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Abstract— In this paper we present an application of a novel
constrained control technique known as Command Governor
(CG) to deal with the problem of actuator amplitude and rate
saturation on aircrafts. The aim of the CG strategy consists of
modifying, whenever necessary, the reference signal supplied to
a primal compensated system so as to guarantee the fulfillment
of existing constraints. CG action is obtained solving on line
an optimization procedure which embodies the future plant-
evolution according to the receding horizon philosophy. To show
the effectiveness of the proposed constrained control algorithm
numerical simulations are carried out on a small commercial
aircraft of the General Aviation class.

I. INTRODUCTION

Actuator amplitude and rate saturation is an inherent property
common to almost every physical system. It is well recog-
nized that such a type of limitation can lead to performance
degradation and even instability.
On complex systems as aircrafts, the actuator saturation rep-
resents a problem of paramount importance: the destabilizing
effects of actuator saturation have been cited as contributing
factors in several mishaps involving aircrafts both of general
than military aviation. [1]
In flight control applications many different solutions have
been investigated in order to cope with the problems arising
from these limitations: anti-windup techniques (AW) [2],
software rate-limiters [3], [4], low-high gain (LHG) methods
[5] have been successfully applied both to stable and unstable
aircrafts models.
Recently, the interest towards methods based on model
predictive control (MPC) ideas [6]–[9] is growing due to
the availability of powerful and fast computing units [10].
Nonetheless, it must be recalled that, on the theoretical side,
such techniques are so popular because of their capability to
directly embody the existing constraints in the design phase.
In this case, the control action is the result of an optimization
procedure which takes into account two objectives: maximize
the tracking performance and to guarantee that all prescribed
constraints are fulfilled.
Of interest in this paper is a novel constrained control
methodology based on conceptual tools of MPC and known
as “Command Governor” strategy.
The first theoretical results appeared in [11]. These were
based on the preliminary studies reported in [12]. Many
mature assessments of the related state of the art can be
found in [13]–[18].
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The objective of this constrained control paradigm is to
design the so-called CG device. This is a nonlinear predictive
unit which is added to a primal compensated plant that
is designed so as to perform satisfactorily in the absence
of constraints violation. Whenever necessary, CG device
computes a modified version of the current reference signal
in order to enforce all prescribed constraints with acceptable
tracking performance.
The computed reference command is selected according to
an on-line quadratic programming (QP) problem where, the
objective function is its distance from the actual reference
signal and where the constraints take into account the future
plant evolution according to receding horizon philosophy.
Any standard QP solver can be used for such a type of
task and the CG algorithm can be implemented on any off-
the-shelf digital-signal-processing board. The computational
power required from CG device can be modulated through an
appropriate tuning of all design parameters and the current
microprocessor technology allows to obtain typical sampling
rates used in aeronautical applications [17].
In this respect, the main objective of this paper is to investi-
gate the possibility to apply the CG framework on aircrafts
in order to improve the performance of flight control systems
which typically operate in the presence of actuators subjected
to amplitude and rate saturations. To this end a model of a
small commercial aircraft [19], [20] of General Aviation class
has been considered as test-case.
The paper is organized as follows: in Section II the aircraft
mathematical model and the primal control structure are
introduced. In Section III the CG strategy is described
together with the main theoretical results. In Section IV
extensive numerical results are presented and the benefits
of the CG strategy are detailed. Some conclusions end the
paper.

II. AIRCRAFT MATHEMATICAL MODEL AND PRIMAL

CONTROLLER STRUCTURE

As discussed in the Introduction, this constrained control
problem can be viewed as a two-steps procedure. First a
primal internal control loop is designed so as to achieve good
tracking capabilities w.r.t. the prescribed reference signals.
Then the CG strategy is superimposed to guarantee the
fulfillment of existing limitations.
In this section the mathematical model of the aircraft is
derived and the primal control structure adopted in this flight
control application is outlined.
In the so-called polar form [21], the six degree of free-
dom mathematical model of the aircraft has the following
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structure (See Table I for the meaning of all symbols which
follow):

WV̇ = T cos(α +μT )cosβ − 1
2
ρV 2SCD +Wg1 (1)

WV cosβα̇ = −T sin(α +μT )− 1
2
ρV 2SCL +WVq+Wg2 (2)

VW β̇ = −T cos(α +μT )sinβ +
1
2
ρV 2SCY −WVr+Wg3 (3)

ṗIx − ṙIxz +qr(Iz − Iy)− pqIxz =
1
2
ρV 2SbCr (4)

q̇Iy + rp(Ix − Iz)+(p2 − r2)Ixz =
1
2
ρV 2ScCm (5)

−ṗIxz + ṙIz + pq(Iy − Ix)+qrIxz =
1
2
ρV 2SbCn (6)

φ̇ = p+q tanθ sinφ + r tanθ cosφ (7)

θ̇ = qcosφ − r sinφ (8)

ψ̇ = r cosφ secθ +qsinφ secθ (9)

with

g1 := g(−cosα cosβ sinθ+sinβ sinφ cosθ+sinα cosβ cosφ cosθ)

g2 := g(sinα sinθ+cosα cosφ cosθ)

g3 := g(cosα sinβ sinθ + cosβ sinφ cosθ − sinα sinβ cosφ cosθ)

(1) - (6) are the Newton’s laws, whereas (7) - (9) the Euler’s
equations. In presence of external wind the relative wind
speed, angle of attack and sideslip are nonlinear function of
the wind velocity vector [uwind,vwind,wwind]T . Turbulence is
modelled with Dryden’s model [22].
Further, the aerodynamics coefficients CD, CL, CY , Cr, Cm,
Cn can be expressed as a function of the state variables
V,α,β ,φ ,θ ,ψ, p,q,r, and input δe, δa, δr. T is assumed to
be a known function of δth.

As it will be cleared in next section in order to apply
the Command Governor strategy, it is necessary to have a
discrete-time pre-compensated linear model of the plant.
To this end, starting from nonlinear model (1) - (9) where
we chosen:

1) x̂c := [V α β φ θ ψ p q r]T as states vector;
2) ûc := [δe δa δr δth]T as inputs vector;
3) ẑc := x̂c as outputs vector;
4) d̂c := [uwind vwind wwind]T as disturbances vector;

a continuous-time linearized model in the neighborhood of a
wing leveled straight flight condition (see Table III for major
details), is derived with the following structure:{

˙̂xc = Âc x̂c + B̂dc d̂c + B̂uc ûc

ẑc = x̂c + D̂c d̂c
(10)

The direct coupling between d̂c and ẑc is removed by defying
a new state xc and disturbances vector dc as it follows:

xc := x̂c + D̂c d̂c dc := [d̂c
˙̂dc] (11)

As a consequence model (10) is rewritten as:{
ẋc = Ac xc +Bdc dc +Buc uc

zc = xc
(12)

with
Ac = Âc; Buc = B̂uc ;

Bdc = [(B̂dc − ÂcD̂c) D̂c] uc ≡ ûc. (13)
Next, starting from model (12), a multivariable Proportional-
plus-Integral (PI) controller has been designed using the
techniques reported in [23], [24] so as to satisfy stability and
good tracking performances w.r.t. reference signals. During
the design phase, the controlled variables have been chosen
as the pitch, roll and sideslip angles θ , φ , β and the throttle
command has been kept constant. Further, for the aircraft
under consideration, δe mainly drives the pitch angle, δa

drives the roll angle and finally, δr mainly controls the
excursions of the angle of sideslip. In Fig. 1 the primal
control structure adopted in this flight control is shown.
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Fig. 1. Primal Control Structure: The PI multivariable action is expressed
as uc := Kpxc +Kixi, where xc are the aircraft model states, xi ∈ IR3 are the
states of integrators and Kp, Ki gains matrices computed via the standard
LQ technique. Note that yc is the vector of the controlled variables θ ,φ ,β .
Finally, r and e are respectively the reference signal and the error signal
between r and yc. For major details concerning all design guidelines of such
a control technique see [23], [24]

III. COMMAND GOVERNOR STRATEGY: MATHEMATICAL

FORMULATION

The Command Governor is a methodology mainly devoted to
enforce all prescribed constraints by properly modifying the
reference signal supplied to a pre-compensated plant (Fig.
2). Here we will briefly outline the CG strategy essentials
together with the main theoretical results.
In its most common formulation [13]–[18], the CG
approach takes into consideration a discrete time closed-
loop regulated linear time-invariant plant model on the form:

⎧⎨
⎩

x(t +1) = Φx(t)+Gϑ(t)+Gdd(t)
y(t) = Hyx(t)
c(t) = Hcx(t)+Lϑ(t)+Ldd(t)

(14)

where

• t ∈ Z0+ := {0,1, . . . ,} is the plant time-step;
• x(t) ∈ IRnx is the state vector including plant and

compensator states;
• ϑ(t) ∈ IRnr is the manipulable command input vector

which, if no constraints were present, would coincide
with the reference signal r(t) ∈ IRnr ;

• d(t)∈D ⊂ IRnd , is an exogenous disturbance vector and
D a closed convex and compact set having the following
structure

D := {d ∈ IRnd : Ud ≤ h}, 0nd ∈ D (15)

with U ∈ IRnu×nd full column rank matrix (rank(U) =
nd , nu ≥ nd) and h := [h1 h2 . . .hnu ]

T ∈ IRnu a vector
such that hp ≥ 0, p = 1, ...,nu.

• y(t)∈ IRnr is the output vector which is required to track
r(t);
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Fig. 2. Reference Governor Structure

• c(t) ∈ IRnc is the vector to be constrained, viz. c(t) ∈
C ⊂ IRnc , with C denoting a closed and convex set
having the following structure

C := {c ∈ IRnc : Tc ≤ f} (16)

In (16) T ∈ IRnt×nc , nt ≥ nc, rank(T ) = nc is a matrix
which allows to select the constrained outputs, whereas
f ∈ IRnt is the vector of prescribed constraints.

Under the assumptions that the system (14) must be asymp-
totically stable and offset-free ( i.e, Hy(I−Φ)−1G = Inr ) the
problem is to design, at each time t, a command ϑ(t) as
a static function of the current state x(t) and the reference
signal r(t) (viz. ϑ(t) := ϑ(x(t),r(t))), in such a way that,
under all possible disturbance sequences d(t)∈ D and under
the constraints c(t) ∈ C , the CG output ϑ(t) is the best
approximation of r(t) at time t.
The disturbance effect is taken into consideration by means
of the following sets recursion:

C0 := C ∼ LdD
Ck := Ck−1 ∼ HcΦk−1GdD

C∞ :=
⋂∞

k=0 Ck

(17)

where the symbols ∼ indicates the P-difference [25] be-
tween sets, i.e, given two sets A and B,

A ∼ B := {a ∈ IRn : a+b ∈ A , ∀ b ∈ B}
It is shown in [26] that the sets Ck are suitable restrictions
of C such that if the “disturbance free” component of c(t)
in (14), depending only on initial state and input, belongs to
C∞, then c(t)∈C , ∀ t ∈Z0+; further, if C∞ is nonempty, all
Ck’s are too. In this case they are compact and convex and
satisfy the property Ck ⊂ Ck−1.
By denoting with W ξ the convex and closed set (assumed
nonempty) of all commands ω ∈ IRnr whose corresponding
disturbance-free steady-state solutions c̄ω of (14) , (i.e,
c̄ω := Hc(In −Φ)−1Gω +Lω) satisfies the constraints with
a prescribed tolerance ξ , the CG strategy consists to choose
at each time-step, a constant virtual command v(·) ≡ ω ,
with ω ∈ W ξ , such that the corresponding disturbance-free
evolution c̄(k,x(t),ω) of (14), along a virtual time k from
the initial condition x(t), (i.e, c̄(k,x(t),ω) := Hc(Φkx(t) +
∑k−1

i=0 Φ
k−i−1Gω) + Lω), fulfills the constraints ∀k ∈ Z0+

and its distance from the constant reference of value r(t)
is minimal. Such a command ω is applied to the plant, the
procedure is repeated at next time t +1 on the basis of a new
measured state x(t +1).

Consequently, by calling with V (x) ⊂ W ξ the set of all
constant commands ω ∈ W ξ , whose c-evolutions starting
from initial condition x satisfies the constraints also during
transients (i.e V (x) := {ω ∈W ξ : c̄(k,x,ω) ∈ Ck,∀k ∈Z0+}
) and provided that V (x) is nonempty, closed and convex for
all t ∈ Z0+, the CG command is the solution of the following
constrained optimization problem:

ϑ(t) := arg min
ω∈V (x(t))

J(r(t),ω) (18)

where J(r(t),ω) is the following quadratic cost index

J(r(t),ω) := ‖ω− r(t)‖2
Ψ (19)

with Ψ = Ψ′ > 0p and ‖x‖2
Ψ := x′Ψx.

In other words, the minimizer (18) represents the best ap-
proximation of the reference signal r(t) which, if constantly
applied from t onwards to the system (14), would never pro-
duce constraints violation. Practical implementation of CG
strategy requires a finite-time computable way to solve the
optimization problem (18) and there might be no algorithms
capable of efficiently computing the minimizer due to the
presence of an infinite number of constraints.
To overcome this limitation, it has been shown in [13] and
[27] that V (x(t)) is finitely determined, viz. there exists an
integer k̄ such that if c̄(k,x,ω) ∈ Ck, k ∈ {0,1, ..., k̄}, then
c̄(k,x,ω) ∈ Ck ∀ k ∈ Z0+. The constraint horizon k̄ can be
determined off-line by using an algorithm proposed for the
first time by Gilbert and Tin Tan [27] which can be translated
into the following optimization problem:

Gk( j) := maxx∈IRn, ω∈W ξ TT
j c̄(k,x,ω)− f k

j

subject to (20)

TT
j (i,x,ω) ≤ f i

j, i = 0, ...,k−1

where TT
j , j = 1, ...,nt denotes the j-th row of T and the

terms f i
j, i = 0, ...,k−1 have the following expression:

f 0
j := f j − sup

d∈D
TT

j Ldd

f 1
j := f 0

j − sup
d∈D

TT
j HcGdd (21)

f k
j := f k−1

j − sup
d∈D

TT
j HcΦk− jGdd

An algorithm to derive the constraint horizon k̄, by means
of procedure (20), is as follows:

Step 1. k ← 1;
Step 2. Solve Gk( j) ∀ j = 1, ...,nt;
Step 3. If Gk( j)≤ 0,∀ j = 1, ...,nt:
Set k̄ = k Stop;
Step 4. Otherwise k ← k+1, Go To Step 2.

For further details, see [14]. With this scheme, the initial
optimization problem (18), which exhibits an infinite number
of constraints, is equivalent to a convex quadratic program
(QP) problem with a finite number of constraints.
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As a consequence, the CG action can be obtained by solving
the following QP problem:

ϑ(t) := minω(ω− r(t))′ψ(ω− r(t))

subject to

THcΦkx(t)+T
k−1

∑
i=0

ΦiGω +TLω ≤ f k, k = 0, ...,k (22)

THc(In−Φ)−1Gω+TLω ≤ f kε −(ξ+ε)
√

TT
j Tj j = 1, ...,nt .

The symbols ε and kε are a fixed positive tolerance and an
integer respectively, that allow to approximate the set C∞ of
(17) with the following set C∞(ε):

C∞(ε) := Ckε ∼ Bε (23)

where Bε is the ball of radius ε centered at the origin.
Without loss of generality, it is possible affirm that, (see
[14]), the integer kε can be computed as follows:

kε :=
ln(ε)+ ln(1−λ )− ln(σ(Hc)σ(Gd)Mdmax)

ln(λ )
(24)

with σ(Hc) and σ(Gd) the max singular values of Hc and Gd

matrix respectively, dmax = maxd∈D‖d‖2, and M > 0 and λ ∈
(0,1) two constant such that ‖Φk‖≤Mλ k. For all theoretical
aspects, see [14], [15], [26].
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Fig. 3. Comparison between the pilot-demands (25) (solid-line) and the related controlled outputs (dashed-line) in presence only of the multivariable PI
controller.
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Fig. 4. Dashed-line: Time-behavior of δe,δa,δr in presence only of the multivariable PI controller. Dotted-line: prescribed constraints.
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Fig. 5. Dashed-line: Time-behavior of δ̇e, δ̇a, δ̇r in presence only of the multivariable PI controller. Dotted-line: prescribed constraints.

IV. APPLICATION OF THE CG STRATEGY TO CIVIL

AIRCRAFT

The main objective of this section is to show the recent
CG strategy can be considered as an effective methodology
to be investigated in field of the general aviation in order
to improve the performance of control systems operating
in presence of actuators subjected to amplitude and rate
saturations. To this end all numerical results obtained with
and without the application of the CG strategy will be
analyzed in depth.
The PI regulator obtained according to the design guidelines
provided in [23], [24] and outlined in Section II has been
integrated in the simulation environment [19] of the aircraft
nonlinear model. Next, in presence of severe turbulence
(maximum wind speed 12 m/s, and standard deviation of
about 3 m/s) and by keeping constant the throttle command
the civil aircraft equipped with the PI controller has been
driven according to the following manoeuvre:
• θ variation w.r.t. the equilibrium value: 0.35 (rad)
• φ variation w.r.t. the equilibrium value: 0.42 (rad)
• β variation w.r.t. the equilibrium value: 0.17 (rad)

(25)

Figs. 3 show a comparison between the reference trajectories
(solid-line) and the related time-behavior of the controlled
outputs (dashed-line). It is well remarkable as a fatal loss of
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Fig. 6. Comparison between the pilot-demand (25) (dotted-line), the version modified by CG device (solid-line) and the controlled outputs (dashed-line)
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Fig. 7. Dashed-line: Time-behavior of δe,δa,δr , Dotted-line: Prescribed Constraints.
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Fig. 8. Dashed-line: Time-behavior of δ̇e, δ̇a, δ̇r , Dotted-line: Prescribed Constraints.

performance is exhibited by the aircraft in correspondence
of the abrupt pilot-demand (25). The reasons which lead to
this undesirable aircraft behavior can be found by analyzing
the following Figs. 4(a)-4(c): here the time-histories (dashed-
line) of the excursions of the control surfaces and the related
prescribed limitations (dotted-line) are shown. It can be noted
as the saturation of all actuators takes place. In particular,
after a short chattering among their prescribed lower and
upper limits, the deflections of the elevator, aileron and
rudder remain locked to their related maximum admissible
saturation value. Furthermore, as Figs. 5(a) - 5(c) show,
the aggressive pilot manoeuvre (25) also induces a strong
violation of the limitations prescribed for the rate (dashed-
line) of all the control surfaces. It is worth to stress that if
the aircraft is steered with manoeuvres minus aggressive and
abrupt than (25) (do not plotted here for brevity), no closed
loop instability occurs and satisfactory tracking performance
are achieved through the multivariable PI control action.
Therefore, in order to recovery stability with acceptable flight
performance and to jointly avoid any actuators saturation we
equipped the small commercial aircraft under consideration
with CG device. The latter has been designed by following
all design guidelines provided in the previous section. The
resulting CG device has been integrated on the nonlinear
model of the aircraft regulated with the PI multivariable
controller. In Figs. 6(a) - 6(c) the original reference signal

(dotted-line), the outputs (solid-line) of the CG device and
the respective time-histories (dashed-line) of the controlled
variables θ ,φ ,β are shown. It is quite evident as the time
evolution of the new reference signals significantly differs
from the original. In particular, note in Fig. 6(a) as the mod-
ified reference signal for θ exhibits a more flat shape. Further
as it can be observed in Figs. 6(b), 6(c) the new reference
signals for φ and β have a more sluggish time-behavior. Due
to CG action now the controlled outputs exhibit good and
tight tracking properties w.r.t. the new reference signals. As a
consequence, the aircraft maintains stability with acceptable
flight performance. The control surfaces action in presence
of the CG device is illustrated in Figs. 7(a)- 7(c): differences
w.r.t. the time-behaviors previously shown in Fig. 4(a)-
4(c) are quite evident. In particular, note how now, due to
the above-discussed corrections performed on the original
pilot manoeuvre (25), any deflection of the control surfaces
remains locked to the upper or lower limit value. As a
consequence, no actuators saturation occurs and an overall
enhanced reliability results.
Finally, (see Figs. 8(a)-8(c)) it can be noted as CG device
insertion gives rise to strong benefits also on rate of the
excursions of the control surfaces: differently from what
previously shown in Fig. 5(a)-5(c) now the time-behavior
of the rate of all the control surfaces never exceeds its
prescribed maximum and minimum limit.
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V. CONCLUSIONS

The paper focused on constrained control problem based
on Command Governor approach. The main objective was
to investigate the possibility to improve the flight control
performance on aircrafts in presence of typical limitations
acting on amplitude and rate of the actuators. The numerical
experiences carried out on model of a small commercial
aircraft shown that CG strategy is able to successfully cope
with the pernicious effects arising from the presence of these
limitations. The considered CG approach can be considered
as an appealing methodology to be explored on flight control
problems concerning aircrafts of general aviation class.

TABLE I

NOMENCLATURE

Symbol Meaning
p, q, r Roll, Pitch, Yaw rate
φ , θ , ψ Roll Pitch, Yaw angle
uwind, vwind, wwind Long., lateral, vertical wind speed (body-frame)
Cr , Cm, Cn Roll, Pitch, Yaw moment coefficient
CD, CY , CL Drag, Side, Lift force coefficient
Ix, Iy, Iz Momentum of inertia about X-, Y-, Z- body axis
δe, δa, δr Elevator, Aileron, Rudder, deflections
δth, α, β Throttle command, Angle of attack, Sideslip Angle
W , T , V Aircraft weight, Thrust, True air speed
S, b, c Wing area, Wing span, Mean aerodynamic chord
h, ρ , Altitude, Air density (function of h)
g, Ixz Gravity acceleration constant, Cross product of inertia
μT Angle between thrust direction and X-body axis

TABLE II

CONSTRAINTS NUMERICAL VALUES

Constrained Variable Lower Bound Upper Bound
Elevator -0.48 (rad) 0.44 (rad)
Aileron -0.26 (rad) 0.26 (rad)
Rudder -0.35 (rad) 0.35 (rad)
Rate Elevator - 1.4 (rad/s) 1.4 (rad/s)
Rate Aileron - 1.4 (rad/s) 1.4 (rad/s)
Rate Rudder - 1.4 (rad/s) 1.4 (rad/s)

TABLE III

EQUILIBRIUM VALUES (H=1145 M AND MACH NUMBER=0.28)

Variable Value Variable Value
Elevator 0.04 (rad) Roll Angle 0 (rad)
Aileron 0 (rad) Pitch Angle 0.07 (rad)
Rudder 0 (rad) Yaw Angle 0 (rad)
Throttle 57 (%) Roll Rate 0 (rad/s)
True Airspeed 124 (m/s) Pitch Rate 0 (rad/s)
Angle of Attack 0.07 (rad) Yaw Rate 0 (rad/s)
Angle of Sideslip 0 (rad)
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