the candidate safe-
park point), and that the safe-park point should reside in
the stability region under nominal operation (so the process
can be returned to nominal operation). These requirements
are formalized in Theorem 2 below. To this end, consider
the system of Eq.1 for which the first control actuator
fails at a time T fault and is reactivated at time T recovery ,
and for which the stability region under nominal operation,
denoted by Ωn, has been characterized using the predictive
controller formulation of Eqs.2–6. Similarly, for a candidate
safe-park point xc, we denote Ωc as the stability region
(computed a priori) under the predictive controller of Eqs.2–
6, and u2,xc as the control law designed to stabilize at the
candidate safe-park with u1,n being the nominal control law.
Theorem 2: Consider the constrained system of Eq.1 under
the MPC law of Eqs.2–6. If x(T fault) ∈ Ωc and Ωc ⊂ Ωn,
then the switching rule

u(t) =


u1,n , 0 ≤ t < T fault

u2,xc
, T fault ≤ t < T recovery

u1,n , T recovery ≤ t

 (9)

guarantees that x(t) ∈ Ωn ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ d.

Proof of Theorem 2: We consider the two possible cases;
first if no fault occurs (T fault = T recovery = ∞), and
second if a fault occurs at a time T fault < ∞ and is
recovered at a time T fault ≤ T recovery <∞.
Case 1: The absence of a fault implies u(t) = u1,n ∀ t ≥ 0.
Since x(0) ∈ Ωn, and the nominal control configuration is
implemented for all times, we have from Theorem 1 that
x(t) ∈ Ωn ∀ t ≥ 0 and lim sup

t→∞
‖x(t)‖ ≤ d.

Case 2: At time T fault, the control law designed to
stabilize the process at xc is activated and implemented
till T recovery. Since x(T fault) ∈ Ωc ⊂ Ωn, we have
that x(t) ∈ Ωn ∀ T fault ≤ t ≤ T recovery. At a time
T recovery , we therefore also have that x(T recovery) ∈ Ωn.
Subsequently, as with case 1, the nominal control configu-
ration is implemented for all time thereafter, we have that
x(t) ∈ Ωn ∀ t ≥ T recovery. In conclusion, we have that
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x(t) ∈ Ωn ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ d. This completes

the proof of Theorem 2.
Remark 2: The statement of Theorem 2 requires that for a
safe-park point, the stability (and invariant) region be such
that the process state at the time of the failure resides in
the stability region for the safe-park point so the process
can be driven to the point of safe-park with the depleted
control action available. Note that this characterization can
be done off-line. Specifically, for a fail-safe position of an
actuator, the entire set of candidate safe-park points Xc can
be computed off-line, and also, for any given point in this
set, the stability region subject to depleted control action can
also be computed off-line. The statement of the theorem also
requires that the stability (and invariant) region for a safe-
park point be completely contained in the stability region
under nominal operation, so the state trajectory always stays
within the stability region under nominal operation. This
requirement can be readily relaxed to only require that
the state at the time of the failure reside in the stability
region of the safe-park point. This will allow for the
state trajectory to leave the stability region, Ωn, during
the time of fault recovery. However, to preserve closed–
loop stability upon fault-recovery, the control law utilizing
depleted control action may be continued up until the time
that the state trajectory enters the stability region under
nominal operation (this is guaranteed to happen because
xc ∈ Ωn), after which the control law utilizing all the
manipulated inputs can be implemented to achieve closed–
loop stability.
Remark 3: Note that the assumption that the failed actuator
reverts to the fail-safe position allows enumerating the pos-
sible fault situations for any given set of manipulated inputs
a-priori to determine the safe-park candidates and then
pick the appropriate safe-park point online (the condition
xs ∈ Ωn can be verified off-line, however x(T fault) ∈ Ωxs

can only be verified online, upon fault-occurrence;). The
assumption reflects the practice wherein actuators have a
built-in fail-safe position that they revert to upon failure.
Note that while the proposed safe-parking framework as-
sumes apriori knowledge of the fail-safe positions of the
actuators, it does not require a priori knowledge of the
fault and recovery times, and only provides appropriate
switching logic that is executed when and if a fault takes
place and is subsequently rectified. Note also that while
the statement of Theorem 2 considers faults in one of the
actuators, generalizations to multiple faults (simultaneous
or otherwise) are possible, albeit involving the expected
increase in off-line computational cost (due to the necessity
of determining the safe-park points for all combinations of
the faults in the control actuators).

C. Incorporating performance considerations in safe-
parking

In the previous section, the requirements for an equilib-
rium point to be denoted a safe-park point was provided.
A large set of equilibrium points may qualify as safe-park

points and satisfy the requirements in Theorem 2. In this
section, we introduce performance considerations in the
eventual choice of the ‘optimal’ safe-park point. To this
end, consider again the system of Eq.1 for which the first
control actuator fails at a time T fault and is reactivated at
time T recovery, and for which the set of safe-park points,
xs ∈ Xs, have been characterized. For a given safe-park
point (one that satisfies the requirements of Theorem 2),
define the followings costs:

Jtr =
∫ T fault+Ts

T fault

[
‖xu(s;x, t)‖Q2

tr
+ ‖u(s)‖R2

tr

]
ds

(10)
where Qtr and Rtr are positive definite matrices, the
subscript tr signifying that this value captures the ‘cost’
associated with transitioning to the safe-park point, with
Ts being the time required to go to a sufficiently close
neighborhood of the safe-park point. This cost can be
estimated online, upon fault-occurrence, by running fast
simulations of the closed–loop system under the bounded
controller (for further discussion on this issue, see Remark
5). Similarly, define

Js = fs(xs, us) (11)

where fs(xs, us) is an appropriately defined cost function
and the subscript s denotes that this value captures the ‘cost’
associated with operating at the safe-park point. Unlike the
cost in Eq.10, this cost does not involve an integration over
time, and can be determined off-line. Finally, define

Jr =
∫

0

Tr [
‖xu(s;x, t)‖Q2

r
+ ‖u(s)‖R2

r

]
ds (12)

where Qr and Rr are positive definite matrices, with the
subscript r signifying that this value captures the ‘cost’
associated with resuming nominal operation, with Tr being
the time required to return to a sufficiently close neighbor-
hood of the nominal operating point, and the integration
performed with the safe-park point as the initial condition.
Again, this cost can be estimated off-line by running
simulations of the closed–loop system under the bounded
controller. Consider now the safe-park points xs,i ∈ Xs, i =
1, . . . , Ns where Ns is the number of safe-park points to be
evaluated for optimality and let Jxs,i

= Jtr,i + Js,i + Jr,i,
i = 1, . . . , Ns.
Theorem 3: Consider the constrained system of Eq.1 under
the MPC law of Eqs.2–6 and the switching rule

u(t) =


u1,n , 0 ≤ t < T fault

u2,xs,o
, T fault ≤ t < T recovery

u1,n , T recovery ≤ t

 (13)

where o ∈ {1, . . . Ns} = arg min
i=1,Ns

Jxs,i
guarantees that

x(t) ∈ Ωn ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ d.

Proof of Theorem 3: Any xs,o chosen according to The-
orem 3 satisfies the requirements of Theorem 2. x(t) ∈
Ωn ∀ t ≥ 0 and lim sup

t→∞
‖x(t)‖ ≤ d follow from the proof

of Theorem 2.
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Remark 4: Note that the cost of transitioning to the safe-
park point Jtr can be estimated using the bounded controller
since the bounded controller achieves decay of the same
Lyapunov function as that used in the predictive controller
design. This cost has to be estimated online, because it
depends on the process state at which the failure occurs
(in the special case that faults occur after the process
has been stabilized at the nominal operating points, this
cost can also be computed off-line). In contrast, the cost
incurred in resuming nominal operation from the safe-park
point can be computed off-line by running simulation under
the predictive controller or auxiliary controller. Additional
terms in Jtr and Js can be readily included to cater to the
specific process under consideration. Furthermore, the con-
tribution of the cost Js to the total cost can be appropriately
scaled utilizing reasonable estimates of fault-rectification
times. Specifically, if the malfunctioned actuator is known
to require significant time to be rectified, then this cost can
be ‘weighed’ more to recognize the fact that the process will
deliver substantial amount of product corresponding to the
safe-park point under consideration. If, on the other hand, it
is known that the fault can be rectified soon, then the cost
involving the resumption to nominal operation Jr can be
given increased weight.
Remark 5: For the ‘product’ being generated during safe-
parking, further unit operations may be required, ranging
from simple separations to further processing, all of which
may have associated costs. Possible loss of revenue during
safe-park can be incorporated in the estimate Js. If the
process is connected to further units downstream, then in-
creased utility costs associated with downstream processing
can also be accounted for in this cost. Finally, we note
that the costs outlined here are only some of the repre-
sentative costs, and the framework allows for incorporating
costs/revenues that may be specific to the process under
consideration.
Remark 6: Note that while the set of safe-parking points
(satisfying the requirements of Theorem 2) could be a
continuous manifold of equilibrium points, safe-parking
points to be evaluated for optimality can be picked by
discretizing the manifold. The minimization in determining
the optimal safe-park point can then be carried out by
a simple procedure of comparison of the cost estimates
associated with the finite number of safe-parking candi-
dates. Choosing a finer discretization in evaluating the safe-
parking candidates could possibly yield improved closed–
loop costs, however, the approximations involved in the
cost estimation (the cost of going to and returning from
the safe-parking points are only approximately estimated
using the bounded controller) could offset the benefits out
of the finer discretization. Therefore, a balance has to
be struck in picking the number of safe-parking points
that will be evaluated for optimality that trades off the
increased computational complexity, the approximations in
cost estimation, and the improved performance derived out
of the finer discretization.

D. Illustrative simulation example

We illustrate in this section the proposed safe-park frame-
work via a continuous stirred tank reactor (CSTR). Consider
a CSTR where an irreversible, first-order exothermic reac-
tion of the form A

k→ B takes place. The mathematical
model for the process takes the form:

ĊA =
F

V
(CA0 − CA)− k0e

−E
RTR CA

ṪR =
F

V
(TA0 − TR) +

(−∆H)
ρcp

k0e

−E
RTR CA +

Q

ρcpV
(14)

where CA denotes the concentration of the species A, TR
denotes the temperature of the reactor, Q is the heat added
to/removed from the reactor, V is the volume of the reactor,
k0, E, ∆H are the pre-exponential constant, the activation
energy, and the enthalpy of the reaction and cp and ρ
are the heat capacity and fluid density in the reactor. The
values of all process parameters can be found in [17]. The
control objective is to stabilize the reactor at the unstable
equilibrium point (CsA, T

s
R) = (0.447 Kmol/m3, 393 K).

Manipulated variables are the rate of heat input/removal, Q,
and inlet concentration of species A, CA0, with constraints:
|Q| ≤ 32 KJ/s and 0 ≤ CA0 ≤ 2 Kmol/m3. The heat
input/removal Q consists of heating stream Q1 and cooling
stream Q2 with the constraints on each as, 0 KJ/s ≤ Q1 ≤
32 KJ/s and −32 KJ/s ≤ Q2 ≤ 0 KJ/s. The nominal
operating point (N ) corresponds to steady state values of
the inputs CA0 = 0.73 Kmol/m3 and Q = 10 KJ/s.

For stabilizing the process at the nominal equilibrium
point, the Lyapunov based MPC of Section II-B is designed
using a quadratic Lyapunov function of the form V =
xTPx. The stability region is estimated and denoted by
Ω in Fig.1. We consider the problem of designing a safe-
parking framework to handle temporary faults in the heating
valve (resulting in a fail-safe value of Q1 = 0). In this
scenario, no value of the functioning manipulated inputs
−32 KJ/s ≤ Q2 < 0 KJ/s and 0 ≤ CA0 ≤ 2 Kmol/m3

exists such that the nominal equilibrium point continues to
be an equilibrium point of the process subject to the fault.
For Q2 = −14.7 KJ/s, CA0 = 1.33 Kmol/m3 and Q2 =
−4 KJ/s, CA0 = 1.27 Kmol/m3, the corresponding
equilibrium points are S1 = (1.05 Kmol/m3, 396 K) and
S2 = (0.93 Kmol/m3, 393 K), which we denote as safe-
park candidates. For each of these safe-park candidates,
Lyapunov based predictive controller with prediction and
control horizons of 0.10 min and 0.02 min, respectively, is
designed. The discretized version of the stability constraint
of the form V (x(t + ∆)) ≤ 0.99V (x(t)) is incorporated
in the optimization problem. If the optimization problem
becomes infeasible during implementation, the stability
constraint is removed to compute a solution.

Consider a scenario where the process starts from O =
(1.25 Kmol/m3, 385 K) and the predictive controller
drives the process toward the nominal operating point, N =
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Fig. 1. Evolution of closed–loop states for the CSTR example. Dashed
line (- -) indicates the case when a safe-park point S1 is arbitrarily
chosen (resulting in the inability to resume nominal operation upon fault-
recovery) while the solid line (—) indicates the case when S2 is chosen
according to Theorem 2, guaranteeing resumption of nominal operation
upon fault-recovery. The dash-dotted lines show the closed–loop response
when optimality considerations are included in the choice of the safe-park
point and S3 is chosen.

(0.447 Kmol/m3, 393 K). At t = 0.16 min, when the
process state is at F = (0.9975 Kmol/m3, 394.02 K),
the heating valve fails, and reverts to the fail-safe position
(completely shut) resulting in Q1 = 0 KJ/s. This restricts
the heat input/removal to −32 KJ/s ≤ Q < 0 KJ/s
instead of −32 KJ/s ≤ Q < 32 KJ/s. We first consider
the case where the safe-park candidate S1 is arbitrarily
chosen as the safe-park point, and the process is stabilized
at S1 until the fault is rectified. At t = 8.0 min, the
fault is rectified, however, we see that even after fault-
recovery, nominal operation cannot be resumed (see dashed
lines in Fig.1). This happens because S1 lies outside the
stability region under nominal operation. In contrast, if S2

is chosen as the safe-park point, we see that the process
can be successfully driven to S2 with limited control action
as well as it can be successfully driven back to N after
fault-recovery (see solid lines in Fig.1). In summary, the
simulation scenario illustrates the necessity to account for
the presence of input constraints (characterized via the
stability region) in the choice of the safe-park point.

Next, we demonstrate the incorporation of performance
criterion in selecting the safe-park point. To this end,
we consider another point S3 (corresponding to Q2 =
−14.6 KJ/s, CA0 = 1.53 Kmol/m3), which is also viable
safe-park point as it is inside the stability region of N .
Using the approach in Section III-C, the cost associated
with operating at the two safe-park points is calculated
utilizing, f(xs, us) = ‖xuss‖Q2

s
+ ‖uss‖R2

s
. At the time

of the failure, the bounded controller [3], [11] is used to
estimate Jtr and Jr, which are divided by Ts and Tr,
to determine Jsafe−parking = Jtr

Ts + Js + Jr

Tr
. Note that

the computation of Jsafe−parking does not require prior
information about the time of fault recovery. Also, note that
here only two safe-park points are used as illustration, but
the cost comparison can be carried out over larger number of
safe-park points (see [17] for an application of the proposed
safe-parking framework on a polystyrene process example).

The Jsafe−parking for S2 and S3 calculated by auxiliary
controller are 2406 and 1209, respectively. The cost estimate
for S3 is significantly lower than for S2 indicating that S3 is
a better choice for safe-parking the process. Subsequently, if
S3 is chosen as the safe-park point, it yields a closed–loop
cost of 1105 which is significantly lower than the closed–
loop cost for S2 of 4072.

In summary, a safe-parking framework was developed for
handling faults that preclude the possibility of continued
operating at the nominal equilibrium point. Stability region
is used to select the safe-park points which enables smooth
resumption of the nominal operation on fault recovery.
Performance considerations, such as ease of transition from
and to the safe-park point and cost of running the process
at the safe-park point, were then quantified and utilized
in choosing the optimal safe-park point. The proposed
framework was illustrated using a chemical reactor example.
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